1
|
Li B, Ming D. GATSol, an enhanced predictor of protein solubility through the synergy of 3D structure graph and large language modeling. BMC Bioinformatics 2024; 25:204. [PMID: 38824535 PMCID: PMC11549816 DOI: 10.1186/s12859-024-05820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Protein solubility is a critically important physicochemical property closely related to protein expression. For example, it is one of the main factors to be considered in the design and production of antibody drugs and a prerequisite for realizing various protein functions. Although several solubility prediction models have emerged in recent years, many of these models are limited to capturing information embedded in one-dimensional amino acid sequences, resulting in unsatisfactory predictive performance. RESULTS In this study, we introduce a novel Graph Attention network-based protein Solubility model, GATSol, which represents the 3D structure of proteins as a protein graph. In addition to the node features of amino acids extracted by the state-of-the-art protein large language model, GATSol utilizes amino acid distance maps generated using the latest AlphaFold technology. Rigorous testing on independent eSOL and the Saccharomyces cerevisiae test datasets has shown that GATSol outperforms most recently introduced models, especially with respect to the coefficient of determination R2, which reaches 0.517 and 0.424, respectively. It outperforms the current state-of-the-art GraphSol by 18.4% on the S. cerevisiae_test set. CONCLUSIONS GATSol captures 3D dimensional features of proteins by building protein graphs, which significantly improves the accuracy of protein solubility prediction. Recent advances in protein structure modeling allow our method to incorporate spatial structure features extracted from predicted structures into the model by relying only on the input of protein sequences, which simplifies the entire graph neural network prediction process, making it more user-friendly and efficient. As a result, GATSol may help prioritize highly soluble proteins, ultimately reducing the cost and effort of experimental work. The source code and data of the GATSol model are freely available at https://github.com/binbinbinv/GATSol .
Collapse
Affiliation(s)
- Bin Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing, 211816, Jiangsu, People's Republic of China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing, 211816, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Maity A, Mondal A, Kundu S, Shome G, Misra R, Singh A, Pal U, Mandal AK, Bera K, Maiti NC. Naringenin-Functionalized Gold Nanoparticles and Their Role in α-Synuclein Stabilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7231-7248. [PMID: 37094111 DOI: 10.1021/acs.langmuir.2c03259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Misfolding and self-assembly of several intrinsically disordered proteins into ordered β-sheet-rich amyloid aggregates emerged as hallmarks of several neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here we show how the naringenin-embedded nanostructure effectively retards aggregation and fibril formation of α-synuclein, which is strongly associated with the pathology of Parkinson's-like diseases. Naringenin is a polyphenolic compound from a plant source, and in our current investigation, we reported the one-pot synthesis of naringenin-coated spherical and monophasic gold nanoparticles (NAR-AuNPs) under optimized conditions. The average hydrodynamic diameter of the produced nanoparticle was ∼24 nm and showed a distinct absorption band at 533 nm. The zeta potential of the nanocomposite was ∼-22 mV and indicated the presence of naringenin on the surface of nanoparticles. Core-level XPS spectrum analysis showed prominent peaks at 84.02 and 87.68 eV, suggesting the zero oxidation state of metal in the nanostructure. Additionally, the peaks at 86.14 and 89.76 eV were due to the Au-O bond, induced by the hydroxyl groups of the naringenin molecule. The FT-IR analysis further confirmed strong interactions of the molecule with the gold nanosurface via the phenolic oxygen group. The composite surface was found to interact with monomeric α-synuclein and caused a red shift in the nanoparticle absorption band by ∼5 nm. The binding affinity of the composite nanostructure toward α-synuclein was in the micromolar range (Ka∼ 5.02 × 106 M-1) and may produce a protein corona over the gold nanosurface. A circular dichroism study showed that the nanocomposite can arrest the conformational fluctuation of the protein and hindered its transformation into a compact cross-β-sheet conformation, a prerequisite for amyloid fibril formation. Furthermore, it was found that naringenin and its nanocomplex did not perturb the viability of neuronal cells. It thus appeared that engineering of the nanosurface with naringenin could be an alternative strategy in developing treatment approaches for Parkinson's and other diseases linked to protein conformation.
