1
|
Huang T, Zhang X, Qi L, Li F, Liu Z, Wang Z, Ru Y, Li M, Xiao C, Wang Y, Ma Z, Gao Y. Daytime Dysfunction: Symptoms Associated with Nervous System Disorders Mediated by SIRT1. Biomedicines 2024; 12:2070. [PMID: 39335583 PMCID: PMC11429115 DOI: 10.3390/biomedicines12092070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Daytime dysfunction, including symptoms like sleepiness, poor memory, and reduced responsiveness, is not well researched. It is crucial to develop animal models and study the biological mechanisms involved. We simulated sleep disorders through sleep deprivation, and stressful stimuli were used to establish daytime functional animal models. We used tests like the sodium pentobarbital sleep synergy test and the DSI telemetry system to measure sleep duration and structure. We also used tests like the Morris water maze, open field test, grip test, and baton twirling test to assess mental and physical fatigue. To assess the intrinsic biological mechanisms, we measured sleep-wake-related neurotransmitters and related receptor proteins, circadian rhythm-related proteins and cognition-related proteins in hypothalamus tissue, and oxidative stress, inflammatory factors, S100β, and HPA axis-related indexes in serum. Multi-factor sleep deprivation resulted in the disruption of sleep-wakefulness structure, memory-cognitive function degradation, decreased grip coordination, and other manifestations of decreased energetic and physical strength. The intrinsic biological mechanisms were related to the disturbed expression of sleep-wake, circadian rhythm, memory-cognition-related proteins, as well as the significant elevation of inflammatory factors, oxidative stress, the HPA axis, and other related indicators. Intrinsically related biological mechanisms and reduced sirt1 expression can lead to disruption of circadian rhythms; resulting in disruption of their sleep-wake-related neurotransmitter content and receptor expression. Meanwhile, the reduced expression of sirt1 also resulted in reduced expression of synapse-associated proteins. This study prepared an animal model of daytime dysfunction by means of multi-factor sleep deprivation. With sirt1 as a core target, the relevant biological mechanisms of neurological disorders were modulated.
Collapse
Affiliation(s)
- Tianke Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.H.); (Y.W.); (Z.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xianxie Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.H.); (Y.W.); (Z.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ling Qi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.H.); (Y.W.); (Z.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Fang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.H.); (Y.W.); (Z.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zuoxu Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.H.); (Y.W.); (Z.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhixing Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.H.); (Y.W.); (Z.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yi Ru
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Maoxing Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chengrong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yuguang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.H.); (Y.W.); (Z.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zengchun Ma
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.H.); (Y.W.); (Z.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yue Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (T.H.); (Y.W.); (Z.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
2
|
Che J, Sun Y, Deng Y, Zhang J. Blood-brain barrier disruption: a culprit of cognitive decline? Fluids Barriers CNS 2024; 21:63. [PMID: 39113115 PMCID: PMC11305076 DOI: 10.1186/s12987-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cognitive decline covers a broad spectrum of disorders, not only resulting from brain diseases but also from systemic diseases, which seriously influence the quality of life and life expectancy of patients. As a highly selective anatomical and functional interface between the brain and systemic circulation, the blood-brain barrier (BBB) plays a pivotal role in maintaining brain homeostasis and normal function. The pathogenesis underlying cognitive decline may vary, nevertheless, accumulating evidences support the role of BBB disruption as the most prevalent contributing factor. This may mainly be attributed to inflammation, metabolic dysfunction, cell senescence, oxidative/nitrosative stress and excitotoxicity. However, direct evidence showing that BBB disruption causes cognitive decline is scarce, and interestingly, manipulation of the BBB opening alone may exert beneficial or detrimental neurological effects. A broad overview of the present literature shows a close relationship between BBB disruption and cognitive decline, the risk factors of BBB disruption, as well as the cellular and molecular mechanisms underlying BBB disruption. Additionally, we discussed the possible causes leading to cognitive decline by BBB disruption and potential therapeutic strategies to prevent BBB disruption or enhance BBB repair. This review aims to foster more investigations on early diagnosis, effective therapeutics, and rapid restoration against BBB disruption, which would yield better cognitive outcomes in patients with dysregulated BBB function, although their causative relationship has not yet been completely established.
