1
|
Santos KF, Assunção LP, Santos RS, Reis AAS. Machine learning approaches and genetic determinants that influence the development of type 2 diabetes mellitus: a genetic association study in Brazilian patients. Braz J Med Biol Res 2024; 57:e13957. [PMID: 39630807 DOI: 10.1590/1414-431x2024e13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
This genetic association study including 120 patients with type 2 diabetes mellitus (T2DM) and 166 non-diabetic individuals aimed to investigate the association of polymorphisms in the genes GSTM1 and GSTT1 (gene deletion), GSTP1 (rs1695), ACE (rs4646994), ACE2 (rs2285666), VEGF-A (rs28357093), and MTHFR (rs1801133) with the development of T2DM in the population of Goiás, Brazil. Additionally, the combined effects of these polymorphisms and the possible differences between sexes in susceptibility to the disease were evaluated. Finally, machine learning models were integrated to select the main risk characteristics for the T2DM diagnosis. Risk associations were found for the GSTT1-null genotype in the non-stratified sample and females, and for mutant C allele of the VEGF-A rs28357093 polymorphism in the non-stratified sample. Furthermore, an association of heterozygous (AG) and mutant (GG) GSTP1 genotypes was observed when combined with GSTT1-null. Machine learning approaches corroborated the results found. Therefore, these results suggested that GSTT1 and GSTP1 polymorphisms may contribute to T2DM susceptibility in a Brazilian sample.
Collapse
Affiliation(s)
- K F Santos
- Laboratório de Patologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - L P Assunção
- Laboratório de Patologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - R S Santos
- Laboratório de Patologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - A A S Reis
- Laboratório de Patologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| |
Collapse
|
2
|
Górska AM, Santos-García I, Eiriz I, Brüning T, Nyman T, Pahnke J. Evaluation of cerebrospinal fluid (CSF) and interstitial fluid (ISF) mouse proteomes for the validation and description of Alzheimer's disease biomarkers. J Neurosci Methods 2024; 411:110239. [PMID: 39102902 DOI: 10.1016/j.jneumeth.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Mass spectrometry (MS)-based cerebrospinal fluid (CSF) proteomics is an important method for discovering biomarkers of neurodegenerative diseases. CSF serves as a reservoir for interstitial fluid (ISF), and extensive communication between the two fluid compartments helps to remove waste products from the brain. NEW METHOD We performed proteomic analyses of both CSF and ISF fluid compartments using intracerebral microdialysis to validate and detect novel biomarkers of Alzheimer's disease (AD) in APPtg and C57Bl/6J control mice. RESULTS We identified up to 625 proteins in ISF and 4483 proteins in CSF samples. By comparing the biofluid profiles of APPtg and C57Bl/6J mice, we detected 37 and 108 significantly up- and downregulated candidates, respectively. In ISF, 7 highly regulated proteins, such as Gfap, Aldh1l1, Gstm1, and Txn, have already been implicated in AD progression, whereas in CSF, 9 out of 14 highly regulated proteins, such as Apba2, Syt12, Pgs1 and Vsnl1, have also been validated to be involved in AD pathogenesis. In addition, we also detected new interesting regulated proteins related to the control of synapses and neurotransmission (Kcna2, Cacng3, and Clcn6) whose roles as AD biomarkers should be further investigated. COMPARISON WITH EXISTING METHODS This newly established combined protocol provides better insight into the mutual communication between ISF and CSF as an analysis of tissue or CSF compartments alone. CONCLUSIONS The use of multiple fluid compartments, ISF and CSF, for the detection of their biological communication enables better detection of new promising AD biomarkers.
Collapse
Affiliation(s)
- Anna Maria Górska
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Irene Santos-García
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Ivan Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Tuula Nyman
- Proteomics Core Facility, Department of Immunology, Oslo University Hospital (OUS) and University of Oslo (UiO), Faculty of Medicine, Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, Rīga LV-1004, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv IL-6997801, Israel.
| |
Collapse
|
3
|
Korczowska-Łącka I, Słowikowski B, Piekut T, Hurła M, Banaszek N, Szymanowicz O, Jagodziński PP, Kozubski W, Permoda-Pachuta A, Dorszewska J. Disorders of Endogenous and Exogenous Antioxidants in Neurological Diseases. Antioxidants (Basel) 2023; 12:1811. [PMID: 37891890 PMCID: PMC10604347 DOI: 10.3390/antiox12101811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In diseases of the central nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), stroke, amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and even epilepsy and migraine, oxidative stress load commonly surpasses endogenous antioxidative capacity. While oxidative processes have been robustly implicated in the pathogenesis of these diseases, the significance of particular antioxidants, both endogenous and especially exogenous, in maintaining redox homeostasis requires further research. Among endogenous antioxidants, enzymes such as catalase, superoxide dismutase, and glutathione peroxidase are central to disabling free radicals, thereby preventing oxidative damage to cellular lipids, proteins, and nucleic acids. Whether supplementation with endogenously occurring antioxidant compounds such as melatonin and glutathione carries any benefit, however, remains equivocal. Similarly, while the health benefits of certain exogenous antioxidants, including ascorbic acid (vitamin C), carotenoids, polyphenols, sulforaphanes, and anthocyanins are commonly touted, their clinical efficacy and effectiveness in particular neurological disease contexts need to be more robustly defined. Here, we review the current literature on the cellular mechanisms mitigating oxidative stress and comment on the possible benefit of the most common exogenous antioxidants in diseases such as AD, PD, ALS, HD, stroke, epilepsy, and migraine. We selected common neurological diseases of a basically neurodegenerative nature.
