1
|
Huang S, Dong W, Lin X, Bian J. Na+/K+-ATPase: ion pump, signal transducer, or cytoprotective protein, and novel biological functions. Neural Regen Res 2024; 19:2684-2697. [PMID: 38595287 PMCID: PMC11168508 DOI: 10.4103/nrr.nrr-d-23-01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 12/09/2023] [Indexed: 04/11/2024] Open
Abstract
Na+/K+-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na+ out of and two K+ into cells. Additionally, Na+/K+-ATPase participates in Ca2+-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane. Na+/K+-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells. Therefore, it is not surprising that Na+/K+-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases. However, published studies have so far only elucidated the important roles of Na+/K+-ATPase dysfunction in disease development, and we are lacking detailed mechanisms to clarify how Na+/K+-ATPase affects cell function. Our recent studies revealed that membrane loss of Na+/K+-ATPase is a key mechanism in many neurological disorders, particularly stroke and Parkinson's disease. Stabilization of plasma membrane Na+/K+-ATPase with an antibody is a novel strategy to treat these diseases. For this reason, Na+/K+-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein, participating in signal transduction such as neuronal autophagy and apoptosis, and glial cell migration. Thus, the present review attempts to summarize the novel biological functions of Na+/K+-ATPase and Na+/K+-ATPase-related pathogenesis. The potential for novel strategies to treat Na+/K+-ATPase-related brain diseases will also be discussed.
Collapse
Affiliation(s)
- Songqiang Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Wanting Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoqian Lin
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jinsong Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Wei S, Jiang J, Wang D, Chang J, Tian L, Yang X, Ma XR, Zhao JW, Li Y, Chang S, Chi X, Li H, Li N. GPR158 in pyramidal neurons mediates social novelty behavior via modulating synaptic transmission in male mice. Cell Rep 2024; 43:114796. [PMID: 39383040 DOI: 10.1016/j.celrep.2024.114796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/16/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
Impairment in social communication skills is a hallmark feature of autism spectrum disorder (ASD). The role of G-protein-coupled receptor 158 (GPR158) in ASD remains largely unexplored. In this study, we observed that both constitutive and cell-/tissue-specific knockouts of Gpr158 in pyramidal neurons or the medial prefrontal cortex (mPFC) result in impaired novelty preference, while sociability remains unaffected in male mice. Notably, the loss of GPR158 leads to a significant decline in excitatory synaptic transmission, characterized by a reduction in glutamate vesicles, as well as the expression and phosphorylation of GluN2B in the mPFC. We successfully rescue the phenotype of social novelty deficits either by reintroducing GPR158 in the mPFC of Gpr158 deficient mice or by chemogenetic activation of pyramidal neurons where Gpr158 is specifically ablated. Our findings indicate that GPR158 in pyramidal neurons plays a specific role in modulating social novelty and may represent a potential target for treating social disorders.
Collapse
Affiliation(s)
- Shoupeng Wei
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Liusuyan Tian
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiao-Ru Ma
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jing-Wei Zhao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuwen Chang
- Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xinjin Chi
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London WC1E 6BT, UK.
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; China-UK Institute for Frontier Science, Shenzhen 518107, China.
| |
Collapse
|
3
|
Miao Y, Zhao GL, Cheng S, Wang Z, Yang XL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res 2023; 93:101169. [PMID: 36736070 DOI: 10.1016/j.preteyeres.2023.101169] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.