Collapse
Affiliation(s)
- Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
3
|
Avilez-Avilez JJ, Medina-Flores MF, Gómez-Gonzalez B. Sleep loss impairs blood-brain barrier function: Cellular and molecular mechanisms. VITAMINS AND HORMONES 2024; 126:77-96. [PMID: 39029977 DOI: 10.1016/bs.vh.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Sleep is a physiological process that preserves the integrity of the neuro-immune-endocrine network to maintain homeostasis. Sleep regulates the production and secretion of hormones, neurotransmitters, cytokines and other inflammatory mediators, both at the central nervous system (CNS) and at the periphery. Sleep promotes the removal of potentially toxic metabolites out of the brain through specialized systems such as the glymphatic system, as well as the expression of specific transporters in the blood-brain barrier. The blood-brain barrier maintains CNS homeostasis by selectively transporting metabolic substrates and nutrients into the brain, by regulating the efflux of metabolic waste products, and maintaining bidirectional communication between the periphery and the CNS. All those processes are disrupted during sleep loss. Brain endothelial cells express the blood-brain barrier phenotype, which arises after cell-to-cell interactions with mural cells, like pericytes, and after the release of soluble factors by astroglial endfeet. Astroglia, pericytes and brain endothelial cells respond differently to sleep loss; evidence has shown that sleep loss induces a chronic low-grade inflammatory state at the CNS, which is associated with blood-brain barrier dysfunction. In animal models, blood-brain barrier dysfunction is characterized by increased blood-brain barrier permeability, decreased tight junction protein expression and pericyte detachment from the capillary wall. Blood-brain barrier dysfunction may promote defects in brain clearance of potentially neurotoxic metabolites and byproducts of neural physiology, which may eventually contribute to neurodegenerative diseases. This chapter aims to describe the cellular and molecular mechanisms by which sleep loss modifies the function of the blood-brain barrier.
Collapse
Affiliation(s)
- Jessica Janeth Avilez-Avilez
- Graduate Program in Experimental Biology, Universidad Autónoma Metropolitana, Mexico City, Mexico; Area of Neurosciences, Department of Biology of Reproduction, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - María Fernanda Medina-Flores
- Graduate Program in Experimental Biology, Universidad Autónoma Metropolitana, Mexico City, Mexico; Area of Neurosciences, Department of Biology of Reproduction, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Beatriz Gómez-Gonzalez
- Area of Neurosciences, Department of Biology of Reproduction, Universidad Autónoma Metropolitana, Mexico City, Mexico.
| |
Collapse
|
4
|
Hassan MAM, Wahdan SA, El-Naga RN, Abdelghany TM, El-Demerdash E. Ondansetron attenuates cisplatin-induced behavioral and cognitive impairment through downregulation of NOD-like receptor inflammasome pathway. Toxicol Appl Pharmacol 2024; 485:116875. [PMID: 38437957 DOI: 10.1016/j.taap.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Cisplatin is an effective and commonly used chemotherapeutic drug; however, its use is accompanied by several adverse effects, including chemobrain. Ondansetron is a 5-HT3 antagonist, commonly used in prophylactic against chemotherapy-induced nausea and vomiting. Moreover, it has been identified as a novel neuroprotective agent in different animal models. However, its protective role against chemotherapy-induced chemobrain has not been investigated. The current study was the first study that explored the potential neuroprotective effect of ondansetron against cisplatin-induced chemobrain in rats. Cisplatin (5 mg/Kg) was injected intraperitoneally, once weekly, for 4 weeks with the daily administration of ondansetron (0.5 and 1 mg/Kg). Compared to the cisplatin-treated group, ondansetron administration showed a significant decrease in the latency time and a significant increase in ambulation, rearing, and grooming frequency in the open field test (OFT). Moreover, a significant improvement in the latency time in the rotarod and passive avoidance tests, following ondansetron administration. In addition, ondansetron treatment increased the percentage of alternation in the Y-maze test. Also, ondansetron showed a remarkable enhancement in the biochemical parameters in the hippocampus. It increased the acetylcholine (Ach) level and decreased the level of the acetylcholine esterase enzyme (AchE). Ondansetron significantly decreased interleukin-1β (Il-1β), tumor necrosis factor-alpha (TNF-α), toll-like receptor-4 (TLR-4), NOD-like receptor-3 (NLRP3) inflammasome as well as caspase-1 and caspase-3 levels. Furthermore, ondansetron significantly decreased the levels of copper transporter-1(CTR1) expression in the hippocampus. Collectively, these findings suggest that ondansetron may exhibit a neuroprotective and therapeutic activity against cisplatin-induced chemobrain.
Collapse
Affiliation(s)
- Mennat-Allah M Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr city, Cairo 11884, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Egypt.
