1
|
Saha P, Sharma SS. RNA Interference Unleashed: Current Perspective of Small Interfering RNA (siRNA) Therapeutics in the Treatment of Neuropathic Pain. ACS Pharmacol Transl Sci 2024; 7:2951-2970. [PMID: 39416962 PMCID: PMC11475279 DOI: 10.1021/acsptsci.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Neuropathic pain (NP) is one of the debilitating pain phenotypes that leads to the progressive degeneration of the central as well as peripheral nervous system. NP is often associated with hyperalgesia, allodynia, paresthesia, tingling, and burning sensations leading to disability, motor dysfunction, and compromised psychological state of the patients. Most of the conventional pharmacological agents are unable to improve the devastating conditions of pain because of their limited efficacy, undesirable side effects, and multifaceted pathophysiology of the diseased condition. A rapid rise in new cases of NP warrants further research for identifying the potential novel therapeutic modalities for treating NP. Recently, small interfering RNA (siRNA) approach has shown therapeutic potential in many disease conditions including NP. Delivery of siRNAs led to potential and selective downregulation of target mRNA and abolished the pain-related behaviors/pathophysiological pain response. The crucial role of siRNA in the treatment of NP by considering all of the pathways associated with NP that could be managed by siRNA therapeutics has been discussed. However, their therapeutic use is limited by several hurdles such as instability in systemic circulation due to their negative charge and membrane impermeability, off-target effects, immunogenicity, and inability to reach the intended site of action. This review also emphasizes several strategies and techniques to overcome these hurdles for translating these therapeutic siRNAs from bench to bedside by opening a new avenue for obtaining a potential therapeutic approach for treating NP.
Collapse
Affiliation(s)
- Priya Saha
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Shyam S. Sharma
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
2
|
Li WH, Wang F, Song GY, Yu QH, Du RP, Xu P. PARP-1: a critical regulator in radioprotection and radiotherapy-mechanisms, challenges, and therapeutic opportunities. Front Pharmacol 2023; 14:1198948. [PMID: 37351512 PMCID: PMC10283042 DOI: 10.3389/fphar.2023.1198948] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Since its discovery, poly (ADP-ribose) polymerase 1 (PARP-1) has been extensively studied due to its regulatory role in numerous biologically crucial pathways. PARP inhibitors have opened new therapeutic avenues for cancer patients and have gained approval as standalone treatments for certain types of cancer. With continued advancements in the research of PARP inhibitors, we can fully realize their potential as therapeutic targets for various diseases. Purpose: To assess the current understanding of PARP-1 mechanisms in radioprotection and radiotherapy based on the literature. Methods: We searched the PubMed database and summarized information on PARP inhibitors, the interaction of PARP-1 with DNA, and the relationships between PARP-1 and p53/ROS, NF-κB/DNA-PK, and caspase3/AIF, respectively. Results: The enzyme PARP-1 plays a crucial role in repairing DNA damage and modifying proteins. Cells exposed to radiation can experience DNA damage, such as single-, intra-, or inter-strand damage. This damage, associated with replication fork stagnation, triggers DNA repair mechanisms, including those involving PARP-1. The activity of PARP-1 increases 500-fold on DNA binding. Studies on PARP-1-knockdown mice have shown that the protein regulates the response to radiation. A lack of PARP-1 also increases the organism's sensitivity to radiation injury. PARP-1 has been found positively or negatively regulate the expression of specific genes through its modulation of key transcription factors and other molecules, including NF-κB, p53, Caspase 3, reactive oxygen species (ROS), and apoptosis-inducing factor (AIF). Conclusion: This review provides a comprehensive analysis of the physiological and pathological roles of PARP-1 and examines the impact of PARP-1 inhibitors under conditions of ionizing radiation exposure. The review also emphasizes the challenges and opportunities for developing PARP-1 inhibitors to improve the clinical outcomes of ionizing radiation damage.