Collapse
Affiliation(s)
- Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Su M, Liu N, Zhang Z, Zhang J. Osmoregulatory strategies of estuarine fish Scatophagus argus in response to environmental salinity changes. BMC Genomics 2022; 23:545. [PMID: 35907798 PMCID: PMC9339187 DOI: 10.1186/s12864-022-08784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scatophagus argus, an estuarine inhabitant, can rapidly adapt to different salinity environments. However, the knowledge of the molecular mechanisms underlying its strong salinity tolerance remains unclear. The gill, as the main osmoregulatory organ, plays a vital role in the salinity adaptation of the fish, and thus relative studies are constructive to reveal unique osmoregulatory mechanisms in S. argus. RESULTS In the present study, iTRAQ coupled with nanoLC-MS/MS techniques were employed to explore branchial osmoregulatory mechanisms in S. argus acclimated to different salinities. Among 1,604 identified proteins, 796 differentially expressed proteins (DEPs) were detected. To further assess osmoregulatory strategies in the gills under different salinities, DEPs related to osmoregulatory (22), non-directional (18), hypo- (52), and hypersaline (40) stress responses were selected. Functional annotation analysis of these selected DEPs indicated that the cellular ion regulation (e.g. Na+-K+-ATPase [NKA] and Na+-K+-2Cl- cotransporter 1 [NKCC1]) and ATP synthesis were deeply involved in the osmoregulatory process. As an osmoregulatory protein, NKCC1 expression was inhibited under hyposaline stress but showed the opposite trend in hypersaline conditions. The expression levels of NKA α1 and β1 were only increased under hypersaline challenge. However, hyposaline treatments could enhance branchial NKA activity, which was inhibited under hypersaline environments, and correspondingly, reduced ATP content was observed in gill tissues exposed to hyposaline conditions, while its contents were increased in hypersaline groups. In vitro experiments indicated that Na+, K+, and Cl- ions were pumped out of branchial cells under hypoosmotic stress, whereas they were absorbed into cells under hyperosmotic conditions. Based on our results, we speculated that NKCC1-mediated Na+ influx was inhibited, and proper Na+ efflux was maintained by improving NKA activity under hyposaline stress, promoting the rapid adaptation of branchial cells to the hyposaline condition. Meanwhile, branchial cells prevented excessive loss of ions by increasing NKA internalization and reducing ATP synthesis. In contrast, excess ions in cells exposed to the hyperosmotic medium were excreted with sufficient energy supply, and reduced NKA activity and enhanced NKCC1-mediated Na+ influx were considered a compensatory regulation. CONCLUSIONS S. argus exhibited divergent osmoregulatory strategies in the gills when encountering hypoosmotic and hyperosmotic stresses, facilitating effective adaptabilities to a wide range of environmental salinity fluctuation.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhengqi Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Nagaoka K, Kurauchi Y, Asano D, Morita A, Sakamoto K, Nakahara T. Pharmacological inhibition of Na +/K +-ATPase induces neurovascular degeneration and glial cell alteration in the rat retina. Exp Eye Res 2022; 220:109107. [PMID: 35568201 DOI: 10.1016/j.exer.2022.109107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/03/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022]
Abstract
Na+/K+-ATPase (NKA) plays an important role in ion homeostasis and neurotransmitter uptake. In the retina, multidirectional communications among neurons, glia, and blood vessels (that is, neuro-glio-vascular interaction) are crucial for maintaining tissue homeostasis. We investigated the role of NKA in the elements of neuro-glio-vascular unit in neonatal and adult rat retinas. Male Sprague-Dawley rats (1- and 8-week-old) were injected intravitreally with ouabain (20 nmol/eye), an inhibitor of NKA. Morphological changes in retinal neurons, glia, and blood vessels were examined. The intravitreal injection of ouabain decreased the number of cells in the ganglion cell layer, as well as the thicknesses of the inner plexiform and inner nuclear layers in neonatal and adult rats compared to age-matched controls. The ouabain-induced neuronal cell damage was partially prevented by D-(-)-2-amino-5-phosphonopentanoic acid, an antagonist of N-methyl-D-aspartic acid receptors. In the deep retinal vascular plexus of the ouabain-injected eyes, angiogenesis was delayed in neonatal rats, whereas capillary degeneration occurred in adult rats. The immunoreactivity of glutamine synthetase and vascular endothelial growth factor (VEGF) decreased in the retinas of neonatal and adult rats injected intravitreally with ouabain. The immunoreactivity of glial fibrillary acidic protein was enhanced in the retinas of ouabain-injected adult eyes. After the ouabain injection, CD45-positive leukocytes and Iba1-positive microglia increased in the inner retinal layer of neonatal rats, whereas they increased in the middle retinal layer of adult rats. These results suggest that the inhibition of NKA induces the degeneration of neuronal and vascular cells and alteration of glial cells in both neonatal and adult retinas. In addition to the direct effects of NKA inhibition, the disturbance of retinal glutamate metabolism and decreased VEGF expression may contribute to neurovascular degeneration. The activity of NKA is crucial for maintaining elements of neuro-glio-vascular unit in the retina.