Collapse
Affiliation(s)
- Anupam Maity
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Animesh Mondal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Shubham Kundu
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Gourav Shome
- Division of Molecular Medicine, Bose Institute, Kolkata 700091, India
| | - Rajdip Misra
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Aakriti Singh
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Atin Kumar Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700091, India
| | - Kaushik Bera
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Department of Chemistry, The Heritage School, 994 Chowbaga Road, Anandapur, East Kolkata Twp, Kolkata 700107, India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
3
|
Schmidhuber S, Scheiblhofer S, Weiss R, Cserepes M, Tóvári J, Gadermaier G, Bezard E, De Giorgi F, Ichas F, Strunk D, Mandler M. A Novel C-Type Lectin Receptor-Targeted α-Synuclein-Based Parkinson Vaccine Induces Potent Immune Responses and Therapeutic Efficacy in Mice. Vaccines (Basel) 2022; 10:1432. [PMID: 36146508 PMCID: PMC9506002 DOI: 10.3390/vaccines10091432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
The progressive accumulation of misfolded α-synuclein (α-syn) in the brain is widely considered to be causal for the debilitating clinical manifestations of synucleinopathies including, most notably, Parkinson's disease (PD). Immunotherapies, both active and passive, against α-syn have been developed and are promising novel treatment strategies for such disorders. To increase the potency and specificity of PD vaccination, we created the 'Win the Skin Immune System Trick' (WISIT) vaccine platform designed to target skin-resident dendritic cells, inducing superior B and T cell responses. Of the six tested WISIT candidates, all elicited higher immune responses compared to conventional, aluminum adjuvanted peptide-carrier conjugate PD vaccines, in BALB/c mice. WISIT-induced antibodies displayed higher selectivity for α-syn aggregates than those induced by conventional vaccines. Additionally, antibodies induced by two selected candidates were shown to inhibit α-syn aggregation in a dose-dependent manner in vitro. To determine if α-syn fibril formation could also be inhibited in vivo, WISIT candidate type 1 (CW-type 1) was tested in an established synucleinopathy seeding model and demonstrated reduced propagation of synucleinopathy in vivo. Our studies provide proof-of-concept for the efficacy of the WISIT vaccine technology platform and support further preclinical and clinical development of this vaccine candidate.
Collapse
Affiliation(s)
- Sabine Schmidhuber
- Tridem Bioscience GmbH & CoKG, Campus Vienna Biocenter, Dr.-Bohrgasse 7, 1030 Vienna, Austria
| | - Sandra Scheiblhofer
- Tridem Bioscience GmbH & CoKG, Campus Vienna Biocenter, Dr.-Bohrgasse 7, 1030 Vienna, Austria
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Richard Weiss
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Mihály Cserepes
- KINETO Lab Ltd., Csillaghegyi út 19-21, H-1037 Budapest, Hungary
| | - József Tóvári
- KINETO Lab Ltd., Csillaghegyi út 19-21, H-1037 Budapest, Hungary
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Erwan Bezard
- Motac Neuroscience, Alderley Park, Macclesfield SK10 4TF, UK
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
| | - Francesca De Giorgi
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
| | - Francois Ichas
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
| | - Dirk Strunk
- Cell Therapy Institute, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Markus Mandler
- Tridem Bioscience GmbH & CoKG, Campus Vienna Biocenter, Dr.-Bohrgasse 7, 1030 Vienna, Austria
| |
Collapse
|
4
|
Nordström E, Eriksson F, Sigvardson J, Johannesson M, Kasrayan A, Jones-Kostalla M, Appelkvist P, Söderberg L, Nygren P, Blom M, Rachalski A, Nordenankar K, Zachrisson O, Amandius E, Osswald G, Moge M, Ingelsson M, Bergström J, Lannfelt L, Möller C, Giorgetti M, Fälting J. ABBV-0805, a novel antibody selective for soluble aggregated α-synuclein, prolongs lifespan and prevents buildup of α-synuclein pathology in mouse models of Parkinson's disease. Neurobiol Dis 2021; 161:105543. [PMID: 34737044 DOI: 10.1016/j.nbd.2021.105543] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 10/20/2022] Open
Abstract
A growing body of evidence suggests that aggregated α-synuclein, the major constituent of Lewy bodies, plays a key role in the pathogenesis of Parkinson's disease and related α-synucleinopathies. Immunotherapies, both active and passive, against α-synuclein have been developed and are promising novel treatment strategies for such disorders. Here, we report on the humanization and pharmacological characteristics of ABBV-0805, a monoclonal antibody that exhibits a high selectivity for human aggregated α-synuclein and very low affinity for monomers. ABBV-0805 binds to a broad spectrum of soluble aggregated α-synuclein, including small and large aggregates of different conformations. Binding of ABBV-0805 to pathological α-synuclein was demonstrated in Lewy body-positive post mortem brains of Parkinson's disease patients. The functional potency of ABBV-0805 was demonstrated in several cellular assays, including Fcγ-receptor mediated uptake of soluble aggregated α-synuclein in microglia and inhibition of neurotoxicity in primary neurons. In vivo, the murine version of ABBV-0805 (mAb47) displayed significant dose-dependent decrease of α-synuclein aggregates in brain in several mouse models, both in prophylactic and therapeutic settings. In addition, mAb47 treatment of α-synuclein transgenic mice resulted in a significantly prolonged survival. ABBV-0805 selectively targets soluble toxic α-synuclein aggregates with a picomolar affinity and demonstrates excellent in vivo efficacy. Based on the strong preclinical findings described herein, ABBV-0805 has been progressed into clinical development as a potential disease-modifying treatment for Parkinson's disease.