Collapse
Affiliation(s)
- Wen-Hao Li
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Fei Wang
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Gui-Yuan Song
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Qing-Hua Yu
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Rui-Peng Du
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Ping Xu
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
3
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Vaidya B, Kaur H, Thapak P, Sharma SS, Singh JN. Pharmacological Modulation of TRPM2 Channels via PARP Pathway Leads to Neuroprotection in MPTP-induced Parkinson's Disease in Sprague Dawley Rats. Mol Neurobiol 2022; 59:1528-1542. [PMID: 34997907 DOI: 10.1007/s12035-021-02711-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Transient receptor potential melastatin-2 (TRPM2) channels are cation channels activated by oxidative stress and ADP-ribose (ADPR). Role of TRPM2 channels has been postulated in several neurological disorders, but, it has not been explored in animal models of Parkinson's disease (PD). Thus, the role of TRPM2 and its associated poly (ADPR) polymerase (PARP) signaling pathways were investigated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model using TRPM2 inhibitor, 2-aminoethyl diphenyl borinate (2-APB), and PARP inhibitor, N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino) acetamide hydrochloride (PJ-34). PD was induced by using a bilateral intranigral administration of MPTP in rats, and different parameters were evaluated. An increase in oxidative stress was observed, leading to locomotor and cognitive deficits in the PD rats. PD rats also showed an increased TRPM2 expression in the striatum and mid-brain accompanied by reduced expression of tyrosine hydroxylase (TH) in comparison to sham animals. Intraperitoneal administration of 2-APB and PJ-34 led to an improvement in the locomotor and cognitive deficits in comparison to MPTP-induced PD rats. These improvements were accompanied by a reduction in the levels of oxidative stress and an increase in TH levels in the striatum and mid-brain. In addition, these pharmacological interventions also led to a decrease in the expression of TRPM2 in PD in the striatum and mid-brain. Our results provide a rationale for the development of potent pharmacological agents targeting the TRPM2-PARP pathway to provide therapeutic benefits for the treatment of neurological diseases like PD.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India
| | - Harpinder Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India
| | - Pavan Thapak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India
| | - Jitendra Narain Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), 160062, Punjab, India.
| |
Collapse
|
5
|
The potential value of amlexanox in the treatment of cancer: Molecular targets and therapeutic perspectives. Biochem Pharmacol 2021; 197:114895. [PMID: 34968491 DOI: 10.1016/j.bcp.2021.114895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Amlexanox (AMX) is an azoxanthone drug used for decades for the treatment of mouth aphthous ulcers and now considered for the treatment of diabetes and obesity. The drug is usually viewed as a dual inhibitor of the non-canonical IκB kinases IKK-ɛ (inhibitor-kappaB kinase epsilon) and TBK1 (TANK-binding kinase 1). But a detailed target profile analysis indicated that AMX binds directly to twelve protein targets, including different enzymes (IKK-ɛ, TBK1, GRK1, GRK5, PDE4B, 5- and 12-lipoxygenases) and non-enzyme proteins (FGF-1, HSP90, S100A4, S100A12, S100A13). AMX has been demonstrated to have marked anticancer effects in multiple models of xenografted tumors in mice, including breast, colon, lung and gastric cancers and in onco-hematological models. The anticancer potency is generally modest but largely enhanced upon combination with cytotoxic (temozolide, docetaxel), targeted (selumetinib) or biotherapeutic agents (anti-PD-1 and anti-CTLA4 antibodies). The multiple targets participate in the anticancer effects, chiefly IKK-ɛ/TBK1 but also S100A proteins and PDE4B. The review presents the molecular basis of the antitumor effects of AMX. The capacity of the drug to block nonsense-mediated mRNA decay (NMD) is also discussed, as well as AMX-induced reduction of cancer-related pain. Altogether, the analysis provides a survey of the anticancer action of AMX, with the implicated protein targets. The use of this well-tolerated drug to treat cancer should be further considered and the design of newer analogues encouraged.