| |
Collapse
|
5
|
Qin H, Duan G, Zhou K, Qin L, Lai Y, Liu Y, Lu Y, Peng B, Zhang Y, Zhou X, Huang J, Huang J, Liang L, Wei Y, Zhang Q, Li X, OuYang Y, Bin B, Zhao M, Yang J, Deng D. Alteration of white matter microstructure in patients with sleep disorders after COVID-19 infection. Sleep Med 2024; 114:109-118. [PMID: 38181582 DOI: 10.1016/j.sleep.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The pathophysiology of coronasomnia remains unclear. This study aimed to investigate changes in white matter (WM) microstructure and inflammatory factors in patients with sleep disorders (SD) characterized by poor sleep quantity, quality, or timing following coronavirus disease 2019 (COVID-19) infection in the acute phase (within one month) and whether these changes could be recovered at 3-month follow-up. METHODS 29 acute COVID-19 patients with SD (COVID_SD) and 27 acute COVID-19 patients without SD (COVID_NonSD) underwent diffusion tensor imaging (DTI), tested peripheral blood inflammatory cytokines level, and measured Pittsburgh Sleep Quality Index (PSQI), and matched 30 uninfected healthy controls. Analyzed WM abnormalities between groups in acute phase and explored its changes in COVID_SD at 3-month follow-up by using tract-based spatial statistics (TBSS). Correlations between DTI and clinical data were examined using Spearman partial correlation analysis. RESULTS Both COVID_SD and COVID_NonSD exhibited widespread WM microstructure abnormalities. The COVID_SD group showed specific WM microstructure changes in right inferior fronto-occipital fasciculus (IFOF) (lower fractional anisotropy [FA]/axial diffusivity [AD] and higher radial diffusivity [RD]) and left corticospinal tract (CST) (higher FA and lower RD) and higher interleukin-1β (IL-1β) compared with COVID_NonSD group. These WM abnormalities and IL-1β levels were correlated PSQI score. After 3 months, the IFOF integrity and IL-1β levels tended to return to normal accompanied by symptom improvement in the COVID_SD relative to baseline. CONCLUSION Abnormalities in right IFOF and left CST and elevated IL-1β levels were important neurophenotypes correlated with COVID_SD, which might provide new insights into the pathogenesis of neuroinflammation in SD patients induced by COVID-19.
Collapse
Affiliation(s)
- Haixia Qin
- Medical College of Guangxi University, Guangxi University, Nanning, 530004, Guangxi, China; Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Gaoxiong Duan
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Kaixuan Zhou
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Lixia Qin
- Department of Sleep Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yinqi Lai
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Ying Liu
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Yian Lu
- Department of Sleep Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Bei Peng
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Yan Zhang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Xiaoyan Zhou
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Jiazhu Huang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Jinli Huang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Lingyan Liang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Yichen Wei
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Qingping Zhang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Xiaocheng Li
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Yinfei OuYang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Bolin Bin
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China
| | - Mingming Zhao
- Department of Sleep Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
| | - Jianrong Yang
- Guangxi Clinical Reserch Center for Sleep Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| | - Demao Deng
- Medical College of Guangxi University, Guangxi University, Nanning, 530004, Guangxi, China; Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 530021, Guangxi, China.
| |
Collapse
|
6
|
Tian ZR, Sharma A, Muresanu DF, Sharma S, Feng L, Zhang Z, Li C, Buzoianu AD, Lafuente JV, Nozari A, Sjöqvisst PO, Wiklund L, Sharma HS. Nicotine neurotoxicity exacerbation following engineered Ag and Cu (50-60 nm) nanoparticles intoxication. Neuroprotection with nanowired delivery of antioxidant compound H-290/51 together with serotonin 5-HT3 receptor antagonist ondansetron. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:189-233. [PMID: 37833012 DOI: 10.1016/bs.irn.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Nicotine abuse is frequent worldwide leading to about 8 millions people die every year due to tobacco related diseases. Military personnel often use nicotine smoking that is about 12.8% higher than civilian populations. Nicotine smoking triggers oxidative stress and are linked to several neurodegenerative diseases such as Alzheimer's disease. Nicotine neurotoxicity induces significant depression and oxidative stress in the brain leading to neurovascular damages and brain pathology. Thus, details of nicotine neurotoxicity and factors influencing them require additional investigations. In this review, effects of engineered nanoparticles from metals Ag and Cu (50-60 nm) on nicotine neurotoxicity are discussed with regard to nicotine smoking. Military personnel often work in the environment where chances of nanoparticles exposure are quite common. In our earlier studies, we have shown that nanoparticles alone induces breakdown of the blood-brain barrier (BBB) and exacerbates brain pathology in animal models. In present investigation, nicotine exposure in with Ag or Cu nanoparticles intoxicated group exacerbated BBB breakdown, induce oxidative stress and aggravate brain pathology. Treatment with nanowired H-290/51 a potent chain-breaking antioxidant together with nanowired ondansetron, a potent 5-HT3 receptor antagonist significantly reduced oxidative stress, BBB breakdown and brain pathology in nicotine exposure associated with Ag or Cu nanoparticles intoxication. The functional significance of this findings and possible mechanisms of nicotine neurotoxicity are discussed based on current literature.