Collapse
Affiliation(s)
- Izabela Korczowska-Łącka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Mikołaj Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Natalia Banaszek
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Agnieszka Permoda-Pachuta
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| |
Collapse
|
4
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
5
|
Azarova I, Polonikov A, Klyosova E. Molecular Genetics of Abnormal Redox Homeostasis in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054738. [PMID: 36902173 PMCID: PMC10003739 DOI: 10.3390/ijms24054738] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Numerous studies have shown that oxidative stress resulting from an imbalance between the production of free radicals and their neutralization by antioxidant enzymes is one of the major pathological disorders underlying the development and progression of type 2 diabetes (T2D). The present review summarizes the current state of the art advances in understanding the role of abnormal redox homeostasis in the molecular mechanisms of T2D and provides comprehensive information on the characteristics and biological functions of antioxidant and oxidative enzymes, as well as discusses genetic studies conducted so far in order to investigate the contribution of polymorphisms in genes encoding redox state-regulating enzymes to the disease pathogenesis.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Correspondence:
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
6
|
Vogrinc D, Gregorič Kramberger M, Emeršič A, Čučnik S, Goričar K, Dolžan V. Genetic Polymorphisms in Oxidative Stress and Inflammatory Pathways as Potential Biomarkers in Alzheimer's Disease and Dementia. Antioxidants (Basel) 2023; 12:antiox12020316. [PMID: 36829875 PMCID: PMC9952323 DOI: 10.3390/antiox12020316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Oxidative stress and neuroinflammation are important processes involved in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Numerous risk factors, including genetic background, can affect the complex interplay between those mechanisms in the aging brain and can also affect typical AD hallmarks: amyloid plaques and neurofibrillary tangles. Our aim was to evaluate the association of polymorphisms in oxidative stress- and inflammation-related genes with cerebrospinal fluid (CSF) biomarker levels and cognitive test results. The study included 54 AD patients, 14 MCI patients with pathological CSF biomarker levels, 20 MCI patients with normal CSF biomarker levels and 62 controls. Carriers of two polymorphic IL1B rs16944 alleles had higher CSF Aβ1-42 levels (p = 0.025), while carriers of at least one polymorphic NFE2L2 rs35652124 allele had lower CSF Aβ1-42 levels (p = 0.040). Association with IL1B rs16944 remained significant in the AD group (p = 0.029). Additionally, MIR146A rs2910164 was associated with Aβ42/40 ratio (p = 0.043) in AD. Significant associations with cognitive test scores were observed for CAT rs1001179 (p = 0.022), GSTP1 rs1138272 (p = 0.005), KEAP1 rs1048290 and rs9676881 (both p = 0.019), as well as NFE2L2 rs35652124 (p = 0.030). In the AD group, IL1B rs1071676 (p = 0.004), KEAP1 rs1048290 and rs9676881 (both p = 0.035) remained associated with cognitive scores. Polymorphisms in antioxidative and inflammation genes might be associated with CSF biomarkers and cognitive test scores and could serve as additional biomarkers contributing to early diagnosis of dementia.
Collapse
Affiliation(s)
- David Vogrinc
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
7
|
Matoba K, Dohi E, Choi EY, Kano SI. Glutathione S-transferases Control astrocyte activation and neuronal health during neuroinflammation. Front Mol Biosci 2023; 9:1080140. [PMID: 36685285 PMCID: PMC9853189 DOI: 10.3389/fmolb.2022.1080140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/15/2022] [Indexed: 01/08/2023] Open
Abstract
Glutathione S-transferases (GST) are phase II detoxification enzymes of xenobiotic metabolism and readily expressed in the brain. Nevertheless, the current knowledge about their roles in the brain is limited. We have recently discovered that GSTM1 promotes the production of pro-inflammatory mediators by astrocytes and enhances microglial activation during acute brain inflammation. Here we report that GSTM1 significantly affects TNF-α-dependent transcriptional program in astrocytes and modulates neuronal activities and stress during brain inflammation. We have found that a reduced expression of GSTM1 in astrocytes downregulates the expression of pro-inflammatory genes while upregulating the expression of genes involved in interferon responses and fatty acid metabolism. Our data also revealed that GSTM1 reduction in astrocytes increased neuronal stress levels, attenuating neuronal activities during LPS-induced brain inflammation. Furthermore, we found that GSTM1 expression increased in the frontal cortex and hippocampus of aging mice. Thus, this study has further advanced our understanding of the role of Glutathione S-transferases in astrocytes during brain inflammation and paved the way for future studies to determine the critical role of GSTM1 in reactive astrocyte responses in inflammation and aging.