Collapse
|
6
|
Hamouda HA, Mansour SM, Elyamany MF. Vitamin D Combined with Pioglitazone Mitigates Type-2 Diabetes-induced Hepatic Injury Through Targeting Inflammation, Apoptosis, and Oxidative Stress. Inflammation 2021; 45:156-171. [PMID: 34468908 DOI: 10.1007/s10753-021-01535-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/04/2021] [Indexed: 12/31/2022]
Abstract
Inflammation is a major pathophysiological factor in development of type-2 diabetes mellitus (T2DM). Vitamin D (VITD) plays an imperative role in modulation of several inflammatory responses. The current study aimed to investigate the possible beneficial effects of coadministration of VITD with pioglitazone (PIO), a PPAR-γ agonist, in fructose/streptozotocin (F/STZ) T2DM model in male Wistar rats. T2DM was induced by maintaining rats on 10% (w/v) fructose in drinking water for 9 weeks with an intraperitoneal injection of sub-diabetogenic dose of STZ (35 mg/kg) by the end of the fourth week. One week after STZ injection, PIO (10 mg/kg/day) alone or with VITD (500 IU/kg/day) was administered orally to diabetic rats till the end of the experiment. Blood samples were collected, livers were homogenized to determine biochemical parameters, and samples of livers were fixed in 10% formalin in saline for histological examination. Administration of PIO alone improved diabetes-induced inflammatory and oxidative states besides controlling hyperglycemia and decreasing apoptosis. Coadministration of VIT D with PIO promoted additional improvement in glycemic and lipid profiles, provided further control on diabetic-induced hepatic inflammation evident by downregulating TLR2, TLR4, and IKK-β while upregulating IκB-α expression and reducing inflammatory cytokines namely; NF-κB, TNF-α, IL-6, and IL-1β, decreasing apoptosis and oxidative stress by hampering caspase-3 and MDA contents, respectively, and improved liver histology than PIO alone. These beneficial effects of VIT D may expand its use by diabetics combined with antidiabetic drugs due to its anti-inflammatory, antioxidant, and antiapoptotic properties.
Collapse
Affiliation(s)
- Hend A Hamouda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt. .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Suzan M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mohammed F Elyamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Diane A, Abunada H, Khattab N, Moin ASM, Butler AE, Dehbi M. Role of the DNAJ/HSP40 family in the pathogenesis of insulin resistance and type 2 diabetes. Ageing Res Rev 2021; 67:101313. [PMID: 33676026 DOI: 10.1016/j.arr.2021.101313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
Insulin resistance (IR) underpins a wide range of metabolic disorders including type 2 diabetes (T2D), metabolic syndrome and cardiovascular diseases. IR is characterized by a marked reduction in the magnitude and/or delayed onset of insulin to stimulate glucose disposal. This condition is due to defects in one or several intracellular intermediates of the insulin signaling cascade, ranging from insulin receptor substrate (IRS) inactivation to reduced glucose phosphorylation and oxidation. Genetic predisposition, as well as other precipitating factors such as aging, obesity, and sedentary lifestyles are among the risk factors underlying the pathogenesis of IR and its subsequent progression to T2D. One of the cardinal hallmarks of T2D is the impairment of the heat shock response (HSR). Human and animal studies provided compelling evidence of reduced expression of several components of the HSR (i.e. Heat shock proteins or HSPs) in diabetic samples in a manner that correlates with the degree of IR. Interventions that induce the HSR, irrespective of the means to achieve it, proved their effectiveness in enhancing insulin sensitivity and improving glycemic index. However, most of these studies have been focused on HSP70 family. In this review, we will focus on the novel role of DNAJ/HSP40 cochaperone family in metabolic diseases associated with IR.