Collapse
Affiliation(s)
- Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Suraj Sharma
- Blekinge Institute of Technology, BTH, Karlskrona, Sweden
| | - Lianyuan Feng
- Blekinge Institute of Technology, BTH, Karlskrona, Sweden
| | - Zhiqiang Zhang
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Cong Li
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Anca D Buzoianu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Dade road No.111, Yuexiu District, Guangzhou, P.R. China; Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province, Guangzhou University of Chinese Medicine, Dade road No.111, Yuexiu District, Guangzhou, P.R. China
| | - José Vicente Lafuente
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston, MA, USA
| | - Per-Ove Sjöqvisst
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| |
Collapse
|
7
|
Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Sleep deprivation enhances amyloid beta peptide, p-tau and serotonin in the brain: Neuroprotective effects of nanowired delivery of cerebrolysin with monoclonal antibodies to amyloid beta peptide, p-tau and serotonin. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:125-162. [PMID: 37783554 DOI: 10.1016/bs.irn.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Sleep deprivation is quite frequent in military during combat, intelligence gathering or peacekeeping operations. Even one night of sleep deprivation leads to accumulation of amyloid beta peptide burden that would lead to precipitation of Alzheimer's disease over the years. Thus, efforts are needed to slow down or neutralize accumulation of amyloid beta peptide (AβP) and associated Alzheimer's disease brain pathology including phosphorylated tau (p-tau) within the brain fluid environment. Sleep deprivation also alters serotonin (5-hydroxytryptamine) metabolism in the brain microenvironment and impair upregulation of several neurotrophic factors. Thus, blockade or neutralization of AβP, p-tau and serotonin in sleep deprivation may attenuate brain pathology. In this investigation this hypothesis is examined using nanodelivery of cerebrolysin- a balanced composition of several neurotrophic factors and active peptide fragments together with monoclonal antibodies against AβP, p-tau and serotonin (5-hydroxytryptamine, 5-HT). Our observations suggest that sleep deprivation induced pathophysiology is significantly reduced following nanodelivery of cerebrolysin together with monoclonal antibodies to AβP, p-tau and 5-HT, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, USA
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Wang H, Gu Y, Khalid R, Chen X, Han T. Herbal medicines for insomnia through regulating 5-hydroxytryptamine receptors: a systematic review. Chin J Nat Med 2023; 21:483-498. [PMID: 37517817 DOI: 10.1016/s1875-5364(23)60405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 08/01/2023]
Abstract
Insomnia is a common sleep disorder without effective therapy and can affect a person's life. The mechanism of the disease is not completely understood. Hence, there is a need to understand the targets related to insomnia, in order to develop innovative therapies and new compounds. Recently, increasing interest has been focused on complementary and alternative medicines for treating or preventing insomnia. Research into their molecular components has revealed that their sedative and sleep-promoting properties rely on the interactions with various neurotransmitter systems in the brain. In this review, the role of 5-hydroxytryptamine (5-HT) in insomnia development is summarized, while a systematic analysis of studies is conducted to assess the mechanisms of herbal medicines on different 5-HT receptors subtypes, in order to provide reference for subsequent research.
Collapse
Affiliation(s)
- Haoran Wang
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201999, China
| | - Rahman Khalid
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, England
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Ting Han
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| |
Collapse
|
9
|
Sun L, Zhang J, Li W, Sheng J, Xiao S. Neutrophil activation may trigger tau burden contributing to cognitive progression of chronic sleep disturbance in elderly individuals not living with dementia. BMC Med 2023; 21:205. [PMID: 37280592 PMCID: PMC10243051 DOI: 10.1186/s12916-023-02910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND To investigate the complex connection between chronic sleep disturbance (CSD) and cognitive progression. METHODS The Alzheimer's Disease Neuroimaging Initiative (ADNI) database was used to assign 784 non-dementia elderly into two groups: a normal sleep group (528 participants) and a CSD group (256 participants) via the Neuropsychiatric Inventory (NPI)-sleep subitem. Blood transcriptomics, blood neutrophil, cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD), and neutrophil-related inflammatory factors were measured. We also investigated gene set enrichment analysis (GSEA), Cox proportional hazards model for risk factors, and mediation and interaction effects between indicators. Cognitive progression is defined as the progression from cognitively normal to mild cognitive impairment (MCI)/dementia or from MCI to dementia. RESULTS CSD could significantly affect cognitive function. The activated neutrophil pathways for cognitive progression in CSD were identified by transcriptomics GSEA, which was reflected by increased blood neutrophil level and its correlation with cognitive progression in CSD. High tau burden mediated the influence of neutrophils on cognitive function and exacerbated the CSD-related risk of left hippocampal atrophy. Elevated neutrophil-related inflammatory factors were observed in the cognitive progression of CSD and were associated with brain tau burden. CONCLUSIONS Activated neutrophil pathway triggering tau pathology may underline the mechanism of cognitive progression in CSD.
Collapse
Affiliation(s)
- Lin Sun
- Department of Psychiatry, Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui District, Shanghai, China.
| | - Jie Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Li
- Department of Psychiatry, Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui District, Shanghai, China
| | - Jianhua Sheng
- Department of Psychiatry, Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui District, Shanghai, China.
| | - Shifu Xiao
- Department of Psychiatry, Alzheimer's Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui District, Shanghai, China.