Collapse
Affiliation(s)
- Ken Matoba
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
| | - Eisuke Dohi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eric Y. Choi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shin-ichi Kano
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Levy R, Le TH. Role of GSTM1 in Hypertension, CKD, and Related Diseases across the Life Span. KIDNEY360 2022; 3:2153-2163. [PMID: 36591365 PMCID: PMC9802555 DOI: 10.34067/kid.0004552022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022]
Abstract
Over 20 years after the introduction of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, CKD remains a major public health burden with limited therapeutic options to halt or slow kidney disease progression at all ages. The consensus is that oxidative stress contributes to CKD development and progression. Yet, to date, there is no clear evidence that broad use of antioxidant therapy provides a beneficial effect in CKD. Understanding the specific pathophysiologic mechanisms in those who are genetically most susceptible to oxidative stress is a crucial step to inform therapy in an individualized medicine approach, considering differing exposures and risks across the life span. Glutathione-S-transferase μ 1 (GSTM1) is a phase 2 enzyme involved in inactivation of reactive oxygen species and metabolism of xenobiotics. In particular, those with the highly prevalent GSTM1 null genotype (GSTM1[0/0]) may be more susceptible to kidney disease progression, due to impaired capacity to handle the increased oxidative stress burden in disease states, and might specifically benefit from therapy that targets the redox imbalance mediated by loss of the GSTM1 enzyme. In this review, we will discuss the studies implicating the role of GSTM1 deficiency in kidney and related diseases from experimental rodent models to humans, from the prenatal period through senescence, and the potential underlying mechanism.
Collapse
Affiliation(s)
- Rebecca Levy
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Thu H. Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
10
|
Hausman-Cohen S, Bilich C, Kapoor S, Maristany E, Stefani A, Wilcox A. Genomics as a Clinical Decision Support Tool for Identifying and Addressing Modifiable Causes of Cognitive Decline and Improving Outcomes: Proof of Concept Support for This Personalized Medicine Strategy. Front Aging Neurosci 2022; 14:862362. [PMID: 35517054 PMCID: PMC9062132 DOI: 10.3389/fnagi.2022.862362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
The landscape of therapeutics for mild cognitive impairment and dementia is quite limited. While many single-agent trials of pharmaceuticals have been conducted, these trials have repeatedly been unable to show improvement in cognition. It is hypothesized that because Alzheimer’s, like many other chronic illnesses, is not a monogenic illness, but is instead caused by the downstream effects of an individual’s genetic variants interacting with each other, the environment, and lifestyle, that improving outcomes will require a personalized, precision medicine approach. This approach requires identifying and then addressing contributing genomic and other factors specific to each individual in a simultaneous fashion. Until recently, the utility of genomics as part of clinical decision-making for Alzheimer’s and cognitive decline has been limited by the lack of availability of a genomic platform designed specifically to evaluate factors contributing to cognitive decline and how to respond to these factors The clinical decision support (CDS) platform used in the cases presented focuses on common variants that relate to topics including, but not limited to brain inflammation, amyloid processing, nutrient carriers, brain ischemia, oxidative stress, and detoxification pathways. Potential interventions based on the scientific literature were included in the CDS, but the final decision on what interventions to apply were chosen by each patient’s physician. Interventions included supplements with “generally regarded as safe (GRAS)” rating, along with targeted diet and lifestyle modifications. We hypothesize that a personalized genomically targeted approach can improve outcomes for individuals with mild cognitive impairment who are at high risk of Alzheimer’s. The cases presented in this report represent a subset of cases from three physicians’ offices and are meant to provide initial proof of concept data demonstrating the efficacy of this method and provide support for this hypothesis. These patients were at elevated risk for Alzheimer’s due to their apolipoprotein E ε4 status. While further prospective and controlled trials need to be done, initial case reports are encouraging and lend support to this hypothesis of the benefit of a genomically targeted personalized medicine approach to improve outcomes in individuals with cognitive decline who are at high risk for Alzheimer’s.