Collapse
|
8
|
Gupta P, Taiyab A, Hassan MI. Emerging role of protein kinases in diabetes mellitus: From mechanism to therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:47-85. [PMID: 33632470 DOI: 10.1016/bs.apcsb.2020.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Diabetes mellitus has emerged as a severe burden on the medical health system across the globe. Presently, around 422 million people are suffering from diabetes which is speculated to be expanded to about 600 million by 2035. Patients with type 2 diabetes are at increased risk of developing detrimental metabolic and cardiovascular complications. The scientific understanding of this chronic disease and its underlying root cause is not yet fully unraveled. Protein kinases are well known to regulate almost every cellular process through phosphorylation of target protein in diverse signaling pathways. The important role of several protein kinases including AMP-activated protein kinase, IκB kinase and protein kinase C have been well demonstrated in various animal models. They modulate glucose tolerance, inflammation and insulin resistance in the cells via acting on diverse downstream targets and signaling pathways. Thus, modulating the activity of potential human kinases which are significantly involved in diabetes by targeting with small molecule inhibitors could be an attractive therapeutic strategy to tackle diabetes. In this chapter, we have discussed the potential role of protein kinases in glucose metabolism and insulin sensitivity, and in the pathogenesis of diabetes mellitus. Furthermore, the small molecules reported in the literature that can be potentially used for the treatment of diabetes have been discussed in detail.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
9
|
Fan M, Bai J, Ding T, Yang X, Si Q, Nie D. Adipose-Derived Stem Cell Transplantation Inhibits Vascular Inflammatory Responses and Endothelial Dysfunction in Rats with Atherosclerosis. Yonsei Med J 2019; 60:1036-1044. [PMID: 31637885 PMCID: PMC6813142 DOI: 10.3349/ymj.2019.60.11.1036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022] Open
Abstract
PURPOSE This study aimed to investigate the effect of adipose-derived stem cell (ADSC) transplantation on atherosclerosis (AS) and its underlying mechanisms. MATERIALS AND METHODS In our study, rat AS model was established, and ADSCs were isolated and cultured. Atherosclerotic plaque and pathological symptoms of thoracic aorta were measured by Oil Red O staining and Hematoxylin-Eosin staining, respectively. Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were measured by an automatic biochemical analyzer. Expressions of vascular endothelial growth factor (VEGF), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), aortic endothelin-1 (ET-1), interleukin-6 (IL-6), c-reactive protein (CRP), and tumor necrosis factor α (TNF-α) were measured by enzyme linked immunosorbent assay, VEGF, VCAM-1, ICAM-1, ET-1, respectively, and NF-κB p65 mRNA expressions were detected by quantitative real-time polymerase chain reaction. Protein expressions of VEGF, VCAM-1, ICAM-1, ET-1, NF-κB p65, p-NF-κB p65, and IκBα were measured by western blot. Moreover, NF-κB p65 expression was measured by immunofluorescence staining. RESULTS ADSC transplantation alleviated the pathological symptoms of aortic AS. ADSC transplantation decreased the levels of TC, TG, and LDL-C and increased serum HDL-C level. Meanwhile, ADSC transplantation decreased the levels of IL-6, CRP, and TNF-α in AS rats. Moreover, the expressions of VEGF, ET-1, VCAM-1, and ICAM-1 were decreased by ADSC transplantation. ADSC transplantation inhibited phosphorylation of NF-κB p65 and promoted IκBα expression in AS rats. CONCLUSION Our study demonstrated that ADSC transplantation could inhibit vascular inflammatory responses and endothelial dysfunction by suppressing NF-κB pathway in AS rats.
Collapse
Affiliation(s)
- Mingqiang Fan
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Jing Bai
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Tao Ding
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Xiangxiang Yang
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Qiaoke Si
- Department of Dardiovascular, Pingliang People's Hospital, Pingliang, China
| | - Dengmei Nie
- Department of Pathology, Second Provincial People's Hospital, Lanzhou, China.
