1
|
Li Q, Sun S, Zuo B, Lian C, Tang W, Xu H, Lu W. Novel Clinical Manifestation and Favorable Treatment Outcome of Cochlear Implant in a Chinese Family With Likely Pathogenic Variant of the P2RX2 Gene. Am J Med Genet A 2025; 197:e63877. [PMID: 39258340 DOI: 10.1002/ajmg.a.63877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
The rapid development and clinical application of sequencing technologies enable the genetic diagnosis of inherited deafness. P2RX2, as the gene responsible for autosomal dominant non-syndromic deafness-41 (DFNA41), has been proven to be essential for life-long normal hearing and for the protection of noise-induced hearing loss (NIHL). Our present study reports a missense variant in the P2RX2 gene (c.178G > T (p.V60L)), for the second time worldwide, in a five-generation kindred living in Henan, China. Despite carrying the same variant, the affected members in this family appear to present with earlier-onset hearing loss and poorer hearing compared to the original DFNA41 families. In addition, this study supplements some content that was not covered in previous reports. We quantitatively evaluated the pain perception ability of some members using the Pain Vision PS-2100 system, and further found an interesting clinical manifestation, that is, hyperalgesia, in heterozygotes for P2RX2 p.V60L. The cochlear implant (CI) was also provided for the proband of profound deafness, resulting in satisfactory clinical outcomes. Finally, we carried out a systematic review of recently published articles on the P2RX2 gene, which is beneficial for better understanding the role of the P2RX2 gene in the auditory system and the pathogenic mechanisms in sensorineural hearing loss (SNHL).
Collapse
Affiliation(s)
- Qiang Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuping Sun
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zuo
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chengyu Lian
- Precision Medicine Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenxue Tang
- Precision Medicine Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- The Research and Application Center of Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- The Research and Application Center of Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Fujihira H, Yamagishi S, Furukawa S, Kashino M. Auditory brainstem response to paired clicks as a candidate marker of cochlear synaptopathy in humans. Clin Neurophysiol 2024; 165:44-54. [PMID: 38959535 DOI: 10.1016/j.clinph.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE This study aimed to evaluate whether auditory brainstem response (ABR) using a paired-click stimulation paradigm could serve as a tool for detecting cochlear synaptopathy (CS). METHODS The ABRs to single-clicks and paired-clicks with various inter-click intervals (ICIs) and scores for word intelligibility in degraded listening conditions were obtained from 57 adults with normal hearing. The wave I peak amplitude and root mean square values for the post-wave I response within a range delayed from the wave I peak (referred to as the RMSpost-w1) were calculated for the single- and second-click responses. RESULTS The wave I peak amplitudes did not correlate with age except for the second-click responses at an ICI of 7 ms, and the word intelligibility scores. However, we found that the RMSpost-w1 values for the second-click responses significantly decreased with increasing age. Moreover, the RMSpost-w1 values for the second-click responses at an ICI of 5 ms correlated significantly with the scores for word intelligibility in degraded listening conditions. CONCLUSIONS The magnitude of the post-wave I response for the second-click response could serve as a tool for detecting CS in humans. SIGNIFICANCE Our findings shed new light on the analytical methods of ABR for quantifying CS.
Collapse
Affiliation(s)
- Haruna Fujihira
- NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan; Department of Informatics, Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| | | | - Shigeto Furukawa
- NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan; Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan; Speech-Language-Hearing Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Makio Kashino
- NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan
| |
Collapse
|
3
|
Zallocchi M, Vijayakumar S, Fleegel J, Batalkina L, Brunette KE, Shukal D, Chen Z, Devuyst O, Liu H, He DZZ, Imami AS, Hamoud ARA, McCullumsmith R, Conda-Sheridan M, De Campos LJ, Zuo J. Piplartine attenuates aminoglycoside-induced TRPV1 activity and protects from hearing loss in mice. Sci Transl Med 2024; 16:eadn2140. [PMID: 39110778 PMCID: PMC11392653 DOI: 10.1126/scitranslmed.adn2140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/17/2024] [Accepted: 06/28/2024] [Indexed: 09/15/2024]
Abstract