| |
Collapse
|
10
|
Sun Y, Lei F, Luo L, Zou K, Tang X. Effects of a single night of continuous positive airway pressure on spontaneous brain activity in severe obstructive sleep apnea. Sci Rep 2023; 13:8950. [PMID: 37268707 DOI: 10.1038/s41598-023-36206-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023] Open
Abstract
This study aimed to investigate the effect of a single night of continuous positive airway pressure (CPAP) treatment on spontaneous brain activity and the underlying neuropathological mechanisms in patients with severe obstructive sleep apnea (OSA). The study involved 30 severe OSA patients and 19 healthy controls (HC). Fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) methods were employed to evaluate spontaneous brain activity in all participants. Following a single night of CPAP treatment, ReHo values increased in the bilateral caudate and decreased in the right superior frontal gyrus. The fALFF values increased in the left orbital part of the middle frontal gyrus and the right orbital of the inferior frontal gyrus (Frontal_Inf_Orb_R). However, fALFF values decreased in the medial part of the left superior frontal gyrus and the right supramarginal part of the inferior parietal lobe. Pearson correlation analysis revealed a positive relationship between the change in the fALFF in the Frontal_Inf_Orb_R and the change in REM sleep duration (r = 0.437, p = 0.016) following a single night of CPAP treatment. We concluded that observing changes in abnormal fALFF and ReHo in OSA patients before and after a single night of CPAP treatment may enhance our understanding of the neurological mechanisms in patients with severe OSA.
Collapse
Affiliation(s)
- Yuanfeng Sun
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Lei
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Luo
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Zou
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiangdong Tang
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Sharma HS, Feng L, Chen L, Huang H, Ryan Tian Z, Nozari A, Muresanu DF, Lafuente JV, Castellani RJ, Wiklund L, Sharma A. Cerebrolysin Attenuates Exacerbation of Neuropathic Pain, Blood-spinal Cord Barrier Breakdown and Cord Pathology Following Chronic Intoxication of Engineered Ag, Cu or Al (50-60 nm) Nanoparticles. Neurochem Res 2023; 48:1864-1888. [PMID: 36719560 PMCID: PMC10119268 DOI: 10.1007/s11064-023-03861-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/01/2023]
Abstract
Neuropathic pain is associated with abnormal sensations and/or pain induced by non-painful stimuli, i.e., allodynia causing burning or cold sensation, pinching of pins and needles like feeling, numbness, aching or itching. However, no suitable therapy exists to treat these pain syndromes. Our laboratory explored novel potential therapeutic strategies using a suitable composition of neurotrophic factors and active peptide fragments-Cerebrolysin (Ever Neuro Pharma, Austria) in alleviating neuropathic pain induced spinal cord pathology in a rat model. Neuropathic pain was produced by constrictions of L-5 spinal sensory nerves for 2-10 weeks period. In one group of rats cerebrolysin (2.5 or 5 ml/kg, i.v.) was administered once daily after 2 weeks until sacrifice (4, 8 and 10 weeks). Ag, Cu and Al NPs (50 mg/kg, i.p.) were delivered once daily for 1 week. Pain assessment using mechanical (Von Frey) or thermal (Hot-Plate) nociceptive showed hyperalgesia from 2 weeks until 10 weeks progressively that was exacerbated following Ag, Cu and Al NPs intoxication in nerve lesioned groups. Leakage of Evans blue and radioiodine across the blood-spinal cord barrier (BSCB) is seen from 4 to 10 weeks in the rostral and caudal cord segments associated with edema formation and cell injury. Immunohistochemistry of albumin and GFAP exhibited a close parallelism with BSCB leakage that was aggravated by NPs following nerve lesion. Light microscopy using Nissl stain exhibited profound neuronal damages in the cord. Transmission electron microcopy (TEM) show myelin vesiculation and synaptic damages in the cord that were exacerbated following NPs intoxication. Using ELISA spinal tissue exhibited increased albumin, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP) and heat shock protein (HSP 72kD) upregulation together with cytokines TNF-α, IL-4, IL-6, IL-10 levels in nerve lesion that was exacerbated following NPs intoxication. Cerebrolysin treatment significantly reduced hyperalgesia and attenuated BSCB disruption, edema formation and cellular changes in nerve lesioned group. The levels of cytokines were also restored near normal levels with cerebrolysin treatment. Albumin, GFAP, MABP and HSP were also reduced in cerebrolysin treated group and thwarted neuronal damages, myelin vesiculation and cell injuries. These neuroprotective effects of cerebrolysin with higher doses were also effective in nerve lesioned rats with NPs intoxication. These observations suggest that cerebrolysin actively protects spinal cord pathology and hyperalgesia following nerve lesion and its exacerbation with metal NPs, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Frödingsgatan 12, LGH 1103, 75185, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, 100700, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, 100143, China
| | - Z Ryan Tian
- Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, 37 Mircea Eliade Street, 400364, Cluj-Napoca-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, 21201, USA
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, 75185, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Frödingsgatan 12, LGH 1103, 75185, Uppsala, Sweden.