Collapse
|
11
|
Bodourian CS, Poudel N, Papageorgiou AC, Antoniadi M, Georgakis ND, Abe H, Labrou NE. Ligandability Assessment of Human Glutathione Transferase M1-1 Using Pesticides as Chemical Probes. Int J Mol Sci 2022; 23:3606. [PMID: 35408962 PMCID: PMC8998827 DOI: 10.3390/ijms23073606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/07/2022] Open
Abstract
Glutathione transferases (GSTs; EC 2.5.1.18) form a group of multifunctional enzymes that are involved in phase II of the cellular detoxification mechanism and are associated with increased susceptibility to cancer development and resistance to anticancer drugs. The present study aims to evaluate the ligandability of the human GSTM1-1 isoenzyme (hGSTM1-1) using a broad range of structurally diverse pesticides as probes. The results revealed that hGSTM1-1, compared to other classes of GSTs, displays limited ligandability and ligand-binding promiscuity, as revealed by kinetic inhibition studies. Among all tested pesticides, the carbamate insecticide pirimicarb was identified as the strongest inhibitor towards hGSTM1-1. Kinetic inhibition analysis showed that pirimicarb behaved as a mixed-type inhibitor toward glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB). To shine a light on the restricted hGSTM1-1 ligand-binding promiscuity, the ligand-free crystal structure of hGSTM1-1 was determined by X-ray crystallography at 1.59 Å-resolution. Comparative analysis of ligand-free structure with the available ligand-bound structures allowed for the study of the enzyme's plasticity and the induced-fit mechanism operated by hGSTM1-1. The results revealed important structural features of the H-site that contribute to xenobiotic-ligand binding and specificity. It was concluded that hGSTM1-1 interacts preferentially with one-ring aromatic compounds that bind at a discrete site which partially overlaps with the xenobiotic substrate binding site (H-site). The results of the study form a basis for the rational design of new drugs targeting hGSTM1-1.
Collapse
Affiliation(s)
- Charoutioun S Bodourian
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athina, Greece
| | - Nirmal Poudel
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20521 Turku, Finland
| | | | - Mariana Antoniadi
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athina, Greece
| | - Nikolaos D Georgakis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athina, Greece
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-Ku, Nagoya 464-8602, Japan
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 118 55 Athina, Greece
| |
Collapse
|
12
|
Cao Y, Tan X, Lu Q, Huang K, Tang X, He Z. miR-590-3 and SP1 Promote Neuronal Apoptosis in Patients with Alzheimer's Disease via AMPK Signaling Pathway. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:6010362. [PMID: 34992508 PMCID: PMC8695010 DOI: 10.1155/2021/6010362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurological degenerative illness with a hidden onset. Its pathogenesis is complicated, although with molecular biology research on cancer and targeted research on pathogenic mechanisms, good progress has not yet been made. Therefore, this work built a multifactor-driven neuronal apoptosis dysfunction module for the purpose of probing its underlying pathogenic mechanisms. We performed differential expression analysis, coexpression analysis, enrichment analysis, and hypergeometric tests to calculate the underlying regulatory effects of multifactors on the modules by the way of the whole gene expression profile of AD and identify a series of ncRNA (miR-320a) and TF (NFKB1). Additionally, we screened 10 modules corresponding to the Hub gene, which tend to regulate the physiological progress of inflammation, regulation of autophagy, cerebral cortex neuron differentiation, glial cell apoptotic, and so on. Meanwhile, Alzheimer's disease is triggered by signaling pathways such as the MPK signaling pathway. In this study, a dysfunction module is utilized to verify that miR-590-3 and SP1 motility factors can regulate neurons in Alzheimer's disease through the MPK signaling pathway, not only providing new insights into the pathogenesis of Alzheimer's disease but also laying a solid theoretical foundation for the biologists to further cure Alzheimer's disease.
Collapse
Affiliation(s)
- Yanqun Cao
- Shaoyang University Basic Medical College, Shaoyang 422000, Hunan Province, China
| | - Xiangxiang Tan
- Shaoyang University School of Nursing, Shaoyang 422000, Hunan Province, China
| | - Quzhe Lu
- Shaoyang University Basic Medical College, Shaoyang 422000, Hunan Province, China
| | - Kai Huang
- Shaoyang University Basic Medical College, Shaoyang 422000, Hunan Province, China
| | - Xiaoer Tang
- Shaoyang University Basic Medical College, Shaoyang 422000, Hunan Province, China
| | - Zhiming He
- Shaoyang University Basic Medical College, Shaoyang 422000, Hunan Province, China
| |
Collapse
|
13
|
Hausman-Cohen SR, Hausman-Cohen LJ, Williams GE, Bilich CE. Genomics of Detoxification: How Genomics can be Used for Targeting Potential Intervention and Prevention Strategies Including Nutrition for Environmentally Acquired Illness. J Am Coll Nutr 2021; 39:94-102. [PMID: 32027241 DOI: 10.1080/07315724.2020.1713654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Due to their genomic variants, some individuals are more highly affected by toxicants than others. Toxicant metabolizing and activating variants have been linked with a wide variety of health issues including an increased risk of miscarriages, birth defects, Alzheimer's, benzene toxicity, mercury toxicity and cancer. The study of genomics allows a clinician to identify pathways that are less effective and then gives the clinician the opportunity to counsel their patients about diet, supplements and lifestyle modifications that can improve the function of these pathways or compensate to some extent for their deficits. This article will review a few of these critical pathways relating to phase I and phase 2 detox such as GSTP1, GPX1, GSTT1 deletions, PON1 and some of the CYP 450 system as examples of how an individual's genomic vulnerabilities to toxicants can be addressed by upregulating or downregulating specific pathways via genomically targeted use of foods, supplements and lifestyle changes.