| |
Collapse
|
10
|
Qi Y, Cheng X, Jing H, Yan T, Xiao F, Wu B, Bi K, Jia Y. Effect of Alpinia oxyphylla-Schisandra chinensis herb pair on inflammation and apoptosis in Alzheimer's disease mice model. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:28-38. [PMID: 30880259 DOI: 10.1016/j.jep.2019.03.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alpinia oxyphylla-Schisandra chinensis herb pair (ASHP), composed of Alpinia oxyphylla Miq. Fructus (Yizhi, in Chinese) and Schisandra chinensis (Turcz.) Baill Fructus (Wuweizi, in Chinese) has been used in many traditional Chinese prescriptions such as Yizhi Wuwei pill and Jiannao pill. AIMS OF THE STUDY This study was primarily dealt with studying the effects of Alpinia oxyphylla-Schisandra chinensis herb pair (ASHP) on learning and cognitive impairment in the Aβ1-42 induced mouse model. MATERIALS AND METHODS The chemical composition quantitative analysis was by UPLC. Then the Y maze and Morris water maze test were used to determine the capability of ASHP extracts on improving memory. Histological changes and apoptotic features were detected by HE staining and TUNEL staining, respectively. qPCR was used to detect the changes in the mRNA of caspase3, caspase8 and caspase9 and western-blot was used to detect the changes in the levels of cleaved-caspase3, cleaved-caspase8 and cleaved-caspase9. The levels of some inflammatory factors such as IKK, IκB and NF-κB; anti-apoptotic factors such as bcl-2, bcl-xl, pro-apoptotic factors including bad, bax, p53 were assessed via immunohistochemistry (IHC) and western-blot. RESULTS Administration of ASHP extracts had higher spontaneous alternation ratio in the Y maze, more quadrant dwell time and shorter escape latency compared with model group in the Morris water maze. ASHP treated groups significantly inhibited NF-κB pathway and apoptosis-related pathway in the hippocampus. CONCLUSIONS This study demonstrated that ASHP had the ability to ameliorate abnormal changes in cognitive behavior, biochemical and histopathology induced by Aβ1-42 in the mouse model. The powerful role of ASHP is to inhibit the NF-κB inflammatory signaling pathway and cut down the damage of apoptosis. This study revealed ASHP might be a potential therapy for cognitive and behavioral deficits.
Collapse
Affiliation(s)
- Yu Qi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Xinhui Cheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Huiting Jing
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Feng Xiao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shengyang, 110016, China.
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| |
Collapse
|
11
|
Resham K, Sharma SS. Pharmacologic Inhibition of Porcupine, Disheveled, and β-Catenin in Wnt Signaling Pathway Ameliorates Diabetic Peripheral Neuropathy in Rats. THE JOURNAL OF PAIN 2019; 20:1338-1352. [PMID: 31075529 DOI: 10.1016/j.jpain.2019.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/22/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
Wnt signaling pathway has been investigated extensively for its diverse metabolic and pain-modulating mechanisms; recently its involvement has been postulated in the development of neuropathic pain. However, there are no reports as yet on the involvement of Wnt signaling pathway in one of the most debilitating neurovascular complication of diabetes, namely, diabetic peripheral neuropathy (DPN). Thus, in the present study, involvement of Wnt signaling was investigated in DPN using Wnt signaling inhibitors namely LGK974 (porcupine inhibitor), NSC668036 (disheveled inhibitor), and PNU74654 (β-catenin inhibitor). Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg/kg) to male Sprague-Dawley rats. Diabetic rats after 6 weeks of diabetes induction showed increased expression of Wnt signaling proteins in the spinal cord (L4-L6 lumbar segment), dorsal root ganglions and sciatic nerves. Subsequent increase in inflammation, endoplasmic reticulum stress and loss of intraepidermal nerve fiber density was also observed, leading to neurobehavioral and nerve functional deficits in diabetic rats. Intrathecal administration of Wnt signaling inhibitors (each at doses of 10 and 30 µmol/L) in diabetic rats showed improvement in pain-associated behaviors (heat, cold, and mechanical hyperalgesia) and nerve functions (motor, sensory nerve conduction velocities, and nerve blood flow) by decreasing the expression of Wnt pathway proteins, inflammatory marker, matrix metalloproteinase 2, endoplasmic reticulum stress marker, glucose-regulated protein 78, and improving intraepidermal nerve fiber density. All these results signify the neuroprotective potential of Wnt signaling inhibitors in DPN. PERSPECTIVE: This study emphasizes the involvement of Wnt signaling pathway in DPN. Blockade of this pathway using Wnt inhibitors provided neuroprotection in experimental DPN in rats. This study may provide a basis for exploring the therapeutic potential of Wnt inhibitors in DPN patients.