Collapse
Affiliation(s)
- Eva Nordström
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | | | | | | | - Alex Kasrayan
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | | | | | - Linda Söderberg
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | - Patrik Nygren
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | - Magdalena Blom
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | | | | | - Olof Zachrisson
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | - Ebba Amandius
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | - Gunilla Osswald
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | - Mikael Moge
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden.
| | - Joakim Bergström
- Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden.
| | - Lars Lannfelt
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden; Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden.
| | - Christer Möller
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | | | - Johanna Fälting
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| |
Collapse
|
5
|
Ghaeidamini M, Bernson D, Sasanian N, Kumar R, Esbjörner EK. Graphene oxide sheets and quantum dots inhibit α-synuclein amyloid formation by different mechanisms. NANOSCALE 2020; 12:19450-19460. [PMID: 32959853 DOI: 10.1039/d0nr05003b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aggregation and amyloid formation of the 140-residue presynaptic and intrinsically disordered protein α-synuclein (α-syn) is a pathological hallmark of Parkinson's disease (PD). Understanding how α-syn forms amyloid fibrils, and investigations of agents that can prevent their formation is therefore important. We demonstrate herein that two types of graphene oxide nanoparticles (sheets and quantum dots) inhibit α-syn amyloid formation by different mechanisms mediated via differential interactions with both monomers and fibrils. We have used thioflavin-T fluorescence assays and kinetic analysis, circular dichroism, dynamic light scattering, fluorescence spectroscopy and atomic force microscopy to asses the kinetic nature and efficiency of this inhibitory effect. We show that the two types of graphene oxide nanoparticles alter the morphology of α-syn fibrils, disrupting their interfilament assembly and the resulting aggregates therefore consist of single protofilaments. Our results further show that graphene oxide sheets reduce the aggregation rate of α-syn primarily by sequestering of monomers, thereby preventing primary nucleation and elongation. Graphene quantum dots, on the other hand, interact less avidly with both monomers and fibrils. Their aggregation inhibitory effect is primarily related to adsorption of aggregated species and reduction of secondary processes, and they can thus not fully prevent aggregation. This fine-tuned and differential effect of graphene nanoparticles on amyloid formation shows that rational design of these nanomaterials has great potential in engineering materials that interact with specific molecular events in the amyloid fibril formation process. The findings also provide new insight into the molecular interplay between amyloidogenic proteins and graphene-based nanomaterials in general, and opens up their potential use as agents to manipulate fibril formation.
Collapse
Affiliation(s)
- Marziyeh Ghaeidamini
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden.
| | - David Bernson
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden.
| | - Nima Sasanian
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden.
| | - Ranjeet Kumar
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden.
| | - Elin K Esbjörner
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden.