Collapse
Affiliation(s)
| | | | | | - Carol E Bilich
- Resilient Health Austin and IntellxxDNATM, Austin, Texas, USA
| |
Collapse
|
14
|
Glutathione S-transferase gene polymorphisms and risk of nasal or colorectal polyposis. Biosci Rep 2019; 39:BSR20181226. [PMID: 30617052 PMCID: PMC6350046 DOI: 10.1042/bsr20181226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/30/2022] Open
Abstract
We observed inconsistent conclusions regarding the genetic role of glutathione S-transferase gene polymorphisms, including glutathione S-transferase M1 (GSTM1), glutathione S-transferase T1 (GSTT1) present/null, and glutathione S-transferase pi (GSTP1) Ile105Val polymorphisms, in the susceptibility to nasal or colorectal polyposis (NP or CP). Thus, we aimed to perform a meta-analysis to comprehensively evaluate this association by applying Stata/SE software. After the heterogeneity assumption, Mantel-Haenszel statistics were used to obtain the odds ratio (OR), 95% confidence interval (95% CI) and P-value of the association test (PA ). We obtained a total of 235 articles by searching online databases. After screening, ten eligible case-control studies were finally enrolled in our meta-analysis. For the meta-analysis of the GSTT1 gene under present versus null, we observed a decreased risk of NP [OR = 0.65; PA =0.018], but not CP. In addition, we did not detect any evident association between the GSTM1 present/null polymorphism and NP or CP risk. For the meta-analysis of the GSTP1 Ile105Val polymorphism, compared with controls, an increased risk of NP cases was detected under the models of Val versus Ile (OR = 1.36; PA =0.027), Ile/Val versus Ile/Ile (OR = 1.70; PA =0.011) and Ile/Val+Val/Val versus Ile/Ile (OR = 1.65; PA =0.010). In conclusion, the null genotype of the GSTT1 polymorphism may be linked to an increased susceptibility to NP, whereas the Ile/Val genotype of the GSTP1 Ile105Val polymorphism may be associated with a decreased risk of NP.
Collapse
|
15
|
Ding F, Li JP, Zhang Y, Qi GH, Song ZC, Yu YH. Comprehensive Analysis of the Association Between the rs1138272 Polymorphism of the GSTP1 Gene and Cancer Susceptibility. Front Physiol 2019; 9:1897. [PMID: 30740061 PMCID: PMC6355699 DOI: 10.3389/fphys.2018.01897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/18/2018] [Indexed: 12/26/2022] Open
Abstract
Background: We obtained conflicting results regarding the relationship between the genetic role of the rs1138272 C/T polymorphism of the GSTP1 (Glutathione S-Transferase pi) gene and the risk of various cancers. Methods: Using the presently available data, a meta-analysis was conducted to comprehensively evaluate the genetic relationship between the GSTP1 rs1138272 polymorphism and cancer susceptibility. Results: A total of 43 studies including 15,688 cases and 17,143 controls were recruited into our quantitative synthesis. In the overall population, we observed an increased risk of overall cancer cases, compared with unrelated controls, in the genetic models of allele T vs. allele C (P-association = 0.007, OR = 1.17), carrier T vs. carrier C (P-association = 0.035, OR = 1.11), TT vs. CC (P-association = 0.002, OR = 1.45), TT vs. CC+CT (P-association = 0.009, OR = 1.42), and CT+TT vs. CC (P-association = 0.027, OR = 1.13). We detected similar positive results within the Asian population. Additionally, there was a significant increase in the incidence of cancer for Africans under all genetic models (all P-association < 0.05, OR > 1). When targeting the Caucasian population, we detected a positive association with the TT vs. CC and TT vs. CC+CT models in the “Colorectal cancer” (P-association < 0.05, OR < 1) and “Head and neck cancer” (P-association < 0.05, OR > 1) subgroups. For the “Lung cancer” subgroup, we observed a slightly increased risk in Caucasians under the models of allele T vs. allele C, carrier T vs. carrier C, CT vs. CC, and CT+TT vs. CC (P-association < 0.05, OR > 1). Conclusion: The TT genotype of the GSTP1 rs1138272 polymorphism is likely related to the susceptibility to overall cancer in the Asian and African populations and, specifically, “Colorectal” and “Head and neck” cancers in the Caucasian population. In addition, the CT genotype of the GSTP1 rs1138272 polymorphism may be linked to the risk of lung cancer in Caucasians. Additional evidence is required to confirm this conclusion.
