1
|
Shang Q, Wang J, Xi Z, Gao B, Qian H, An R, Shao G, Liu H, Li T, Liu X. Mechanisms underlying microRNA-222-3p modulation of methamphetamine-induced conditioned place preference in the nucleus accumbens in mice. Psychopharmacology (Berl) 2022; 239:2997-3008. [PMID: 35881147 DOI: 10.1007/s00213-022-06183-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE MicroRNA (miRNA) control of post-transcription gene expression in the nucleus accumbens (NAc) has been implicated in methamphetamine (METH) dependence. Conditioned place preference (CPP) is a classical animal procedure that reflects the rewarding effects of addictive drugs. miR-222-3p has been reported to play a key role in various neurological diseases and is strongly associated with alcohol dependence. Nevertheless, the role of miR-222-3p in METH dependence remains unclear. OBJECTIVE To explore the molecular mechanisms underlying the role of miR-222-3p in the NAc in METH-induced CPP. METHODS miR-222-3p expression in the NAc of METH-induced CPP mice was detected by quantitative real-time (qPCR). Following adeno-associated virus (AAV)-mediated overexpression or knockdown of miR-222-3p in the NAc, mice were subjected to CPP to investigate the effects of miR-222-3p on METH-induced CPP. Target genes of mir-222-3p were predicted using bioinformatics analysis. Candidate target genes for METH-induced CPP were validated by qPCR. RESULTS miR-222-3p expression in the NAc was decreased in CPP mice. Overexpression of miR-222-3p in the NAc blunted METH-induced CPP. Ppp3r1, Cdkn1c, Fmr1, and PPARGC1A were identified as target gene transcripts potentially mediating the effects of miR-222-3p on METH-induced CPP. CONCLUSION Our results highlight miR-222-3p as a key epigenetic regulator in METH-induced CPP and suggest a potential role for miR-222-3p in the regulation of METH-induced reward-related changes in the brain.
Collapse
Affiliation(s)
- Qing Shang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jing Wang
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Zhijia Xi
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Baoyao Gao
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Hongyan Qian
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Ran An
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Gaojie Shao
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China.,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Hua Liu
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing, People's Republic of China
| | - Tao Li
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China. .,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Xinshe Liu
- Institute of Forensic Injury, Institute of Forensic Bio-Evidence, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, People's Republic of China. .,College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Yanta Road W.76, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Abstract
Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States; Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
3
|
Gibson AS, West PJ, Keefe KA. Effects of methamphetamine-induced neurotoxicity on striatal long-term potentiation. Psychopharmacology (Berl) 2022; 239:93-104. [PMID: 34985532 PMCID: PMC8728478 DOI: 10.1007/s00213-021-06055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
RATIONALE Methamphetamine (METH) exposure is associated with damage to central monoamine systems, particularly dopamine signaling. Rodent models of such damage have revealed a decrease in the amplitude of phasic dopamine signals and significant striatal dysfunction, including changes in the molecular, system, and behavioral functions of the striatum. Dopamine signaling through D1 receptors promotes corticostriatal long-term potentiation (LTP), a critical substrate of these striatal functions. OBJECTIVES Therefore, the purpose of this study was to determine if METH-induced dopamine neurotoxicity would impair D1 receptor-dependent striatal LTP in mice. METHODS Mice were treated with a METH binge regimen (4 × 10 mg/kg d,l-methamphetamine, s.c.) that recapitulates all of the known METH-induced neurotoxic effects observed in humans, including dopamine toxicity. Three weeks later, acute brain slices containing either the dorsomedial striatum (DMS) or dorsolateral striatum (DLS) were prepared, and plasticity was assessed using white matter, high-frequency stimulation (HFS), and striatal extracellular electrophysiology. RESULTS Under these conditions, LTP was induced in brain slices containing the DMS from saline-pretreated mice, but not mice with METH-induced neurotoxicity. Furthermore, the LTP observed in DMS slices from saline-pretreated mice was blocked by the dopamine D1 receptor antagonist SCH23390, indicating that this LTP is dopamine D1 receptor-dependent. Finally, acute in vivo treatment of METH-pretreated mice with bupropion (50 mg/kg, i.p.) promoted LTP in DMS slices. CONCLUSIONS Together, these studies demonstrate that METH-induced neurotoxicity impairs dopamine D1 receptor-dependent LTP within the DMS and that the FDA-approved drug bupropion restores induction of striatal LTP in mice with METH-induced dopamine neurotoxicity.