| |
Collapse
|
6
|
Lampson LA. Editorial: Immunotherapy for Tumor in the Brain: Insights From-and For-Other Tumor Sites. Front Oncol 2018; 8:128. [PMID: 29755955 PMCID: PMC5934480 DOI: 10.3389/fonc.2018.00128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/10/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Lois A Lampson
- Brain Immunology Laboratory, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Brudek T, Winge K, Folke J, Christensen S, Fog K, Pakkenberg B, Pedersen LØ. Autoimmune antibody decline in Parkinson's disease and Multiple System Atrophy; a step towards immunotherapeutic strategies. Mol Neurodegener 2017; 12:44. [PMID: 28592329 PMCID: PMC5463400 DOI: 10.1186/s13024-017-0187-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/02/2017] [Indexed: 12/13/2022] Open
Abstract
Background Parkinson’s’ disease (PD) and Multiple System Atrophy (MSA) are progressive brain disorders characterized by intracellular accumulations of α-synuclein and nerve cell loss in specific brain areas. This loss causes problems with movement, balance and/or autonomic functions. Naturally occurring autoantibodies (NAbs) play potentially an important role in clearing or/and blocking circulating pathological proteins. Little is known about the functional properties of anti-α-synuclein NAbs in PD and MSA, and there have been opposing reports regarding their plasma concentrations in these disorders. Methods We have investigated the apparent affinity of anti-α-synuclein NAbs in plasma samples from 46 PD patients, 18 MSA patients and 41 controls using competitive enzyme-linked immunosorbent assay (ELISA) and Meso Scale Discovery (MSD) set-ups. Results We found that the occurrence of high affinity anti-α-synuclein NAbs in plasma from PD patients is reduced compared to healthy controls, and nearly absent in plasma from MSA patients. Also, levels of α-synuclein/NAbs immunocomplexes is substantially reduced in plasma from both patient groups. Further, cross binding of anti-α-synuclein NAbs with β- and γ-synuclein monomers suggest, the high affinity anti-α-synuclein plasma component, seen in healthy individuals, is directed mainly against C-terminal epitopes. Furthermore, we also observed reduced occurrence of high affinity anti-phosphorylated-α-synuclein NAbs in plasma from PD and MSA patients. Conclusions One interpretation implies that these patients may have impaired ability to clear and/or block the effects of pathological α-synuclein due to insufficient/absent concentration of NAbs and as such provides a rationale for testing immune-based therapeutic strategies directed against pathological α-synuclein. Following this interpretation, we can hypothesize that high affinity autoantibodies efficiently bind and clear potentially pathological species of α-synuclein in healthy brain, and that this mechanism is impaired or absent in PD and MSA patients.
Collapse
Affiliation(s)
- Tomasz Brudek
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark. .,Bispebjerg Movement Disorders Biobank, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.
| | - Kristian Winge
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.,Bispebjerg Movement Disorders Biobank, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark
| | - Jonas Folke
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark
| | | | - Karina Fog
- , H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.,Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
8
|
Uversky VN. Looking at the recent advances in understanding α-synuclein and its aggregation through the proteoform prism. F1000Res 2017; 6:525. [PMID: 28491292 PMCID: PMC5399969 DOI: 10.12688/f1000research.10536.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
Despite attracting the close attention of multiple researchers for the past 25 years, α-synuclein continues to be an enigma, hiding sacred truth related to its structure, function, and dysfunction, concealing mechanisms of its pathological spread within the affected brain during disease progression, and, above all, covering up the molecular mechanisms of its multipathogenicity, i.e. the ability to be associated with the pathogenesis of various diseases. The goal of this article is to present the most recent advances in understanding of this protein and its aggregation and to show that the remarkable structural, functional, and dysfunctional multifaceted nature of α-synuclein can be understood using the proteoform concept.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33620, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 7 Institutskaya St., 142290 Pushchino, Moscow Region, Russian Federation.,Laboratory of Structural Dynamics, Stability and Folding Of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russian Federation
| |
Collapse
|
9
|
Lobbens ESB, Vissing KJ, Jorgensen L, van de Weert M, Jäger AK. Screening of plants used in the European traditional medicine to treat memory disorders for acetylcholinesterase inhibitory activity and anti amyloidogenic activity. JOURNAL OF ETHNOPHARMACOLOGY 2017; 200:66-73. [PMID: 28213109 DOI: 10.1016/j.jep.2017.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/20/2017] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants used in the traditional medicine of Europe to treat memory dysfunction and/or to enhance memory were investigated for activity against the underlying mechanisms of Alzheimer's disease. AIM OF THE STUDY To investigate 35 ethanolic extracts of plants, selected using an ethnopharmacological approach, for anti-amyloidogenic activity as well as an ability to inhibit the enzymatic activity of acetylcholinesterase. MATERIALS AND METHODS The anti-amyloidogenic activity of the extracts against amyloid beta was investigated by Thioflavin T fibrillation assays and the ability to inhibit the enzymatic activity of acetylcholinesterase was evaluated monitoring the hydrolysis of acetylthiocholine RESULTS: Under the experimental conditions investigated, extracts of two plants, Carum carvi and Olea sylvestris, inhibited amyloid beta fibrillation considerably, eight plant extracts inhibited amyloid beta fibrillation to some extent, 16 plant extracts had no effect on amyloid beta fibrillation and nine extracts accelerated fibrillation of amyloid beta. Furthermore, five plant extracts from Corydalis species inhibited the enzymatic activity of acetylcholinesterase considerably, one plant extract inhibited the enzymatic activity of acetylcholinesterase to some extent and 29 plant extract had no effect on the enzymatic activity of acetylcholinesterase. CONCLUSIONS An optimal extract in this study would possess acetylcholinesterase inhibitory activity as well as anti-amyloidogenic activity in order to address multiple facets of Alzheimer's disease, until the molecular origin of the disease is unraveled. Unfortunately no such extract was found.