Collapse
Affiliation(s)
- Koki Nagaoka
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Daiki Asano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
6
|
Antioxidant and Anticholinesterase Properties of the Aqueous Extract of Balanites aegyptiaca L. Delile Fruit Pulp on Monosodium Glutamate-Induced Excitotoxicity in Swiss Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7576132. [PMID: 35449814 PMCID: PMC9017515 DOI: 10.1155/2022/7576132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/26/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
Abstract
Balanites aegyptiaca L. Delile (B. aegyptiaca) is used in traditional medicine for the treatment of memory impairment. This work aims to evaluate the antioxidant and anticholinesterase potential of BA fruit pulp extract on excitotoxicity induced by monosodium glutamate (MSG). MSG was administered 30 minutes after treatment with B. aegyptiaca aqueous fruit pulp extract (50, 125, 250, and 500 mg/kg) and vitamin C (100 mg/kg) for 30 days. The negative control group received only MSG, while the control group was given distilled water daily. Behavioral tests parameters (using the novel object recognition, Y-maze, and Barnes maze tests), oxidative stress biomarkers (malondialdehyde, superoxide dismutase, and catalase), nitric oxide, and acetylcholinesterase activity and hippocampal architecture were evaluated. Results obtained revealed that different doses of B. aegyptiaca significantly reversed the deleterious effect of MSG on memory. This was displayed by a significant (
) increment in the percentage of spontaneous alternation in the Y-maze test and a significant (
) increase in discrimination index in novel object recognition observed with 500 mg/kg extract dose. Moreover, the extract (250 and 500 mg/kg doses) significantly (
) increased direct search strategy and significantly decreased (
) the time taken to find the target hole in the Barnes maze. A modulation of hyperactivity was observed after administration of all extract doses compared to the negative control group in the open arena. Furthermore, the highest dose of the extract caused a significant (
) improvement in antioxidant enzymes activity, associated with a significant (
) decrement in nitric oxide and malondialdehyde concentrations and a significant (
) decrease in acetylcholinesterase activity. Treatment with the extract also restored normal hippocampal cell architecture. B. aegyptiaca fruit pulp extract could thus confer neuroprotection through its antioxidant and anticholinesterase potential.
Collapse
|
7
|
Ma K, Zhang A, She X, Yang H, Wang K, Zhu Y, Gao X, Cui B. Disruption of Glutamate Release and Uptake-Related Protein Expression After Noise-Induced Synaptopathy in the Cochlea. Front Cell Dev Biol 2021; 9:720902. [PMID: 34422838 PMCID: PMC8373299 DOI: 10.3389/fcell.2021.720902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023] Open
Abstract
High-intensity noise can cause permanent hearing loss; however, short-duration medium-intensity noise only induces a temporary threshold shift (TTS) and damages synapses formed by inner hair cells (IHCs) and spiral ganglion nerves. Synaptopathy is generally thought to be caused by glutamate excitotoxicity. In this study, we investigated the expression levels of vesicle transporter protein 3 (Vglut3), responsible for the release of glutamate; glutamate/aspartate transporter protein (GLAST), responsible for the uptake of glutamate; and Na+/K+-ATPase α1 coupled with GLAST, in the process of synaptopathy in the cochlea. The results of the auditory brainstem response (ABR) and CtBP2 immunofluorescence revealed that synaptopathy was induced on day 30 after 100 dB SPL noise exposure in C57BL/6J mice. We found that GLAST and Na+/K+-ATPase α1 were co-localized in the cochlea, mainly in the stria vascularis, spiral ligament, and spiral ganglion cells. Furthermore, Vglut3, GLAST, and Na+/K+-ATPase α1 expression were disrupted after noise exposure. These results indicate that disruption of glutamate release and uptake-related protein expression may exacerbate the occurrence of synaptopathy.