Collapse
Affiliation(s)
- Kahkashan Resham
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
12
|
Bönhof GJ, Herder C, Strom A, Papanas N, Roden M, Ziegler D. Emerging Biomarkers, Tools, and Treatments for Diabetic Polyneuropathy. Endocr Rev 2019; 40:153-192. [PMID: 30256929 DOI: 10.1210/er.2018-00107] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022]
Abstract
Diabetic neuropathy, with its major clinical sequels, notably neuropathic pain, foot ulcers, and autonomic dysfunction, is associated with substantial morbidity, increased risk of mortality, and reduced quality of life. Despite its major clinical impact, diabetic neuropathy remains underdiagnosed and undertreated. Moreover, the evidence supporting a benefit for causal treatment is weak at least in patients with type 2 diabetes, and current pharmacotherapy is largely limited to symptomatic treatment options. Thus, a better understanding of the underlying pathophysiology is mandatory for translation into new diagnostic and treatment approaches. Improved knowledge about pathogenic pathways implicated in the development of diabetic neuropathy could lead to novel diagnostic techniques that have the potential of improving the early detection of neuropathy in diabetes and prediabetes to eventually embark on new treatment strategies. In this review, we first provide an overview on the current clinical aspects and illustrate the pathogenetic concepts of (pre)diabetic neuropathy. We then describe the biomarkers emerging from these concepts and novel diagnostic tools and appraise their utility in the early detection and prediction of predominantly distal sensorimotor polyneuropathy. Finally, we discuss the evidence for and limitations of the current and novel therapy options with particular emphasis on lifestyle modification and pathogenesis-derived treatment approaches. Altogether, recent years have brought forth a multitude of emerging biomarkers reflecting different pathogenic pathways such as oxidative stress and inflammation and diagnostic tools for an early detection and prediction of (pre)diabetic neuropathy. Ultimately, these insights should culminate in improving our therapeutic armamentarium against this common and debilitating or even life-threatening condition.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Diabetes Center, Diabetic Foot Clinic, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Zhong L, Tran T, Baguley TD, Lee SJ, Henke A, To A, Li S, Yu S, Grieco FA, Roland J, Schultz PG, Eizirik DL, Rogers N, Chartterjee AK, Tremblay MS, Shen W. A novel inhibitor of inducible NOS dimerization protects against cytokine-induced rat beta cell dysfunction. Br J Pharmacol 2018; 175:3470-3485. [PMID: 29888783 PMCID: PMC6086989 DOI: 10.1111/bph.14388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 05/14/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Beta cell apoptosis is a major feature of type 1 diabetes, and pro-inflammatory cytokines are key drivers of the deterioration of beta cell mass through induction of apoptosis. Mitochondrial stress plays a critical role in mediating apoptosis by releasing cytochrome C into the cytoplasm, directly activating caspase-9 and its downstream signalling cascade. We aimed to identify new compounds that protect beta cells from cytokine-induced activation of the intrinsic (mitochondrial) pathway of apoptosis. EXPERIMENTAL APPROACH Diabetogenic media, composed of IL-1β, IFN-γ and high glucose, were used to induce mitochondrial stress in rat insulin-producing INS1E cells, and a high-content image-based screen of small molecule modulators of Casp9 pathway was performed. KEY RESULTS A novel small molecule, ATV399, was identified from a high-content image-based screen for compounds that inhibit cleaved caspase-9 activation and subsequent beta cell apoptosis induced by a combination of IL-1β, IFN-γ and high glucose, which together mimic the pathogenic diabetic milieu. Through medicinal chemistry optimization, potency was markedly improved (6-30 fold), with reduced inhibitory effects on CYP3A4. Improved analogues, such as CAT639, improved beta cell viability and insulin secretion in cytokine-treated rat insulin-producing INS1E cells and primary dispersed islet cells. Mechanistically, CAT639 reduced the production of NO by allosterically inhibiting dimerization of inducible NOS (iNOS) without affecting its mRNA levels. CONCLUSION AND IMPLICATIONS Taken together, these studies demonstrate a successful phenotypic screening campaign resulting in identification of an inhibitor of iNOS dimerization that protects beta cell viability and function through modulation of mitochondrial stress induced by cytokines.