Collapse
Affiliation(s)
- Eva S B Lobbens
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Karina J Vissing
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Lene Jorgensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Marco van de Weert
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Anna K Jäger
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
10
|
Sahin C, Lorenzen N, Lemminger L, Christiansen G, Møller IM, Vesterager LB, Pedersen LØ, Fog K, Kallunki P, Otzen DE. Antibodies against the C-terminus of α-synuclein modulate its fibrillation. Biophys Chem 2017; 220:34-41. [DOI: 10.1016/j.bpc.2016.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023]
|
11
|
Kumar S, Thangakani AM, Nagarajan R, Singh SK, Velmurugan D, Gromiha MM. Autoimmune Responses to Soluble Aggregates of Amyloidogenic Proteins Involved in Neurodegenerative Diseases: Overlapping Aggregation Prone and Autoimmunogenic regions. Sci Rep 2016; 6:22258. [PMID: 26924748 PMCID: PMC4770294 DOI: 10.1038/srep22258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
Why do patients suffering from neurodegenerative diseases generate autoantibodies that selectively bind soluble aggregates of amyloidogenic proteins? Presently, molecular basis of interactions between the soluble aggregates and human immune system is unknown. By analyzing sequences of experimentally validated T-cell autoimmune epitopes, aggregating peptides, amyloidogenic proteins and randomly generated peptides, here we report overlapping regions that likely drive aggregation as well as generate autoantibodies against the aggregates. Sequence features, that make short peptides susceptible to aggregation, increase their incidence in human T-cell autoimmune epitopes by 4–6 times. Many epitopes are predicted to be significantly aggregation prone (aggregation propensities ≥10%) and the ones containing experimentally validated aggregating regions are enriched in hydrophobicity by 10–20%. Aggregate morphologies also influence Human Leukocyte Antigen (HLA) - types recognized by the aggregating regions containing epitopes. Most (88%) epitopes that contain amyloid fibril forming regions bind HLA-DR, while majority (63%) of those containing amorphous β-aggregating regions bind HLA-DQ. More than two-thirds (70%) of human amyloidogenic proteins contain overlapping regions that are simultaneously aggregation prone and auto-immunogenic. Such regions help clear soluble aggregates by generating selective autoantibodies against them. This can be harnessed for early diagnosis of proteinopathies and for drug/vaccine design against them.
Collapse
Affiliation(s)
- Sandeep Kumar
- Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield MO 63017, USA
| | - A Mary Thangakani
- Center for Advanced Studies in Crystallography and Biophysics and Bioinformatics Infrastructure Facility, University of Madras, Chennai 600025, India
| | - R Nagarajan
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Satish K Singh
- Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield MO 63017, USA
| | - D Velmurugan
- Center for Advanced Studies in Crystallography and Biophysics and Bioinformatics Infrastructure Facility, University of Madras, Chennai 600025, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
12
|
Chorell E, Andersson E, Evans ML, Jain N, Götheson A, Åden J, Chapman MR, Almqvist F, Wittung-Stafshede P. Bacterial Chaperones CsgE and CsgC Differentially Modulate Human α-Synuclein Amyloid Formation via Transient Contacts. PLoS One 2015; 10:e0140194. [PMID: 26465894 PMCID: PMC4605646 DOI: 10.1371/journal.pone.0140194] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/22/2015] [Indexed: 11/20/2022] Open
Abstract
Amyloid formation is historically associated with cytotoxicity, but many organisms produce functional amyloid fibers (e.g., curli) as a normal part of cell biology. Two E. coli genes in the curli operon encode the chaperone-like proteins CsgC and CsgE that both can reduce in vitro amyloid formation by CsgA. CsgC was also found to arrest amyloid formation of the human amyloidogenic protein α-synuclein, which is involved in Parkinson's disease. Here, we report that the inhibitory effects of CsgC arise due to transient interactions that promote the formation of spherical α-synuclein oligomers. We find that CsgE also modulates α-synuclein amyloid formation through transient contacts but, in contrast to CsgC, CsgE accelerates α-synuclein amyloid formation. Our results demonstrate the significance of transient protein interactions in amyloid regulation and emphasize that the same protein may inhibit one type of amyloid while accelerating another.
Collapse
Affiliation(s)
- Erik Chorell
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Margery L. Evans
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Neha Jain
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anna Götheson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Jörgen Åden
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | | |
Collapse
|