Collapse
Affiliation(s)
- Kefeng Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Anran Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojun She
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kun Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yingwen Zhu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiujie Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
8
|
Omogbiya AI, Ben-Azu B, Eduviere AT, Eneni AEO, Nwokoye PO, Ajayi AM, Umukoro S. Monosodium glutamate induces memory and hepatic dysfunctions in mice: ameliorative role of Jobelyn ® through the augmentation of cellular antioxidant defense machineries. Toxicol Res 2020; 37:323-335. [PMID: 34295796 DOI: 10.1007/s43188-020-00068-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/21/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
This study investigated the effect of high doses of monosodium glutamate (MSG), a known food additive on hepatic, memory and locomotor functions in mice, and the ameliorative potentials of Jobelyn® (JB), a unique dietary supplement. Twenty four male Swiss mice divided into 4 groups (n = 6) were given MSG (2, 4 and 8 g/kg) or normal saline (10 mL/kg) orally for 14 days. In the intervention study, another set of 30 male Swiss mice distributed into 5 groups (n = 6) received normal saline, MSG (8 g/kg) alone or in combination with JB (5, 10 and 20 mg/kg) orally, for 14 days. Memory and locomotor functions as well as brain oxido-nitrergic stress biomarkers were then assessed in both studies. The hepatic oxido-nitrergic stress biomarkers, liver enzymes functions and histomorphology of the liver were also assessed. MSG (2, 4 and 8 g/kg) produced memory dysfunction, hyperlocomotion, increased malondialdehyde and nitrite levels accompanied by decreased antioxidant status in the brain and hepatic tissues. MSG-treated mice had increased hepatic enzyme activities (alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase) and distorted cyto-architectural integrity of the liver. These findings further suggest that MSG compromised hepatic functioning, which might also contribute to its neurotoxicity. However, JB (5, 10 and 20 mg/kg, p.o) attenuated the memory deficit, hyperlocomotion, increased oxido-nitrergic stress responses in the brain and hepatic tissues induced by MSG (8 g/kg, p.o). JB also normalized hepatic enzymes activities and histomorphological changes in MSG-treated mice. Taken together, JB mitigated MSG-induced toxicity through mechanisms relating to enhancement of cellular antioxidant-machineries and normalization of hepatic enzymatic functions.
Collapse
Affiliation(s)
- Adrian Itivere Omogbiya
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Rivers State Nigeria
| | - Anthony Taghogho Eduviere
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Aya-Ebi Okubo Eneni
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Prisilla O Nwokoye
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| |
Collapse
|
9
|
Wyse AT, Siebert C, Bobermin LD, Dos Santos TM, Quincozes-Santos A. Changes in Inflammatory Response, Redox Status and Na +, K +-ATPase Activity in Primary Astrocyte Cultures from Female Wistar Rats Subject to Ovariectomy. Neurotox Res 2019; 37:445-454. [PMID: 31773642 DOI: 10.1007/s12640-019-00128-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/25/2022]
Abstract
Astrocytes are dynamic glial cells that maintain brain homeostasis, particularly metabolic functions, inflammatory response, and antioxidant defense. Since menopause may be associated with brain dysfunction, in the present study, we evaluated anti- and proinflammatory cytokine release in cortical and hippocampal astrocyte cultures obtained from adult female Wistar rats subjected to ovariectomy, a known experimental model of menopause. We also tested some parameters of metabolic functionality (Na+, K+-ATPase activity) and cellular redox status, such as antioxidant enzyme defenses (superoxide dismutase and catalase) and the intracellular production of reactive oxygen species in this experimental model. Female adult Wistar rats (180 days-age) were assigned to one of the following groups: sham (submitted to surgery without removal of the ovaries) and ovariectomy (submitted to surgery to removal of the ovaries). Thirty days after ovariectomy or sham surgery, we prepared astrocyte cultures from control and ovariectomy surgery animals. Ovariectomized rats presented an increase in pro-inflammatory cytokines (tumor necrosis factor α, interleukins 1β, 6, and 18) and a decrease in interleukin 10 release, an anti-inflammatory cytokine, in cortical and hippocampal astrocytes, when compared to those obtained from sham group (control). In addition, Na+,K+-ATPase activity decreased in hippocampal astrocytes, but not in cortical astrocyte cultures. In contrast, antioxidant enzymes did not alter in cortical astrocyte cultures, but increased in hippocampal astrocytes. In summary, our findings suggest that ovariectomy is able to induce an inflammatory response in vivo, which could be detected in in vitro astrocytes after approximately 4 weeks.