Collapse
Affiliation(s)
- Fei Ding
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan, China.,Second Department of Oncology, The First Hospital of Zibo, Zibo, China
| | - Jin-Ping Li
- Department of Public Health, The First Hospital of Zibo, Zibo, China
| | - Yong Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan, China.,Shandong Academy of Medical Sciences, Jinan, China
| | - Guang-Hui Qi
- Department of Urology Surgery, The First Hospital of Zibo, Zibo, China
| | - Zhi-Chao Song
- Department of Anorectal Surgery, The First Hospital of Zibo, Zibo, China
| | - Yong-Hua Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan, China.,Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
16
|
Dasari S, Gonuguntla S, Ganjayi MS, Bukke S, Sreenivasulu B, Meriga B. Genetic polymorphism of glutathione S-transferases: Relevance to neurological disorders. PATHOPHYSIOLOGY 2018; 25:285-292. [DOI: 10.1016/j.pathophys.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/08/2018] [Accepted: 06/10/2018] [Indexed: 02/06/2023] Open
|
17
|
Haley HMS, Hill AG, Greenwood AI, Woerly EM, Rienstra CM, Burke MD. Peridinin Is an Exceptionally Potent and Membrane-Embedded Inhibitor of Bilayer Lipid Peroxidation. J Am Chem Soc 2018; 140:15227-15240. [PMID: 30388000 PMCID: PMC6452872 DOI: 10.1021/jacs.8b06933] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antilipoperoxidant protein dysfunction is associated with many human diseases, suggesting that bilayer lipid peroxidation may contribute broadly to pathogenesis. Small molecule inhibitors of this membrane-localized chemistry could in theory enable better understanding and/or treatment of such diseases, but currently available compounds have important limitations. Many biological questions thus remain unanswered, and clinical trials have largely been disappointing. Enabled by efficient, building block-based syntheses of three atypical carotenoid natural products produced by microorganisms that thrive in environments of extreme oxidative stress, we found that peridinin is a potent inhibitor of nonenzymatic bilayer lipid peroxidation in liposomes and in primary human endothelial cells. We also found that peridinin blocks monocyte-endothelial cell adhesion, a key step in atherogenesis. A series of frontier solid-state NMR experiments with a site-specifically 13C-labeled isotopolog synthesized using the same MIDA boronate building block-based total synthesis approach revealed that peridinin is completely embedded within and physically spans the hydrophobic core of POPC membranes, maximizing its effective molarity at the site of the targeted lipid peroxidation reactions. Alternatively, the widely used carotenoid astaxanthin is significantly less potent and was found to primarily localize extramembranously. Peridinin thus represents a promising and biophysically well-characterized starting point for the development of small molecule antilipoperoxidants that serve as more effective biological probes and/or therapeutics.
Collapse
Affiliation(s)
- Hannah M. S. Haley
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Adam G. Hill
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Alexander I. Greenwood
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Nuclear Magnetic Resonance (NMR) Facility in Applied Science and Physics, William & Mary, Williamsburg, Virginia 23185, United States (A.I.G.)
| | - Eric M. Woerly
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States (E.M.W.)
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Computational Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Martin D. Burke
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana–Champaign, Champaign, Illinois 61821, United States
| |
Collapse
|
18
|
Rezaei M, Saadat M. Association Between GSTP1 Ile105Val Genetic Polymorphism and Dependency to Heroin and Opium. Biochem Genet 2018; 57:214-221. [PMID: 30121884 DOI: 10.1007/s10528-018-9885-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/12/2018] [Indexed: 01/18/2023]
Abstract
Relationship between glutathione S-transferase P1 (GSTP1, OMIM: 134660) variants and the risk of drug dependency is unknown. Chronic use of illegal drugs leads to oxidative stress, which can be alleviated by cellular detoxification mechanisms. There are several polymorphisms in the GSTP1, including Ile105Val (rs1695). This polymorphism leads to an Ile105Val amino acid change and may alter the GSTP1 enzyme activity. There is no study on the association between this polymorphism and risks of heroin (HD) or opium (OD) dependency. This paper consists of two case-control studies. The first study consisted of 442 HD subjects and 794 healthy controls. The second study consisted of 143 cases with OD and 565 healthy blood donors as controls. Genotyping were carried out using PCR based method. The Ile/Val (OR 0.84, 95% CI 0.65-1.07, P = 0.165) and Val/Val (OR 0.87, 95% CI 0.56-1.36, P = 0.879) genotypes did not show significant association with the risk of HD. Neither the Ile/Val (OR 0.72, 95% CI 0.49-1.06, P = 0.103) nor the Val/Val (OR 0.61, 95% CI 0.29-1.30, P = 0.209) was associated with the risk of OD. The GSTP1 Ile105Val polymorphism was not associated with the risk of dependency to opium and heroin.
Collapse
Affiliation(s)
- Majede Rezaei
- Department of Biology, College of Sciences, Shiraz University, Shiraz, 71467-13565, Iran
| | - Mostafa Saadat
- Department of Biology, College of Sciences, Shiraz University, Shiraz, 71467-13565, Iran.
| |
Collapse
|
19
|
Holmes AD, Spoendlin J, Chien AL, Baldwin H, Chang ALS. Evidence-based update on rosacea comorbidities and their common physiologic pathways. J Am Acad Dermatol 2017; 78:156-166. [PMID: 29089181 DOI: 10.1016/j.jaad.2017.07.055] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 02/08/2023]
Abstract
Rosacea is a common chronic inflammatory disease affecting the facial skin whose etiology and pathophysiology are the subject of much investigation. Risk factors include genetic and environmental elements that may predispose individuals to localized inflammation and abnormal neurovascular responses to stimuli. Recent studies have introduced an array of systemic rosacea comorbidities, such as inflammatory bowel disease and neurologic conditions, that can be challenging to synthesize. We critically review the current data behind reported rosacea comorbidities and identify and highlight underrecognized physiologic mediators shared among rosacea and associated comorbidities. This information may be helpful in addressing patient questions about potential systemic implications of rosacea and can serve as a candidate platform for future research to understand rosacea and improve treatments.