Hearing loss is a major health concern in our society, affecting more than 400 million people worldwide. Among the causes, aminoglycoside therapy can result in permanent hearing loss in 40% to 60% of patients receiving treatment, and despite these high numbers, no drug for preventing or treating this type of hearing loss has yet been approved by the US Food and Drug Administration. We have previously conducted high-throughput screenings of bioactive compounds, using zebrafish as our discovery platform, and identified piplartine as a potential therapeutic molecule. In the present study, we expanded this work and characterized piplartine's physicochemical and therapeutic properties. We showed that piplartine had a wide therapeutic window and neither induced nephrotoxicity in vivo in zebrafish nor interfered with aminoglycoside antibacterial activity. In addition, a fluorescence-based assay demonstrated that piplartine did not inhibit cytochrome C activity in microsomes. Coadministration of piplartine protected from kanamycin-induced hair cell loss in zebrafish and protected hearing function, outer hair cells, and presynaptic ribbons in a mouse model of kanamycin ototoxicity. Last, we investigated piplartine's mechanism of action by phospho-omics, immunoblotting, immunohistochemistry, and molecular dynamics experiments. We found an up-regulation of AKT1 signaling in the cochleas of mice cotreated with piplartine. Piplartine treatment normalized kanamycin-induced up-regulation of TRPV1 expression and modulated the gating properties of this receptor. Because aminoglycoside entrance to the inner ear is, in part, mediated by TRPV1, these results suggested that by regulating TRPV1 expression, piplartine blocked aminoglycoside's entrance, thereby preventing the long-term deleterious effects of aminoglycoside accumulation in the inner ear compartment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiyong Chen
- Institute of Physiology, University of Zürich, Zürich CH-8057, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, University of Zürich, Zürich CH-8057, Switzerland
| | - Huizhan Liu
- Creighton University School of Medicine, Omaha, NE 68178, USA
| | - David Z Z He
- Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Ali Sajid Imami
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | | | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43614, USA
| | | | | | - Jian Zuo
- Creighton University School of Medicine, Omaha, NE 68178, USA
- Ting Therapeutics LLC, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Yu Q, Liu S, Guo R, Chen K, Li Y, Jiang D, Gong S, Yin L, Liu K. Complete Restoration of Hearing Loss and Cochlear Synaptopathy via Minimally Invasive, Single-Dose, and Controllable Middle Ear Delivery of Brain-Derived Neurotrophic Factor-Poly(dl-lactic acid- co-glycolic acid)-Loaded Hydrogel. ACS NANO 2024; 18:6298-6313. [PMID: 38345574 DOI: 10.1021/acsnano.3c11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Noise-induced hearing loss (NIHL) often accompanies cochlear synaptopathy, which can be potentially reversed to restore hearing. However, there has been little success in achieving complete recovery of sensorineural deafness using nearly noninvasive middle ear drug delivery before. Here, we present a study demonstrating the efficacy of a middle ear delivery system employing brain-derived neurotrophic factor (BDNF)-poly-(dl-lactic acid-co-glycolic acid) (PLGA)-loaded hydrogel in reversing synaptopathy and restoring hearing function in a mouse model with NIHL. The mouse model achieved using the single noise exposure (NE, 115 dBL, 4 h) exhibited an average 20 dBL elevation of hearing thresholds with intact cochlear hair cells but a loss of ribbon synapses as the primary cause of hearing impairment. We developed a BDNF-PLGA-loaded thermosensitive hydrogel, which was administered via a single controllable injection into the tympanic cavity of noise-exposed mice, allowing its presence in the middle ear for a duration of 2 weeks. This intervention resulted in complete restoration of NIHL at frequencies of click, 4, 8, 16, and 32 kHz. Moreover, the cochlear ribbon synapses exhibited significant recovery, whereas other cochlear components (hair cells and auditory nerves) remained unchanged. Additionally, the cochlea of NE treated mice revealed activation of tropomyosin receptor kinase B (TRKB) signaling upon exposure to BDNF. These findings demonstrate a controllable and minimally invasive therapeutic approach that utilizes a BDNF-PLGA-loaded hydrogel to restore NIHL by specifically repairing cochlear synaptopathy. This tailored middle ear delivery system holds great promise for achieving ideal clinical outcomes in the treatment of NIHL and cochlear synaptopathy.
Collapse
Affiliation(s)
- Qianru Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shengnan Liu
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kuntao Chen
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Yang Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Dan Jiang
- Hearing Implant Centre, Guy's and St. Thomas NHS Foundation Trust, London SE1 7EH, United Kingdom
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China