Collapse
Affiliation(s)
- Angela Ts Wyse
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Cassiana Siebert
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Larissa D Bobermin
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neurotoxicidade e Glioproteção, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago M Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neurotoxicidade e Glioproteção, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Su M, Zhou J, Duan Z, Zhang J. Transcriptional analysis of renal dopamine-mediated Na + homeostasis response to environmental salinity stress in Scatophagus argus. BMC Genomics 2019; 20:418. [PMID: 31126236 PMCID: PMC6534869 DOI: 10.1186/s12864-019-5795-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background To control the osmotic pressure in the body, physiological adjustments to salinity fluctuations require the fish to regulate body fluid homeostasis in relation to environmental change via osmoregulation. Previous studies related to osmoregulation were focused primarily on the gill; however, little is known about another organ involved in osmoregulation, the kidney. The salinity adaptation of marine fish involves complex physiological traits, metabolic pathways and molecular and gene networks in osmoregulatory organs. To further explore of the salinity adaptation of marine fish with regard to the role of the kidney, the euryhaline fish Scatophagus argus was employed in the present study. Renal expression profiles of S. argus at different salinity levels were characterized using RNA-sequencing, and an integrated approach of combining molecular tools with physiological and biochemical techniques was utilized to reveal renal osmoregulatory mechanisms in vivo and in vitro. Results S. argus renal transcriptomes from the hyposaline stress (0‰, freshwater [FW]), hypersaline stress (50‰, hypersaline water [HW]) and control groups (25‰) were compared to elucidate potential osmoregulatory mechanisms. In total, 19,012 and 36,253 differentially expressed genes (DEGs) were obtained from the FW and HW groups, respectively. Based on the functional classification of DEGs, the renal dopamine system-induced Na+ transport was demonstrated to play a fundamental role in osmoregulation. In addition, for the first time in fish, many candidate genes associated with the dopamine system were identified. Furthermore, changes in environmental salinity affected renal dopamine release/reuptake by regulating the expression of genes related to dopamine reuptake (dat and nkaα1), vesicular traffic-mediated dopamine release (pink1, lrrk2, ace and apn), DAT phosphorylation (CaMKIIα and pkcβ) and internalization (akt1). The associated transcriptional regulation ensured appropriate extracellular dopamine abundance in the S. argus kidney, and fluctuations in extracellular dopamine produced a direct influence on Na+/K+-ATPase (NKA) expression and activity, which is associated with Na+ homeostasis. Conclusions These transcriptomic data provided insight into the molecular basis of renal osmoregulation in S. argus. Significantly, the results of this study revealed the mechanism of renal dopamine system-induced Na+ transport is essential in fish osmoregulation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5795-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianan Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhengyu Duan
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China. .,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
11
|
Johnson J, Pajarillo EAB, Taka E, Reams R, Son DS, Aschner M, Lee E. Valproate and sodium butyrate attenuate manganese-decreased locomotor activity and astrocytic glutamate transporters expression in mice. Neurotoxicology 2017; 64:230-239. [PMID: 28610743 DOI: 10.1016/j.neuro.2017.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 12/19/2022]
Abstract