| |
Collapse
|
12
|
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5:276-294. [PMID: 37218868 DOI: 10.3390/clockssleep5020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Collapse
Affiliation(s)
- Pinqiu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
13
|
Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Nanowired Delivery of Cerebrolysin Together with Antibodies to Amyloid Beta Peptide, Phosphorylated Tau, and Tumor Necrosis Factor Alpha Induces Superior Neuroprotection in Alzheimer's Disease Brain Pathology Exacerbated by Sleep Deprivation. ADVANCES IN NEUROBIOLOGY 2023; 32:3-53. [PMID: 37480458 DOI: 10.1007/978-3-031-32997-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Sleep deprivation induces amyloid beta peptide and phosphorylated tau deposits in the brain and cerebrospinal fluid together with altered serotonin metabolism. Thus, it is likely that sleep deprivation is one of the predisposing factors in precipitating Alzheimer's disease (AD) brain pathology. Our previous studies indicate significant brain pathology following sleep deprivation or AD. Keeping these views in consideration in this review, nanodelivery of monoclonal antibodies to amyloid beta peptide (AβP), phosphorylated tau (p-tau), and tumor necrosis factor alpha (TNF-α) in sleep deprivation-induced AD is discussed based on our own investigations. Our results suggest that nanowired delivery of monoclonal antibodies to AβP with p-tau and TNF-α induces superior neuroprotection in AD caused by sleep deprivation, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Chichlowski M, Cotter J, Fawkes N, Pandey N. Feed your microbiome and improve sleep, stress resilience, and cognition. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The brain and gut are connected both physically and biochemically. The gut-brain axis includes the central nervous system, neuroendocrine and neuroimmune systems, the enteric nervous system and vagus nerve, and the gut microbiome. It can influence brain function and even behavior, suggesting that dietary interventions may help enhance and protect mental health and cognitive performance. This review focuses on the role of the microbiome and its metabolites in sleep regulation, neurodegenerative disorders, mechanisms of stress, and mood. It also provides examples of nutritional interventions which can restore healthy gut microbiota and aid with risk reduction and management of many disorders related to mental and cognitive health. Evidence suggests a shift in the gut microbiota towards a balanced composition could be a target to maintain brain health, reduce stress and improve quality of life.
Collapse
Affiliation(s)
- Maciej Chichlowski
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN 47712, USA
| | - Jack Cotter
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, SL1 3UH Slough, UK
| | - Neil Fawkes
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, SL1 3UH Slough, UK
| | - Neeraj Pandey
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, SL1 3UH Slough, UK
| |
Collapse
|
15
|
Abstract
Due to the development of high-tech industries, the modern world is characterized by the increased production and consumption of nanoparticles (NPs) and nanomaterials. Among produced metal nanoparticles, silver nanoparticles are widely used in everyday life products, cosmetics, and medicine. It has already been established that, in nanoscale form, many even inert materials become toxic. Therefore, the study of the toxicity of various substances in nanoscale form is an urgent scientific task. There is now a body of experience on the toxic effect of AgNPs. In the present review, the most well-known results obtained over the 2009–2021 period, including the own performance on the toxicity of silver NPs, are collected and analyzed. Along with the data reporting a certain level of toxicity of silver NPs, experiments that did not reveal any obvious toxicity of nanosized forms of silver are discussed. According to the performed studies, the toxicity of silver NPs is often caused not by NPs themselves but by silver ions, compounds used for nanoparticle stabilization, and other reasons. Based on the analysis of the collected data, it can be concluded that at actual levels of silver NPs used in everyday life, workplace, and medicine, they will not have strong toxic effects on a healthy adult body.
Collapse
|
16
|
Sharma HS, Sharma A. Preface. PROGRESS IN BRAIN RESEARCH 2021; 266:xxi-xxx. [PMID: 34689868 DOI: 10.1016/s0079-6123(21)00197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Sharma HS, Sharma A. Preface. PROGRESS IN BRAIN RESEARCH 2021; 265:xxi-xxviii. [PMID: 34560930 DOI: 10.1016/s0079-6123(21)00185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Sharma HS, Lafuente JV, Muresanu DF, Sahib S, Tian ZR, Menon PK, Castellani RJ, Nozari A, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Neuroprotective effects of insulin like growth factor-1 on engineered metal nanoparticles Ag, Cu and Al induced blood-brain barrier breakdown, edema formation, oxidative stress, upregulation of neuronal nitric oxide synthase and brain pathology. PROGRESS IN BRAIN RESEARCH 2021; 266:97-121. [PMID: 34689867 DOI: 10.1016/bs.pbr.