| | - Lan Yin
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China
| |
Collapse
|
5
|
Li Y, Yu H, Zhou X, Jin L, Li W, Li GL, Shen X. Multiple Sevoflurane Exposures During the Neonatal Period Cause Hearing Impairment and Loss of Hair Cell Ribbon Synapses in Adult Mice. Front Neurosci 2022; 16:945277. [PMID: 35911996 PMCID: PMC9329801 DOI: 10.3389/fnins.2022.945277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives This study aims to investigate the effects of multiple sevoflurane exposures in neonatal mice on hearing function in the later life and explores the underlying mechanisms and protective strategies. Materials and Methods Neonatal Kunming mice were exposed to sevoflurane for 3 days. Auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) tests, immunofluorescence, patch-clamp recording, and quantitative real-time PCR were performed to observe hearing function, hair cells, ribbon synapses, nerve fibers, spiral ganglion neurons, and oxidative stress. Results Compared to control group, multiple sevoflurane exposures during the neonatal time significantly elevated ABR thresholds at 8 kHz (35.42 ± 1.57 vs. 41.76 ± 1.97 dB, P = 0.0256), 16 kHz (23.33 ± 1.28 vs. 33.53 ± 2.523 dB, P = 0.0012), 24 kHz (30.00 ± 2.04 vs. 46.76 ± 3.93 dB, P = 0.0024), and 32 kHz (41.25 ± 2.31 vs. 54.41 ± 2.94 dB, P = 0.0028) on P30, caused ribbon synapse loss on P15 (13.10 ± 0.43 vs. 10.78 ± 0.52, P = 0.0039) and P30 (11.24 ± 0.56 vs. 8.50 ± 0.84, P = 0.0141), and degenerated spiral ganglion neuron (SGN) nerve fibers on P30 (110.40 ± 16.23 vs. 55.04 ± 8.13, P = 0.0073). In addition, the Vhalf of calcium current become more negative (−21.99 ± 0.70 vs. −27.17 ± 0.60 mV, P < 0.0001), exocytosis was reduced (105.40 ± 19.97 vs. 59.79 ± 10.60 fF, P < 0.0001), and Lpo was upregulated (P = 0.0219) in sevoflurane group than those in control group. N-acetylcysteine (NAC) reversed hearing impairment induced by sevoflurane. Conclusion The findings suggest that multiple sevoflurane exposures during neonatal time may cause hearing impairment in adult mice. The study also demonstrated that elevated oxidative stress led to ribbon synapses impairment and SGN nerve fibers degeneration, and the interventions of antioxidants alleviated the sevoflurane-induced hearing impairment.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Huiqian Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Xuehua Zhou
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Lin Jin
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Wen Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Geng-Lin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Geng-Lin Li,
| | - Xia Shen
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Xia Shen,
| |
Collapse
|
6
|
Qiu S, Zhao W, Gao X, Li D, Wang W, Gao B, Han W, Yang S, Dai P, Cao P, Yuan Y. Syndromic Deafness Gene ATP6V1B2 Controls Degeneration of Spiral Ganglion Neurons Through Modulating Proton Flux. Front Cell Dev Biol 2021; 9:742714. [PMID: 34746137 PMCID: PMC8568048 DOI: 10.3389/fcell.2021.742714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
ATP6V1B2 encodes the V1B2 subunit in V-ATPase, a proton pump responsible for the acidification of lysosomes. Mutations in this gene cause DDOD syndrome, DOORS syndrome, and Zimmermann-Laband syndrome, which share overlapping feature of congenital sensorineural deafness, onychodystrophy, and different extents of intellectual disability without or with epilepsy. However, the underlying mechanisms remain unclear. To investigate the pathological role of mutant ATP6V1B2 in the auditory system, we evaluated auditory brainstem response, distortion product otoacoustic emissions, in a transgenic line of mice carrying c.1516 C > T (p.Arg506∗) in Atp6v1b2, Atp6v1b2 Arg506*/Arg506* . To explore the pathogenic mechanism of neurodegeneration in the auditory pathway, immunostaining, western blotting, and RNAscope analyses were performed in Atp6v1b2Arg506*/Arg506* mice. The Atp6v1b2Arg506*/Arg506* mice showed hidden hearing loss (HHL) at early stages and developed late-onset hearing loss. We observed increased transcription of Atp6v1b1 in hair cells of Atp6v1b2Arg506*/Arg506* mice and inferred that Atp6v1b1 compensated for the Atp6v1b2 dysfunction by increasing its own transcription level. Genetic compensation in hair cells explains the milder hearing impairment in Atp6v1b2Arg506*/Arg506* mice. Apoptosis activated by lysosomal dysfunction and the subsequent blockade of autophagic flux induced the degeneration of spiral ganglion neurons and further impaired the hearing. Intraperitoneal administration of the apoptosis inhibitor, BIP-V5, improved both phenotypical and pathological outcomes in two live mutant mice. Based on the pathogenesis underlying hearing loss in Atp6v1b2-related syndromes, systemic drug administration to inhibit apoptosis might be an option for restoring the function of spiral ganglion neurons and promoting hearing, which provides a direction for future treatment.