Collapse
Affiliation(s)
- Anne S. Gibson
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT USA ,Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S 2000 E Rm 201, Salt Lake City, UT 84112 USA
| | - Peter J. West
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT USA ,Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S 2000 E Rm 201, Salt Lake City, UT 84112 USA ,Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT USA
| | - Kristen A. Keefe
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT USA ,Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S 2000 E Rm 201, Salt Lake City, UT 84112 USA
| |
Collapse
|
4
|
Targeting JP2: A New Treatment for Pulmonary Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2003446. [PMID: 34394822 PMCID: PMC8363443 DOI: 10.1155/2021/2003446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022]
Abstract
Pulmonary hypertension (PH) is a disease with a complex etiology and high mortality rate. Abnormal pulmonary vasoconstriction and pulmonary vascular remodeling lead to an increase in mean pulmonary arterial blood pressure for which, and there is currently no cure. Junctophilin-2 (JP2) is beneficial for the assembly of junctional membrane complexes, the structural basis for excitation-contraction coupling that tethers the plasma membrane to the sarcoplasmic reticulum/endoplasmic reticulum and is involved in maintaining intracellular calcium concentration homeostasis and normal muscle contraction function. Recent studies have shown that JP2 maintains normal contraction and relaxation of vascular smooth muscle. In some experimental studies of drug treatments for PH, JP2 expression was increased, which improved pulmonary vascular remodeling and right ventricular function. Based on JP2 research to date, this paper summarizes the current understanding of JP2 protein structure, function, and related heart diseases and mechanisms and analyzes the feasibility and possible therapeutic strategies for targeting JP2 in PH.
Collapse
|
5
|
Caveolin-1 Expression in the Dorsal Striatum Drives Methamphetamine Addiction-Like Behavior. Int J Mol Sci 2021; 22:ijms22158219. [PMID: 34360984 PMCID: PMC8348638 DOI: 10.3390/ijms22158219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Dopamine D1 receptor (D1R) function is regulated by membrane/lipid raft-resident protein caveolin-1 (Cav1). We examined whether altered expression of Cav1 in the dorsal striatum would affect self-administration of methamphetamine, an indirect agonist at the D1Rs. A lentiviral construct expressing Cav1 (LV-Cav1) or containing a short hairpin RNA against Cav1 (LV-shCav1) was used to overexpress or knock down Cav1 expression respectively, in the dorsal striatum. Under a fixed-ratio schedule, LV-Cav1 enhanced and LV-shCav1 reduced responding for methamphetamine in an extended access paradigm compared to LV-GFP controls. LV-Cav1 and LV-shCav1 also produced an upward and downward shift in a dose–response paradigm, generating a drug vulnerable/resistant phenotype. LV-Cav1 and LV-shCav1 did not alter responding for sucrose. Under a progressive-ratio schedule, LV-shCav1 generally reduced positive-reinforcing effects of methamphetamine and sucrose as seen by reduced breakpoints. Western blotting confirmed enhanced Cav1 expression in LV-Cav1 rats and reduced Cav1 expression in LV-shCav1 rats. Electrophysiological findings in LV-GFP rats demonstrated an absence of high-frequency stimulation (HFS)-induced long-term potentiation (LTP) in the dorsal striatum after extended access methamphetamine self-administration, indicating methamphetamine-induced occlusion of plasticity. LV-Cav1 prevented methamphetamine-induced plasticity via increasing phosphorylation of calcium calmodulin kinase II, suggesting a mechanism for addiction vulnerability. LV-shCav1 produced a marked deficit in the ability of HFS to produce LTP and, therefore, extended access methamphetamine was unable to alter striatal plasticity, indicating a mechanism for resistance to addiction-like behavior. Our results demonstrate that Cav1 expression and knockdown driven striatal plasticity assist with modulating addiction to drug and nondrug rewards, and inspire new strategies to reduce psychostimulant addiction.
Collapse
|
6
|
Li JH, Liu JL, Zhang KK, Chen LJ, Xu JT, Xie XL. The Adverse Effects of Prenatal METH Exposure on the Offspring: A Review. Front Pharmacol 2021; 12:715176. [PMID: 34335277 PMCID: PMC8317262 DOI: 10.3389/fphar.2021.715176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/01/2021] [Indexed: 01/12/2023] Open
Abstract
Abuse of methamphetamine (METH), an illicit psychostimulant, is a growing public health issue. METH abuse during pregnancy is on the rise due to its stimulant, anorectic, and hallucinogenic properties. METH can lead to multiple organ toxicity in adults, including neurotoxicity, cardiovascular toxicity, and hepatotoxicity. It can also cross the placental barrier and have long-lasting effects on the fetus. This review summarizes neurotoxicity, cardiovascular toxicity, hepatotoxicity, toxicity in other organs, and biomonitoring of prenatal METH exposure, as well as the possible emergence of sensitization associated with METH. We proposed the importance of gut microbiota in studying prenatal METH exposure. There is rising evidence of the adverse effects of METH exposure during pregnancy, which are of significant concern.