Collapse
Affiliation(s)
- Linlin Zhong
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Tuan Tran
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Tyler D Baguley
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Sang Jun Lee
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Adam Henke
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Andrew To
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Sijia Li
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Shan Yu
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Fabio A Grieco
- ULB Center for Diabetes ResearchUniversite´ Libre de Bruxelles (ULB)Brussels1070Belgium
| | - Jason Roland
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | - Peter G Schultz
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
- Department of ChemistryThe Scripps Research InstituteLa JollaCA92037USA
| | - Decio L Eizirik
- ULB Center for Diabetes ResearchUniversite´ Libre de Bruxelles (ULB)Brussels1070Belgium
| | - Nikki Rogers
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| | | | | | - Weijun Shen
- California Institute for Biomedical Research (Calibr)La JollaCA92037USA
| |
Collapse
|
14
|
Prescott JA, Cook SJ. Targeting IKKβ in Cancer: Challenges and Opportunities for the Therapeutic Utilisation of IKKβ Inhibitors. Cells 2018; 7:cells7090115. [PMID: 30142927 PMCID: PMC6162708 DOI: 10.3390/cells7090115] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
Deregulated NF-κB signalling is implicated in the pathogenesis of numerous human inflammatory disorders and malignancies. Consequently, the NF-κB pathway has attracted attention as an attractive therapeutic target for drug discovery. As the primary, druggable mediator of canonical NF-κB signalling the IKKβ protein kinase has been the historical focus of drug development pipelines. Thousands of compounds with activity against IKKβ have been characterised, with many demonstrating promising efficacy in pre-clinical models of cancer and inflammatory disease. However, severe on-target toxicities and other safety concerns associated with systemic IKKβ inhibition have thus far prevented the clinical approval of any IKKβ inhibitors. This review will discuss the potential reasons for the lack of clinical success of IKKβ inhibitors to date, the challenges associated with their therapeutic use, realistic opportunities for their future utilisation, and the alternative strategies to inhibit NF-κB signalling that may overcome some of the limitations associated with IKKβ inhibition.
Collapse
Affiliation(s)
- Jack A Prescott
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
15
|
Obrosov A, Coppey LJ, Shevalye H, Yorek MA. Effect of Fish Oil vs. Resolvin D1, E1, Methyl Esters of Resolvins D1 or D2 on Diabetic Peripheral Neuropathy. ACTA ACUST UNITED AC 2017; 8. [PMID: 29423332 PMCID: PMC5800519 DOI: 10.4172/2155-9562.1000453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective Fish oil is enriched in omega-3 polyunsaturated fatty acids primarily eicosapentaenoic and docosahexaenoic fatty acids. Metabolites of these two polyunsaturated fatty acids include the E and D series resolvins. Omega-3 polyunsaturated fatty acids and resolvins have been reported to have anti-inflammatory and neuroprotective properties. The objective of this study was to evaluate the efficacy of menhaden oil, a fish oil derived from the menhaden, resolvins D1 and E1 and the methyl esters of resolvins D1 and D2 on diabetic peripheral neuropathy. Hypothesis being examined was that the methyl esters of resolvins D1 and D2 would be move efficacious than resolvins D1 or E1 due to an extended half-life. Methods A model of type 2 diabetes in C57BL/6J mice was created through a combination of a high fat diet followed 8 weeks later with treatment of low dosage of streptozotocin. After 8 weeks of untreated hyperglycemia type 2 diabetic mice were treated for 8 weeks with menhaden oil in the diet or daily injections of 1 ng/g body weight resolvins D1, E1 or methyl esters of resolvins D1 or D2. Afterwards, multiple neurological endpoints were examined. Results Menhaden oil or resolvins did not improve hyperglycemia. Untreated diabetic mice were thermal hypoalgesic, had mechanical allodynia, reduced motor and sensory nerve conduction velocities and decreased innervation of the cornea and skin. These endpoints were significantly improved with menhaden oil or resolvin treatment. However, the methyl esters of resolvins D1 or D2, contrary to our hypothesis, were generally less potent than menhaden oil or resolvins D1 or E1. Conclusion These studies further support omega-3 polyunsaturated fatty acids derived from fish oil via in part due to their metabolites could be an effective treatment for diabetic neuropathy.