Collapse
Affiliation(s)
- Shiwei Qiu
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
- The Institute of Audiology and Balance Science, Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, China
| | - Weihao Zhao
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
- Department of Otolaryngology General Hospital of Tibet Military Region, Lhasa, China
| | - Xue Gao
- Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Dapeng Li
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Weiqian Wang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Bo Gao
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Weiju Han
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Shiming Yang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Pu Dai
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, China
| | - Yongyi Yuan
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; Key Lab of Hearing Impairment Science of Ministry of Education; Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| |
Collapse
|
7
|
Longenecker RJ, Gu R, Homan J, Kil J. Development of Tinnitus and Hyperacusis in a Mouse Model of Tobramycin Cochleotoxicity. Front Mol Neurosci 2021; 14:715952. [PMID: 34539342 PMCID: PMC8440845 DOI: 10.3389/fnmol.2021.715952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides (AG) antibiotics are a common treatment for recurrent infections in cystic fibrosis (CF) patients. AGs are highly ototoxic, resulting in a range of auditory dysfunctions. It was recently shown that the acoustic startle reflex (ASR) can assess behavioral evidence of hyperacusis and tinnitus in an amikacin cochleotoxicity mouse model. The goal of this study was to establish if tobramycin treatment led to similar changes in ASR behavior and to establish whether ebselen can prevent the development of these maladaptive neuroplastic symptoms. CBA/Ca mice were divided into three groups: Group 1 served as a control and did not receive tobramycin or ebselen, Group 2 received tobramycin (200 mg/kg/s.c.) and the vehicle (DMSO/saline/i.p.) daily for 14 continuous days, and Group 3 received the same dose/schedule of tobramycin as Group 2 and ebselen at (20 mg/kg/i.p.). Auditory brainstem response (ABR) and ASR hearing assessments were collected at baseline and 2, 6, 10, 14, and 18 weeks from the start of treatment. ASR tests included input/output (I/O) functions which assess general hearing and hyperacusis, and Gap-induced prepulse inhibition of the acoustic startle (GPIAS) to assess tinnitus. At 18 weeks, histologic analysis showed predominantly normal appearing hair cells and spiral ganglion neuron (SGN) synapses. Following 14 days of tobramycin injections, 16 kHz thresholds increased from baseline and fluctuated over the 18-week recovery period. I/O functions revealed exaggerated startle response magnitudes in 50% of mice over the same period. Gap detection deficits, representing behavioral evidence of tinnitus, were observed in a smaller subset (36%) of animals. Interestingly, increases in ABR wave III/wave I amplitude ratios were observed. These tobramycin data corroborate previous findings that AGs can result in hearing dysfunctions. We show that a 14-day course of tobramycin treatment can cause similar levels of hearing loss and tinnitus, when compared to a 14-day course of amikacin, but less hyperacusis. Evidence suggests that tinnitus and hyperacusis might be common side effects of AG antibiotics.
Collapse
Affiliation(s)
| | - Rende Gu
- Sound Pharmaceuticals Inc., Seattle, WA, United States
| | | | - Jonathan Kil
- Sound Pharmaceuticals Inc., Seattle, WA, United States
| |
Collapse
|
8
|
Chen X, Abad C, Chen ZY, Young JI, Gurumurthy CB, Walz K, Liu XZ. Generation and characterization of a P2rx2 V60L mouse model for DFNA41. Hum Mol Genet 2021; 30:985-995. [PMID: 33791800 DOI: 10.1093/hmg/ddab077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
P2RX2 encodes the P2X2 receptor, which is an adenosine triphosphate (ATP) gated (purinoreceptor) ion channel. P2RX2 c. 178G > T (p.V60L) mutation was previously identified in two unrelated Chinese families, as the cause of human DFNA41, a form of dominant, early-onset and progressive sensorineural hearing loss. We generated and characterized a knock-in mouse model based on human p.V60L mutation that recapitulates the human phenotype. Heterozygous KI mice started to exhibit hearing loss at 21-day-old and progressed to deafness by 6-month-old. Vestibular dysfunction was also observed in mutant mice. Abnormal morphology of the inner hair cells and ribbon synapses was progressively observed in KI animals suggesting that P2rx2 plays a role in the membrane spatial location of the ribbon synapses. These results suggest that P2rx2 is essential for acoustic information transfer, which can be the molecular mechanism related to hearing loss.
Collapse
Affiliation(s)
- Xiaoya Chen
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Clemer Abad
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zheng-Yi Chen
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA
| | - Juan I Young
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
Sargsyan L, Hetrick AP, Gonzalez JG, Leek MR, Martin GK, Li H. Effects of combined gentamicin and furosemide treatment on cochlear ribbon synapses. Neurotoxicology 2021; 84:73-83. [PMID: 33667563 DOI: 10.1016/j.neuro.2021.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
It is well-established that aminoglycoside antibiotics are ototoxic, and the toxicity can be drastically enhanced by the addition of loop diuretics, resulting in rapid irreversible hair cell damage. Using both electrophysiologic and morphological approaches, we investigated whether this combined treatment affected the cochlea at the region of ribbon synapses, consequently resulting in auditory synaptopathy. A series of varied gentamicin and furosemide doses were applied to C57BL/6 mice, and auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE) were measured to assess ototoxic damage within the cochlea. In brief, the treatment effectively induced cochlear damage and promoted a certain reorganization of synaptic ribbons, while a reduction of ribbon density only occurred after a substantial loss of outer hair cells. In addition, both the ABR wave I amplitude and the ribbon density were elevated in low-dose treatment conditions, but a correlation between the two events was not significant for individual cochleae. In sum, combined gentamicin and furosemide treatment, at titrated doses below those that produce hair cell damage, typically triggers synaptic plasticity rather than a permanent synaptic loss.