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are vulnerable to environmental or industrial exposure of engineered nanoparticles (NPs) from metals. Long-term exposure of NPs from various sources affect sensory-motor or cognitive brain functions. Thus, a possibility exists that chronic exposure of NPs affect blood-brain barrier (BBB) breakdown and brain pathology by inducing oxidative stress and/or nitric oxide production. This hypothesis was examined in the rat intoxicated with Ag, Cu or Al (50-60nm) nanoparticles (50mg/kg, i.p. once daily) for 7 days. In these NPs treated rats the BBB permeability, brain edema, neuronal nitric oxide synthase (nNOS) immunoreactivity and brain oxidants levels, e.g., myeloperoxidase (MP), malondialdehyde (MD) and glutathione (GT) was examined on the 8th day. Cu and Ag but not Al nanoparticles increased the MP and MD levels by twofold in the brain although, GT showed 50% decline. At this time increase in brain water content and BBB breakdown to protein tracers were seen in areas exhibiting nNOS positive neurons and cell injuries. Pretreatment with insulin like growth factor-1 (IGF-1) in high doses (1μg/kg, i.v. but not 0.5μg/kg daily for 7 days) together with NPs significantly reduced the oxidative stress, nNOS upregulation, BBB breakdown, edema formation and cell injuries. These novel observations demonstrate that (i) NPs depending on their metal constituent (Cu, Ag but not Al) induce oxidative stress and nNOS expression leading to BBB disruption, brain edema and cell damage, and (ii) IGF-1 depending on doses exerts powerful neuroprotection against nanoneurotoxicity, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
19
|
A Feasibility Study on Smart Mattresses to Improve Sleep Quality. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6127894. [PMID: 34394894 PMCID: PMC8356017 DOI: 10.1155/2021/6127894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 12/05/2022]
Abstract
Good sleep quality is essential, especially for clinical users. Sleep disorders not only impair the success rate of treatment but also delay recovery. They can seriously interfere with treatment outcomes and even endanger a user's life. In this study, we created a smart mattress containing 10 × 18 air packs and control units. Each air pack contains a set of pressure and height sensors and two air valves. Each row control unit can detect and adjust the pressure and height of each air bag in the row. When the bed body is turned on, it automatically initializes, adjusts the state of each air bag to the same height and pressure, and enters a slow scanning state. When perceived objects or people are lying on the bed, the bed automatically perceives the human body structure and body pressure matrix, increases the scanning speed for more timely and accurate measurements of the digital matrix and forming pressure by matrix-normalized processing, and then uses local pressure variance detection to automatically adjust to the sleeping position of the human body and thus achieve a uniform force distribution and a comfortable state. Finally, pressure matrix binarization was used to match sleeping position templates to identify the best template for automatic recognition of the sleeping position. The experimental results show that the sleeping position recognition method has high accuracy, recall, and precision. Our mattress is designed with interfaces for external devices. In future research, the smart mattress can connect to an auxiliary part of a smart ecosystem consisting of a smart pill box, a smart lighting system, and a microclimate system, which is expected to yield a more comprehensive intelligent ward to explore the possibility of improving sleep quality.
Collapse
|
20
|
Rac1/Wave2/Arp3 Pathway Mediates Rat Blood-Brain Barrier Dysfunction under Simulated Microgravity Based on Proteomics Strategy. Int J Mol Sci 2021; 22:ijms22105165. [PMID: 34068233 PMCID: PMC8153163 DOI: 10.3390/ijms22105165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 01/09/2023] Open
Abstract
The blood-brain barrier (BBB) is critical to maintaining central nervous system (CNS) homeostasis. However, the effects of microgravity (MG) on the BBB remain unclear. This study aimed to investigate the influence of simulated MG (SMG) on the BBB and explore its potential mechanism using a proteomic approach. Rats were tail-suspended to simulate MG for 21 days. SMG could disrupt the BBB, including increased oxidative stress levels, proinflammatory cytokine levels, and permeability, damaged BBB ultrastructure, and downregulated tight junctions (TJs) and adherens junctions (AJs) protein expression in the rat brain. A total of 554 differentially expressed proteins (DEPs) induced by SMG were determined based on the label-free quantitative proteomic strategy. The bioinformatics analysis suggested that DEPs were mainly enriched in regulating the cell–cell junction and cell–extracellular matrix biological pathways. The inhibited Ras-related C3 botulinum toxin substrate 1 (Rac1)/Wiskott–Aldrich syndrome protein family verprolin-homologous protein 2 (Wave2)/actin-related protein 3 (Arp3) pathway and the decreased ratio of filamentous actin (F-actin) to globular actin contributed to BBB dysfunction induced by SMG. In the human brain microvascular endothelial cell (HBMECs), SMG increased the oxidative stress levels and proinflammatory cytokine levels, promoted apoptosis, and arrested the cell cycle phase. Expression of TJs and AJs proteins were downregulated and the distribution of F-actin was altered in SMG-treated HBMECs. The key role of the Rac1/Wave2/Arp3 pathway in BBB dysfunction was confirmed in HBMECs with a specific Rac1 agonist. This study demonstrated that SMG induced BBB dysfunction and revealed that Rac1/Wave2/Arp3 could be a potential signaling pathway responsible for BBB disruption under SMG. These results might shed a novel light on maintaining astronaut CNS homeostasis during space travel.