Collapse
Affiliation(s)
| | - Julia Spoendlin
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anna L Chien
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Hilary Baldwin
- Acne Treatment and Research Center, Morristown, New Jersey
| | - Anne Lynn S Chang
- Department of Dermatology, Stanford University School of Medicine, Redwood City, California.
| |
Collapse
|
20
|
Mirzaei M, Gupta VB, Chick JM, Greco TM, Wu Y, Chitranshi N, Wall RV, Hone E, Deng L, Dheer Y, Abbasi M, Rezaeian M, Braidy N, You Y, Salekdeh GH, Haynes PA, Molloy MP, Martins R, Cristea IM, Gygi SP, Graham SL, Gupta VK. Age-related neurodegenerative disease associated pathways identified in retinal and vitreous proteome from human glaucoma eyes. Sci Rep 2017; 7:12685. [PMID: 28978942 PMCID: PMC5627288 DOI: 10.1038/s41598-017-12858-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/14/2017] [Indexed: 12/05/2022] Open
Abstract
Glaucoma is a chronic disease that shares many similarities with other neurodegenerative disorders of the central nervous system. This study was designed to evaluate the association between glaucoma and other neurodegenerative disorders by investigating glaucoma-associated protein changes in the retina and vitreous humour. The multiplexed Tandem Mass Tag based proteomics (TMT-MS3) was carried out on retinal tissue and vitreous humour fluid collected from glaucoma patients and age-matched controls followed by functional pathway and protein network interaction analysis. About 5000 proteins were quantified from retinal tissue and vitreous fluid of glaucoma and control eyes. Of the differentially regulated proteins, 122 were found linked with pathophysiology of Alzheimer’s disease (AD). Pathway analyses of differentially regulated proteins indicate defects in mitochondrial oxidative phosphorylation machinery. The classical complement pathway associated proteins were activated in the glaucoma samples suggesting an innate inflammatory response. The majority of common differentially regulated proteins in both tissues were members of functional protein networks associated brain changes in AD and other chronic degenerative conditions. Identification of previously reported and novel pathways in glaucoma that overlap with other CNS neurodegenerative disorders promises to provide renewed understanding of the aetiology and pathogenesis of age related neurodegenerative diseases.
Collapse
Affiliation(s)
- Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia. .,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia. .,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia.
| | - Veer B Gupta
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Yunqi Wu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Roshana Vander Wall
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Eugene Hone
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Liting Deng
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mahdie Rezaeian
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, Sydney University, Sydney, NSW, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan, Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mark P Molloy
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Ralph Martins
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, Sydney University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
21
|
Kumar A, Dhull DK, Gupta V, Channana P, Singh A, Bhardwaj M, Ruhal P, Mittal R. Role of Glutathione-S-transferases in neurological problems. Expert Opin Ther Pat 2016; 27:299-309. [PMID: 27785931 DOI: 10.1080/13543776.2017.1254192] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Role of Glutathione-S-transferases (GSTs) has been well explored in the cellular detoxification process, regulation of redox homeostasis and S-glutothionylation of target proteins like JNK, ASK1 etc. However, altered levels or functions of this enzyme or their subtypes have emerged in the development of several pathologies diseases such as Alzheimer's disease, Parkinson's disease, cancer and related conditions. Oxidative stress is one of the possible pathological events that contributes significantly to activation of degenerating cascades inside neuronal cells. The central nervous system is highly sensitive to oxidative stress because of low levels or capacities of antioxidant enzymes. The brain is highly metabolic in nature making it susceptible to oxidative stress. Areas covered: The present review provides a comprehensive overview of the multiple connections of GSTs within diverse neurological diseases including cancer. Furthermore, the authors have made significant efforts to discuss the regulation of different GST isoforms that have been associated with various pathological processes such as glioblastoma, Alzheimer's disease, Parkinson's disease, stroke and epilepsy. Expert opinion: Though GSTs have been one of the key areas of scientific research over the last few decades, much remains to be elucidated about their physiological functions as well as pathological involvement of GSTs and their polymorphic variants.