Collapse
Affiliation(s)
- Liana Sargsyan
- Research Service, VA Loma Linda Healthcare System, CA 92357, USA
| | - Alisa P Hetrick
- Research Service, VA Loma Linda Healthcare System, CA 92357, USA
| | | | - Marjorie R Leek
- Research Service, VA Loma Linda Healthcare System, CA 92357, USA; Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Glen K Martin
- Research Service, VA Loma Linda Healthcare System, CA 92357, USA; Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, CA 92357, USA; Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA.
| |
Collapse
|
10
|
Protection of Cochlear Ribbon Synapses and Prevention of Hidden Hearing Loss. Neural Plast 2020; 2020:8815990. [PMID: 33204247 PMCID: PMC7652619 DOI: 10.1155/2020/8815990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 01/21/2023] Open
Abstract
In the auditory system, ribbon synapses are vesicle-associated structures located between inner hair cells (IHCs) and spiral ganglion neurons that are implicated in the modulation of trafficking and fusion of synaptic vesicles at the presynaptic terminals. Synapse loss may result in hearing loss and difficulties with understanding speech in a noisy environment. This phenomenon happens without permanent hearing loss; that is, the cochlear synaptopathy is "hidden." Recent studies have reported that synapse loss might be critical in the pathogenesis of hidden hearing loss. A better understanding of the molecular mechanisms of the formation, structure, regeneration, and protection of ribbon synapses will assist in the design of potential therapeutic strategies. In this review, we describe and summarize the following aspects of ribbon synapses: (1) functional and structural features, (2) potential mechanisms of damage, (3) therapeutic research on protecting the synapses, and (4) the role of synaptic regeneration in auditory neuropathy and the current options for synapse rehabilitation.
Collapse
|
11
|
Longenecker RJ, Gu R, Homan J, Kil J. A Novel Mouse Model of Aminoglycoside-Induced Hyperacusis and Tinnitus. Front Neurosci 2020; 14:561185. [PMID: 33041759 PMCID: PMC7530258 DOI: 10.3389/fnins.2020.561185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides (AG) such as amikacin are commonly used in cystic fibrosis patients with opportunistic pulmonary infections including multi-drug resistant mycobacterium tuberculous and non-tuberculous mycobacterium. Unfortunately, this class of drugs is known to cause peripheral damage to the cochlea leading to hearing loss that can fluctuate and become permanent over time or multiple exposures. However, whether amikacin can lead to central auditory dysfunction like hyperacusis (increased sensitivity to sound) or tinnitus (perception of sound in the absence of acoustic stimulation) is not well-described in the literature. Thus, an animal model needs to be developed that documents these side effects in order to develop therapeutic solutions to reduce AG-induced auditory dysfunction. Here we present pioneer work in mice which demonstrates that amikacin can lead to fluctuating behavioral evidence of hyperacusis and tinnitus as assessed by the acoustic startle reflex. Additionally, electrophysiological assessments of hearing via auditory brainstem response demonstrate increased central activity in the auditory brainstem. These data together suggest that peripheral AG-induced dysfunction can lead to central hyperactivity and possible behavioral manifestations of hyperacusis and tinnitus. Importantly, we demonstrate that ebselen, a novel investigational drug that acts as both an antioxidant and anti-inflammatory, can mitigate AG-induced hyperacusis.
Collapse
Affiliation(s)
| | - Rende Gu
- Sound Pharmaceuticals, Inc., Seattle, WA, United States
| | | | - Jonathan Kil
- Sound Pharmaceuticals, Inc., Seattle, WA, United States
| |
Collapse
|
12
|
Yuan X, Liu H, Li Y, Li W, Yu H, Shen X. Ribbon Synapses and Hearing Impairment in Mice After in utero Sevoflurane Exposure. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2685-2693. [PMID: 32753847 PMCID: PMC7354911 DOI: 10.2147/dddt.s253031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Introduction In utero, exposure to sevoflurane (a commonly used inhalation anesthetic) can lead to hearing impairment in offspring mice, but the underlying impairment mechanism is not known. Materials and Methods Day-15 pregnant mice were treated with 2.5% sevoflurane for 2 h to investigate sevoflurane ototoxicity. Cochleae from offspring mice were harvested for hair-cell and ribbon-synapse assessments. Hearing in offspring mice was assessed at postnatal day 30 using an auditory brainstem-response (ABR) test. Cochlear-explant cultures from offspring mice were exposed to 2.5% sevoflurane for 6 h. Immediately after treatment, explants were assessed for hair-cell morphology, mitochondrial oxidative stress, and autophagy. Results In utero, sevoflurane exposure impaired hearing in the offspring is demonstrated by a decrease in ABR wave I amplitudes, a marker for ribbon-synapse functionality. Sevoflurane exposure caused no obvious damage to hair cells, but cochlear ribbon synapses were reduced in postnatal day 15 offspring, and partially recovered by postnatal day 30. Sevoflurane treatment also increased mitochondrial reactive-oxygen species stress and decreased autophagy in the cochlear explants. Conclusion These results suggest that oxidative stress and reduced autophagy may underly ribbon-synapse involvement in sevoflurane-induced hearing loss.