Manganese (Mn) is an essential trace element, but chronic overexposure to this metal, either environmentally or occupationally may cause manganism, a disease analogous to Parkinson's disease. Inhibitors of histone deacetylases, such as valproic acid (VPA) and sodium butyrate (NaB) exert neuroprotective effects in various animal models of neurological disorders. Thus, the present study investigated whether VPA or NaB prevent Mn-induced neurotoxicity by assessing locomotor activities and expression of astrocytic glutamate transporters, glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST), in C57BL/6 mice. C57BL/6 mice were pretreated with VPA (200mg/kg, i.p.) or NaB (1200mg/kg, i.p.) prior to intranasal instillation of Mn (30mg/kg) continually for 21days, followed by open-field and rota-rod behavioral tests and analyses of astrocytic glutamate transporters GLT-1 and GLAST protein/mRNA levels. The results showed that Mn significantly decreased locomotor activity as determined by total distance travelled, stereotypic and ambulatory counts. Mn also significantly decreased rota-rod activity reflecting altered motor coordination. Pretreatment with VPA and NaB with Mn reversed the effects of Mn on the locomotor activity and motor coordination. VPA and NaB also attenuated the Mn-induced decrease in GLT-1 and GLAST mRNA and protein levels in the cerebral cortical and cerebellar regions of mice. These results suggest that VPA and NaB exert protective effects against Mn toxicity seem in vitro are also shown in vivo. VPA and NaB pretreatment in mice enhancing astrocytic glutamate transporter GLT-1 expression as well as locomotor activities. Future research endeavors are warranted to determine if the therapeutic potential of VPA and NaB is via common molecular mechanism, namely, inhibition of histone deacetylases.
Collapse
Affiliation(s)
- James Johnson
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Edward Alain B Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Equar Taka
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Romonia Reams
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA.
| |
Collapse
|
12
|
Cytokine and Growth Factor Activation In Vivo and In Vitro after Spinal Cord Injury. Mediators Inflamm 2016; 2016:9476020. [PMID: 27418745 PMCID: PMC4935915 DOI: 10.1155/2016/9476020] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury results in a life-disrupting series of deleterious interconnected mechanisms encompassed by the primary and secondary injury. These events are mediated by the upregulation of genes with roles in inflammation, transcription, and signaling proteins. In particular, cytokines and growth factors are signaling proteins that have important roles in the pathophysiology of SCI. The balance between the proinflammatory and anti-inflammatory effects of these molecules plays a critical role in the progression and outcome of the lesion. The excessive inflammatory Th1 and Th17 phenotypes observed after SCI tilt the scale towards a proinflammatory environment, which exacerbates the deleterious mechanisms present after the injury. These mechanisms include the disruption of the spinal cord blood barrier, edema and ion imbalance, in particular intracellular calcium and sodium concentrations, glutamate excitotoxicity, free radicals, and the inflammatory response contributing to the neurodegenerative process which is characterized by demyelination and apoptosis of neuronal tissue.
Collapse
|
13
|
Kinoshita PF, Leite JA, Orellana AMM, Vasconcelos AR, Quintas LEM, Kawamoto EM, Scavone C. The Influence of Na(+), K(+)-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. Front Physiol 2016; 7:195. [PMID: 27313535 PMCID: PMC4890531 DOI: 10.3389/fphys.2016.00195] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
Decreased Na(+), K(+)-ATPase (NKA) activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β, and γ, with four distinct isoforms of the catalytic α subunit (α1-4). Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS), the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2), while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC), as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS) syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2∕3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG) pathway. Glutamate, through nitric oxide synthase (NOS), cGMP and PKG, stimulates brain α2∕3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA) receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid-β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.
Collapse
Affiliation(s)
- Paula F. Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Jacqueline A. Leite
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Ana Maria M. Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Luis E. M. Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Elisa M. Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| |
Collapse
|