Collapse
Affiliation(s)
- Anil Kumar
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Dinesh K Dhull
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Varun Gupta
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Priyanka Channana
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Arti Singh
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Manveen Bhardwaj
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Poonam Ruhal
- b Pharmacology Division, Department of Pharmaceutical Sciences , Guru Jambheshwar University of Science & Technology , Hisar , India
| | - Ruchika Mittal
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| |
Collapse
|
22
|
Hollman AL, Tchounwou PB, Huang HC. The Association between Gene-Environment Interactions and Diseases Involving the Human GST Superfamily with SNP Variants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:379. [PMID: 27043589 PMCID: PMC4847041 DOI: 10.3390/ijerph13040379] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/25/2022]
Abstract
Exposure to environmental hazards has been associated with diseases in humans. The identification of single nucleotide polymorphisms (SNPs) in human populations exposed to different environmental hazards, is vital for detecting the genetic risks of some important human diseases. Several studies in this field have been conducted on glutathione S-transferases (GSTs), a phase II detoxification superfamily, to investigate its role in the occurrence of diseases. Human GSTs consist of cytosolic and microsomal superfamilies that are further divided into subfamilies. Based on scientific search engines and a review of the literature, we have found a large amount of published articles on human GST super- and subfamilies that have greatly assisted in our efforts to examine their role in health and disease. Because of its polymorphic variations in relation to environmental hazards such as air pollutants, cigarette smoke, pesticides, heavy metals, carcinogens, pharmaceutical drugs, and xenobiotics, GST is considered as a significant biomarker. This review examines the studies on gene-environment interactions related to various diseases with respect to single nucleotide polymorphisms (SNPs) found in the GST superfamily. Overall, it can be concluded that interactions between GST genes and environmental factors play an important role in human diseases.
Collapse
Affiliation(s)
- Antoinesha L Hollman
- NIH/NIMHD RCMI Center for Environmental Heath, College of Science, Engineering, and Technology (CSET), Jackson State University, Jackson, MS 39217, USA.
| | - Paul B Tchounwou
- NIH/NIMHD RCMI Center for Environmental Heath, College of Science, Engineering, and Technology (CSET), Jackson State University, Jackson, MS 39217, USA.
- Department of Biology, CSET, Jackson State University, Jackson, MS 39217, USA.
| | - Hung-Chung Huang
- NIH/NIMHD RCMI Center for Environmental Heath, College of Science, Engineering, and Technology (CSET), Jackson State University, Jackson, MS 39217, USA.
- Department of Biology, CSET, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
23
|
Singh A, Prasad KN, Singh AK, Singh SK, Gupta KK, Paliwal VK, Pandey CM, Gupta RK. Human Glutathione S-Transferase Enzyme Gene Polymorphisms and Their Association With Neurocysticercosis. Mol Neurobiol 2016; 54:2843-2851. [PMID: 27021019 DOI: 10.1007/s12035-016-9779-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/04/2016] [Indexed: 01/01/2023]
Abstract
Neurocysticercosis (NCC), caused by cysticerci of Taenia solium is the most common helminthic infection of the central nervous system. Some individuals harboring different stages of cysticerci in the brain remain asymptomatic, while others with similar cysticerci lesions develop symptoms and the reasons remain largely unknown. Inflammatory response to antigens of dying parasite is said to be responsible for symptomatic disease. Reactive oxygen species (ROS) that are generated in inflammatory conditions can damage cellular macromolecules such as lipids, DNA, and proteins. The glutathione S-transferases (GSTs) are critical for the protection of cells from ROS. A total of 250 individuals were included in the study: symptomatic NCC = 75, asymptomatic NCC = 75, and healthy controls = 100. The individuals carrying the deletions of GSTM1 and GSTT1 were at risk for NCC (OR = 2.99, 95 %CI = 1.31-6.82, p = 0.0073 and OR = 1.94, 95 %CI = 0.98-3.82, p = 0.0550 respectively). Further, the individuals with these deletions were more likely to develop symptomatic disease (OR = 5.08, 95 % CI = 2.12-12.18, p = 0.0001 for GSTM1 and OR = 3.25, 95 %CI = 1.55-6.82, p = 0.0018 for GSTT1). Genetic variants of GSTM3 and GSTP1 were not associated with NCC. The total GST activity and levels of GSTM1, GSTT1, and GSTM3 were significantly higher in asymptomatic subjects than in symptomatic and healthy controls. Lower GST activity was observed in individuals with GSTM1 and GSTT1 deletions. The present study suggests that the individuals with GSTM1 and GSTT1 deletions are at higher risk to develop symptomatic disease. The higher GST activity and levels of GSTM1, GSTT1, and GSTM3 are likely to play role in maintaining asymptomatic condition.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P, 226014, India
| | - Kashi N Prasad
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P, 226014, India.
| | - Aloukick K Singh
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P, 226014, India
| | - Satyendra K Singh
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P, 226014, India
| | - Kamlesh K Gupta
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P, 226014, India
| | - Vimal K Paliwal
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P, 226014, India
| | - Chandra M Pandey
- Department of Biostatistics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P, 226014, India
| | - Rakesh K Gupta
- Department of Radiodiagnosis, Sanjay Gandhi Postgraduate institute of Medical Sciences, Lucknow, U.P, 226014, India
| |
Collapse
|