Collapse
Affiliation(s)
- Xia Yuan
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Hongjun Liu
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Yufeng Li
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Wen Li
- Research Center, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Huiqian Yu
- Department of Otorhinolaryngology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| | - Xia Shen
- Department of Anesthesiology, Shanghai Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai 200031, People's Republic of China
| |
Collapse
|
13
|
C Kohrman D, Wan G, Cassinotti L, Corfas G. Hidden Hearing Loss: A Disorder with Multiple Etiologies and Mechanisms. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a035493. [PMID: 30617057 DOI: 10.1101/cshperspect.a035493] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hidden hearing loss (HHL), a recently described auditory disorder, has been proposed to affect auditory neural processing and hearing acuity in subjects with normal audiometric thresholds, particularly in noisy environments. In contrast to central auditory processing disorders, HHL is caused by defects in the cochlea, the peripheral auditory organ. Noise exposure, aging, ototoxic drugs, and peripheral neuropathies are some of the known risk factors for HHL. Our knowledge of the causes and mechanisms of HHL are based primarily on animal models. However, recent clinical studies have also shed light on the etiology and prevalence of this cochlear disorder and how it may affect auditory perception in humans. Here, we review the current knowledge regarding the causes and cellular mechanisms of HHL, summarize information on available noninvasive tests for differential diagnosis, and discuss potential therapeutic approaches for treatment of HHL.
Collapse
Affiliation(s)
- David C Kohrman
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, Jiangsu Province, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210061, Jiangsu Province, China
| | - Luis Cassinotti
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Gabriel Corfas
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
14
|
The Novel Peptide Vaccine GV1001 Protects Hearing in a Kanamycin-induced Ototoxicity Mouse Model. Otol Neurotol 2019; 39:e731-e737. [PMID: 30015752 DOI: 10.1097/mao.0000000000001911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HYPOTHESIS We tested whether GV1001 has any ototoxic side effects at different doses and whether it protects hearing in an aminoglycoside-induced ototoxicity mouse model. BACKGROUND GV1001, a novel peptide vaccine currently being examined in a Phase 3 clinical trial to treat pancreatic cancer, also has anti-inflammatory and antioxidant effects. METHODS In the first experiment, C57/BL6 mice were injected with GV1001 preparations at concentrations of 0.1 to 100 mg/kg for 7 days to evaluate the toxicity of GV1001 on the inner ear and kidneys. In the second experiment, the protective effect of GV1001 was tested in an ototoxicity mouse model that was generated by injecting 800 mg/kg kanamycin (KM) for 2 weeks. The hearing threshold and hair cell loss were compared between the KM + GV1001 group (treated with 10 mg/kg GV1001 for 2 wk) and the KM + saline group. The hearing threshold was measured before, and 7, 14, and 21 days after the initial treatment. The blood urea nitrogen level was measured. RESULTS No ototoxicity or renal toxicity was found following treatment with different doses of GV1001 (0.1-100 mg/kg). The KM + saline group showed impaired auditory function and markedly disoriented and missing cochlear hair cells, while the KM + GV1001 group showed significant hearing and hair cell preservation in comparison (p < 0.05). CONCLUSION GV1001 itself did not have any detrimental effects on the inner ear or kidney. In the KM induced ototoxicity model, concomitant administration of GV1001 protected against cochlear hair cell damage and preserve hearing.
Collapse
|
15
|
Kros CJ, Steyger PS. Aminoglycoside- and Cisplatin-Induced Ototoxicity: Mechanisms and Otoprotective Strategies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033548. [PMID: 30559254 DOI: 10.1101/cshperspect.a033548] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ototoxicity refers to damage of inner ear structures (i.e., the cochlea and vestibule) and their function (hearing and balance) following exposure to specific in-hospital medications (i.e., aminoglycoside antibiotics, platinum-based drugs), as well as a variety of environmental or occupational exposures (e.g., metals and solvents). This review provides a narrative derived from relevant papers describing factors contributing to (or increasing the risk of) aminoglycoside and cisplatin-induced ototoxicity. We also review current strategies to protect against ototoxicity induced by these indispensable pharmacotherapeutic treatments for life-threatening infections and solid tumors. We end by highlighting several interventional strategies that are currently in development, as well as the diverse challenges that still need to be overcome to prevent drug-induced hearing loss.
Collapse
Affiliation(s)
- Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon 97239.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon 97239
| |
Collapse
|
16
|
N-Methyl-D-Aspartate Receptors Involvement in the Gentamicin-Induced Hearing Loss and Pathological Changes of Ribbon Synapse in the Mouse Cochlear Inner Hair Cells. Neural Plast 2018; 2018:3989201. [PMID: 30123246 PMCID: PMC6079453 DOI: 10.1155/2018/3989201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Cochlear inner hair cell (IHC) ribbon synapses play an important role in sound encoding and neurotransmitter release. Previous reports show that both noise and aminoglycoside exposures lead to reduced numbers and morphologic changes of synaptic ribbons. In this work, we determined the distribution of N-methyl-D-aspartate receptors (NMDARs) and their role in the gentamicin-induced pathological changes of cochlear IHC ribbon synaptic elements. In normal mature mouse cochleae, the majority of NMDARs were distributed on the modiolar side of IHCs and close to the IHC nuclei region, while most of synaptic ribbons and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) were located on neural terminals closer to the IHC basal poles. After gentamicin exposure, the NMDARs increased and moved towards the IHC basal poles. At the same time, synaptic ribbons and AMPARs moved toward the IHC bundle poles on the afferent dendrites. The number of ribbon synapse decreased, and this was accompanied by increased auditory brainstem response thresholds and reduced wave I amplitudes. NMDAR antagonist MK801 treatment reduced the gentamicin-induced hearing loss and the pathological changes of IHC ribbon synapse, suggesting that NMDARs were involved in gentamicin-induced ototoxicity by regulating the number and distribution of IHC ribbon synapses.