Collapse
Affiliation(s)
| | | | - Hanna Shevalye
- Department of Internal Medicine, University of Iowa, Iowa City, USA
| | - Mark A Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, USA.,Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, USA
| |
Collapse
|
16
|
Nandipati KC, Subramanian S, Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem 2016; 426:27-45. [PMID: 27868170 DOI: 10.1007/s11010-016-2878-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.
Collapse
Affiliation(s)
- Kalyana C Nandipati
- Department of Surgery, Creighton University School of Medicine, 601 N. 30th Street, Suite # 3700, Omaha, NE, 68131, USA.
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA.
| | - Saravanan Subramanian
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| |
Collapse
|
17
|
Adenosine Monophosphate-Activated Protein Kinase Abates Hyperglycaemia-Induced Neuronal Injury in Experimental Models of Diabetic Neuropathy: Effects on Mitochondrial Biogenesis, Autophagy and Neuroinflammation. Mol Neurobiol 2016; 54:2301-2312. [PMID: 26957299 DOI: 10.1007/s12035-016-9824-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/02/2016] [Indexed: 12/20/2022]
Abstract
Impaired adenosine monophosphate kinase (AMPK) signalling under hyperglycaemic conditions is known to cause mitochondrial dysfunction in diabetic sensory neurons. Facilitation of AMPK signalling is previously reported to ameliorate inflammation and induce autophagic response in various complications related to diabetes. The present study assesses the role of AMPK activation on mitochondrial biogenesis, autophagy and neuroinflammation in experimental diabetic neuropathy (DN) using an AMPK activator (A769662). A769662 (15 and 30 mg/kg, i.p) was administered to Sprague-Dawley rats (250-270 g) for 2 weeks after 6 weeks of streptozotocin (STZ) injection (55 mg/kg, i.p.). Behavioural parameters (mechanical/thermal hyperalgesia) and functional characteristics (motor/sensory nerve conduction velocities (MNCV and SNCV) and sciatic nerve blood flow (NBF)) were assessed. For in vitro studies, Neuro2a (N2A) cells were incubated with 25 mM glucose to simulate high glucose condition and then studied for mitochondrial dysfunction and protein expression changes. STZ administration resulted in significant hyperglycaemia (>250 mg/dl) in rats. A769662 treatment significantly improved mechanical/thermal hyperalgesia threshold and enhanced MNCV, SNCV and NBF in diabetic animals. A769662 exposure normalised the mitochondrial superoxide production, membrane depolarisation and markedly increased neurite outgrowth of N2A cells. Further, AMPK activation also abolished the NF-κB-mediated neuroinflammation. A769662 treatment increased Thr-172 phosphorylation of AMPK results in stimulated PGC-1α-directed mitochondrial biogenesis and autophagy induction. Our study supports that compromised AMPK signalling in hyperglycaemic conditions causes defective mitochondrial biogenesis ultimately leading to neuronal dysfunction and associated deficits in DN and activation of AMPK can be developed as an attractive therapeutic strategy for the management of DN.
Collapse
|
18
|
Kharatmal SB, Singh JN, Sharma SS. Calpain inhibitor, MDL 28170 confer electrophysiological, nociceptive and biochemical improvement in diabetic neuropathy. Neuropharmacology 2015; 97:113-21. [DOI: 10.1016/j.neuropharm.2015.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/14/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
19
|
Kharatmal S, Singh J, Sharma S. Comparative evaluation of in vitro and in vivo high glucose-induced alterations in voltage-gated tetrodotoxin-resistant sodium channel: Effects attenuated by sodium channel blockers. Neuroscience 2015; 305:183-96. [DOI: 10.1016/j.neuroscience.2015.07.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|