Collapse
Affiliation(s)
- Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Li Liu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jing-Tao Xu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Avchalumov Y, Trenet W, Piña-Crespo J, Mandyam C. SCH23390 Reduces Methamphetamine Self-Administration and Prevents Methamphetamine-Induced Striatal LTD. Int J Mol Sci 2020; 21:E6491. [PMID: 32899459 PMCID: PMC7554976 DOI: 10.3390/ijms21186491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Extended-access methamphetamine self-administration results in unregulated intake of the drug; however, the role of dorsal striatal dopamine D1-like receptors (D1Rs) in the reinforcing properties of methamphetamine under extended-access conditions is unclear. Acute (ex vivo) and chronic (in vivo) methamphetamine exposure induces neuroplastic changes in the dorsal striatum, a critical region implicated in instrumental learning. For example, methamphetamine exposure alters high-frequency stimulation (HFS)-induced long-term depression in the dorsal striatum; however, the effect of methamphetamine on HFS-induced long-term potentiation (LTP) in the dorsal striatum is unknown. In the current study, dorsal striatal infusion of SCH23390, a D1R antagonist, prior to extended-access methamphetamine self-administration reduced methamphetamine addiction-like behavior. Reduced behavior was associated with reduced expression of PSD-95 in the dorsal striatum. Electrophysiological findings demonstrate that superfusion of methamphetamine reduced basal synaptic transmission and HFS-induced LTP in dorsal striatal slices, and SCH23390 prevented this effect. These results suggest that alterations in synaptic transmission and synaptic plasticity induced by acute methamphetamine via D1Rs could assist with methamphetamine-induced modification of corticostriatal circuits underlying the learning of goal-directed instrumental actions and formation of habits, mediating escalation of methamphetamine self-administration and methamphetamine addiction-like behavior.
Collapse
Affiliation(s)
- Yosef Avchalumov
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (Y.A.); (W.T.)
| | - Wulfran Trenet
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (Y.A.); (W.T.)
| | - Juan Piña-Crespo
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Chitra Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (Y.A.); (W.T.)
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
8
|
Jiang J, Tang M, Huang Z, Chen L. Junctophilins emerge as novel therapeutic targets. J Cell Physiol 2019; 234:16933-16943. [DOI: 10.1002/jcp.28405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Jinyong Jiang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Mingzhu Tang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Zhen Huang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| |
Collapse
|
9
|
Chen X, Xing J, Jiang L, Qian W, Wang Y, Sun H, Wang Y, Xiao H, Wang J, Zhang J. Involvement of calcium/calmodulin-dependent protein kinase II in methamphetamine-induced neural damage. J Appl Toxicol 2016; 36:1460-7. [PMID: 26923100 DOI: 10.1002/jat.3301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 11/11/2022]
Abstract
Methamphetamine (METH), an illicit drug, is widely abused in many parts of the world. Mounting evidence shows that METH exposure contributes to neurotoxicity, particularly for the monoaminergic neurons. However, to date, only a few studies have tried to unravel the mechanisms involved in METH-induced non-monoaminergic neural damage. Therefore, in the present study, we tried to explore the mechanisms for METH-induced neural damage in cortical neurons. Our results showed that METH significantly increased intracellular [Ca(2) (+) ]i in Ca(2) (+) -containing solution rather than Ca(2) (+) -free solution. Moreover, METH also upregulated calmodulin (CaM) expression and activated CaM-dependent protein kinase II (CaMKII). Significantly, METH-induced neural damage can be partially retarded by CaM antagonist W7 as well as CaMKII blocker KN93. In addition, L-type Ca(2) (+) channel was also proved to be involved in METH-induced cell damage, as nifedipine, the L-type Ca(2) (+) channel-specific inhibitor, markedly attenuated METH-induced neural damage. Collectively, our results suggest that Ca(2) (+) -CaM-CaMKII is involved in METH-mediated neurotoxicity, and it might suggest a potential target for the development of therapeutic strategies for METH abuse. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xufeng Chen
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jingjing Xing
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Lei Jiang
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Wenyi Qian
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yixin Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Hao Sun
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yu Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China.
| | - Jinsong Zhang
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
10
|
Takeshima H, Hoshijima M, Song LS. Ca²⁺ microdomains organized by junctophilins. Cell Calcium 2015; 58:349-56. [PMID: 25659516 PMCID: PMC5159448 DOI: 10.1016/j.ceca.2015.01.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/21/2022]
Abstract
Excitable cells typically possess junctional membrane complexes (JMCs) constructed by the plasma membrane and the endo/sarcoplasmic reticulum (ER/SR) for channel crosstalk. These JMCs are termed triads in skeletal muscle, dyads in cardiac muscle, peripheral couplings in smooth and developing striated muscles, and subsurface cisterns in neurons. Junctophilin subtypes contribute to the formation and maintenance of JMCs by serving as a physical bridge between the plasma membrane and ER/SR membrane in different cell types. In muscle cells, junctophilin deficiency prevents JMC formation and functional crosstalk between cell-surface Ca2+ channels and ER/SR Ca2+ release channels. Human genetic mutations in junctophilin subtypes are linked to congenital hypertrophic cardiomyopathy and neurodegenerative diseases. Furthermore, growing evidence suggests that dysregulation of junctophilins induces pathological alterations in skeletal and cardiac muscle.
Collapse
Affiliation(s)
- Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Masahiko Hoshijima
- Department of Medicine and Center for Research in Biological Systems, University of California, San Diego, CA 92093, USA.
| | - Long-Sheng Song
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|