Collapse
|
17
|
Applying Neurotrophins to the Round Window Rescues Auditory Function and Reduces Inner Hair Cell Synaptopathy After Noise-induced Hearing Loss. Otol Neurotol 2017; 37:1223-30. [PMID: 27631825 DOI: 10.1097/mao.0000000000001191] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HYPOTHESIS Applying neurotrophins to the round window immediately after a single noise exposure will prevent noise-induced hidden hearing loss. BACKGROUND Loud noise can eliminate neural connections between inner hair cells and their afferent neurons (thereby diminishing sound perception) without causing a detectable change on audiogram. This phenomenon is termed hidden hearing loss. METHODS Guinea pigs were exposed for 2 hours to 4 to 8 kHz noise at either 95 or 105 dB SPL. Immediately afterward a 4 μl bolus of neurotrophins (brain-derived neurotrophic factor 1 μg/μl, and neurotrophin-3 1 μg/μl) was delivered to the round window of one ear, and saline to the other. Auditory brainstem responses to pure-tone pips were acquired preoperatively, and at 1 and 2 weeks' postexposure. Cochleae were removed and whole mounted for immunohistochemical analysis, with presynaptic ribbons of inner hair cells and associated postsynaptic glutamatergic AMPA receptors identified using CtBP2 and GluA2 antibodies respectively. RESULTS After exposure to 105 dB noise, threshold did not change, but the amplitude growth of the auditory brainstem response was significantly reduced in control ears in response to 16 and 32 kHz tones. The amplitude growth was also reduced neurotrophin ears, but to a lesser degree and the reduction was not significant. Similar results were obtained from control ears exposed to 95 dB, but amplitude growth recovered in neurotrophin-treated ears, this reaching statistical significance in response to 16 kHz tones. There were significantly more presynaptic ribbons, postsynaptic glutamate receptors, and colocalized ribbons after neurotrophin treatment. CONCLUSION A single dose of neurotrophins delivered to the round window reduced synaptopathy and recovered high-frequency hearing in ears exposed to 95 dB noise. These findings suggest that hidden hearing loss may be reduced by providing trophic support to the cochlea after injury.
Collapse
|
18
|
Zhao N, Tai X, Zhai L, Shi L, Chen D, Yang B, Ji F, Hou K, Yang S, Gong S, Liu K. Unitary ototoxic gentamicin exposure may not disrupt the function of cochlear outer hair cells in mice. Acta Otolaryngol 2017; 137:842-849. [PMID: 28332931 DOI: 10.1080/00016489.2017.1295470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Previous study showed that mild ototoxic exposure could induce a reversible hearing impairment, and the loss and secondary incomplete recovery of cochlear ribbon synapses could be responsible for the hearing loss. However, it remains unclear whether cochlear outer hair cells' (OHCs) functions are affected. OBJECTIVE To verify whether the function of OHCs are also affected significantly after the ototoxic exposure. METHODS Mice were injected intraperitoneally with 100 mg/kg concentration of gentamicin daily for 14 days. Distortion Product of Oto-acoustic Emission (DPOAE) was detected at control (pre-treatment), Day 0, day 4, day 7, day 14 and day 28 after the ototoxic exposure, respectively. In addition, the morphology of OHCs was observed by electron microscopy, OHCs has been counted by light microscopy, and the hearing thresholds were detected by auditory brain response (ABR). RESULTS No significant changes have been found in OHC and OHC stereocilia among the experimental groups (p > .05). Further, no significant changes or loss was found in the morphology of OHCs either. However, we found ABR threshold elevations occurred after ototoxic exposure. CONCLUSIONS Unitary ototoxic gentamicin exposure may not disrupt the function of cochlear OHCs in mice, regardless of hearing loss identified in this ototoxic exposure.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Otolaryngology—Head and Neck Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Otolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - XuHui Tai
- Department of Otolaryngology, The No 463rd Hospital of PLA, Shenyang, China
| | - LiJie Zhai
- Department of Otolaryngology—Head and Neck Surgery, The First Affiliated Hospital of DaLian Medical Universty, Dalian, China
| | - Lin Shi
- Department of Otolaryngology—Head and Neck Surgery, The First Affiliated Hospital of DaLian Medical Universty, Dalian, China
| | - DaiShi Chen
- Department of Neurosurgery, Medical Faculty of the Friedrich Alexander University of Erlangen-Numberg (FAU), Erlangen, Germany
- Department of Otolaryngology—Head and Neck Surgery, General Hospital of PLA and the E.N.T Institute of PLA, Beijing, China
| | - Bo Yang
- Department of Otolaryngology—Head and Neck Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Ji
- Department of Otolaryngology—Head and Neck Surgery, General Hospital of PLA and the E.N.T Institute of PLA, Beijing, China
| | - Kun Hou
- Department of Otolaryngology—Head and Neck Surgery, General Hospital of PLA and the E.N.T Institute of PLA, Beijing, China
| | - ShiMing Yang
- Department of Otolaryngology—Head and Neck Surgery, General Hospital of PLA and the E.N.T Institute of PLA, Beijing, China
| | - ShuSheng Gong
- Department of Otolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Hickox AE, Larsen E, Heinz MG, Shinobu L, Whitton JP. Translational issues in cochlear synaptopathy. Hear Res 2017; 349:164-171. [PMID: 28069376 DOI: 10.1016/j.heares.2016.12.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
Understanding the biology of the previously underappreciated sensitivity of cochlear synapses to noise insult, and its clinical consequences, is becoming a mission for a growing number of auditory researchers. In addition, several research groups have become interested in developing therapeutic approaches that can reverse synaptopathy and restore hearing function. One of the major challenges to realizing the potential of synaptopathy rodent models is that current clinical audiometric approaches cannot yet reveal the presence of this subtle cochlear pathology in humans. This has catalyzed efforts, both from basic and clinical perspectives, to investigate novel means for diagnosing synaptopathy and to determine the main functional consequences for auditory perception and hearing abilities. Such means, and a strong concordance between findings in pre-clinical animal models and clinical studies in humans, are important for developing and realizing therapeutics. This paper frames the key outstanding translational questions that need to be addressed to realize this ambitious goal.
Collapse
Affiliation(s)
- Ann E Hickox
- Decibel Therapeutics, 215 First St, Cambridge, MA, 02142, USA.
| | - Erik Larsen
- Decibel Therapeutics, 215 First St, Cambridge, MA, 02142, USA.
| | - Michael G Heinz
- Speech, Language, and Hearing Sciences and Biomedical Engineering, Purdue University, 715 Clinic Drive, West Lafayette, IN, 47907, USA.
| | - Leslie Shinobu
- Decibel Therapeutics, 215 First St, Cambridge, MA, 02142, USA.
| | | |
Collapse
|
20
|
Koo JW, Quintanilla-Dieck L, Jiang M, Liu J, Urdang ZD, Allensworth JJ, Cross CP, Li H, Steyger PS. Endotoxemia-mediated inflammation potentiates aminoglycoside-induced ototoxicity. Sci Transl Med 2016. [PMID: 26223301 DOI: 10.1126/scitranslmed.aac5546] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The ototoxic aminoglycoside antibiotics are essential to treat severe bacterial infections, particularly in neonatal intensive care units. Using a bacterial lipopolysaccharide (LPS) experimental model of sepsis, we tested whether LPS-mediated inflammation potentiates cochlear uptake of aminoglycosides and permanent hearing loss in mice. Using confocal microscopy and enzyme-linked immunosorbent assays, we found that low-dose LPS (endotoxemia) greatly increased cochlear concentrations of aminoglycosides and resulted in vasodilation of cochlear capillaries without inducing paracellular flux across the blood-labyrinth barrier (BLB) or elevating serum concentrations of the drug. Additionally, endotoxemia increased expression of both serum and cochlear inflammatory markers. These LPS-induced changes, classically mediated by Toll-like receptor 4 (TLR4), were attenuated in TLR4-hyporesponsive mice. Multiday dosing with aminoglycosides during chronic endotoxemia induced greater hearing threshold shifts and sensory cell loss compared to mice without endotoxemia. Thus, endotoxemia-mediated inflammation enhanced aminoglycoside trafficking across the BLB and potentiated aminoglycoside-induced ototoxicity. These data indicate that patients with severe infections are at greater risk of aminoglycoside-induced hearing loss than previously recognized.
Collapse
Affiliation(s)
- Ja-Won Koo
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA. Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173-82 Kumiro, Bundang-gu, Seongnam 463-707, Republic of Korea
| | - Lourdes Quintanilla-Dieck
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Meiyan Jiang
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jianping Liu
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA. Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Zachary D Urdang
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jordan J Allensworth
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Campbell P Cross
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Hongzhe Li
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Peter S Steyger
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
21
|
Wan G, Corfas G. No longer falling on deaf ears: mechanisms of degeneration and regeneration of cochlear ribbon synapses. Hear Res 2015; 329:1-10. [PMID: 25937135 DOI: 10.1016/j.heares.2015.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/01/2015] [Accepted: 04/20/2015] [Indexed: 01/02/2023]
Abstract
Cochlear ribbon synapses are required for the rapid and precise neural transmission of acoustic signals from inner hair cells to the spiral ganglion neurons. Emerging evidence suggests that damage to these synapses represents an important form of cochlear neuropathy that might be highly prevalent in sensorineural hearing loss. In this review, we discuss our current knowledge on how ribbon synapses are damaged by noise and during aging, as well as potential strategies to promote ribbon synapse regeneration for hearing restoration.
Collapse
Affiliation(s)
- Guoqiang Wan
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|