Collapse
|
21
|
Sun J, Wu J, Hua F, Chen Y, Zhan F, Xu G. Sleep Deprivation Induces Cognitive Impairment by Increasing Blood-Brain Barrier Permeability via CD44. Front Neurol 2020; 11:563916. [PMID: 33329306 PMCID: PMC7728917 DOI: 10.3389/fneur.2020.563916] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep deprivation occurs frequently in older adults, which can result in delirium and cognitive impairment. CD44 is a key molecular in blood-brain barrier (BBB) regulation. However, whether CD44 participates in the role of sleep deprivation in cognitive impairment remains unclear. In this study, the effect of sleep deprivation on cognitive ability, tissue inflammation, BBB permeability, and astrocyte activity were evaluated in vivo. The differentially expressed genes (DEGs) were identified by RNA sequencing. A CD44 overexpression in the BBB model was performed in vitro to assess the effect and mechanisms of CD44. Sleep deprivation impaired the learning and memory ability and increased the levels of inflammatory cytokines, along with increased BBB permeability and activated astrocytes in hippocampus tissue. RNA sequencing of the hippocampus tissue revealed that 329 genes were upregulated in sleep deprivation-induced mice compared to control mice, and 147 genes were downregulated. GO and pathways showed that DEGs were mainly involved in BBB permeability and astrocyte activation, including nervous system development, neuron development, and brain development, and neuroactive ligand-receptor interaction. Moreover, the PCR analysis revealed that CD44 was dramatically increased in mice with sleep deprivation induction. The overexpression of CD44 in astrocytes promoted BBB permeability in vitro and induced the expression of the downstream gene NANOG. Our results indicate that sleep deprivation upregulated CD44 expression in hippocampus tissue, and increased BBB permeability, resulting in cognitive impairment.
Collapse
Affiliation(s)
- Jing Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jusheng Wu
- Department of Anesthesiology, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Patnaik R, Wiklund L, Sharma HS. Co-administration of TiO 2-nanowired dl-3-n-butylphthalide (dl-NBP) and mesenchymal stem cells enhanced neuroprotection in Parkinson's disease exacerbated by concussive head injury. PROGRESS IN BRAIN RESEARCH 2020; 258:101-155. [PMID: 33223034 DOI: 10.1016/bs.pbr.2020.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
dl-3-n-butylphthalide (dl-NBP) is a powerful antioxidant compound with profound neuroprotective effects in stroke and brain injury. However, its role in Parkinson's disease (PD) is not well known. Traumatic brain injury (TBI) is one of the key factors in precipitating PD like symptoms in civilians and particularly in military personnel. Thus, it would be interesting to explore the possible neuroprotective effects of NBP in PD following concussive head injury (CHI). In this chapter effect of nanowired delivery of NBP together with mesenchymal stem cells (MSCs) in PD with CHI is discussed based on our own investigations. It appears that CHI exacerbates PD pathophysiology in terms of p-tau, α-synuclein (ASNC) levels in the cerebrospinal fluid (CSF) and the loss of TH immunoreactivity in substantia niagra pars compacta (SNpc) and striatum (STr) along with dopamine (DA), dopamine decarboxylase (DOPAC). And homovanillic acid (HVA). Our observations are the first to show that a combination of NBP with MSCs when delivered using nanowired technology induces superior neuroprotective effects in PD brain pathology exacerbated by CHI, not reported earlier.
Collapse
Affiliation(s)
- Feng Niu
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
23
|
Muresanu DF, Sharma A, Sahib S, Tian ZR, Feng L, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma HS. Diabetes exacerbates brain pathology following a focal blast brain injury: New role of a multimodal drug cerebrolysin and nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:285-367. [PMID: 33223037 DOI: 10.1016/bs.pbr.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blast brain injury (bBI) is a combination of several forces of pressure, rotation, penetration of sharp objects and chemical exposure causing laceration, perforation and tissue losses in the brain. The bBI is quite prevalent in military personnel during combat operations. However, no suitable therapeutic strategies are available so far to minimize bBI pathology. Combat stress induces profound cardiovascular and endocrine dysfunction leading to psychosomatic disorders including diabetes mellitus (DM). This is still unclear whether brain pathology in bBI could exacerbate in DM. In present review influence of DM on pathophysiology of bBI is discussed based on our own investigations. In addition, treatment with cerebrolysin (a multimodal drug comprising neurotrophic factors and active peptide fragments) or H-290/51 (a chain-breaking antioxidant) using nanowired delivery of for superior neuroprotection on brain pathology in bBI in DM is explored. Our observations are the first to show that pathophysiology of bBI is exacerbated in DM and TiO2-nanowired delivery of cerebrolysin induces profound neuroprotection in bBI in DM, not reported earlier. The clinical significance of our findings with regard to military medicine is discussed.
Collapse
Affiliation(s)
- Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
24
|
Sharma A, Muresanu DF, Sahib S, Tian ZR, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Bryukhovetskiy I, Manzhulo I, Patnaik R, Wiklund L, Sharma HS. Concussive head injury exacerbates neuropathology of sleep deprivation: Superior neuroprotection by co-administration of TiO 2-nanowired cerebrolysin, alpha-melanocyte-stimulating hormone, and mesenchymal stem cells. PROGRESS IN BRAIN RESEARCH 2020; 258:1-77. [PMID: 33223033 DOI: 10.1016/bs.pbr.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sleep deprivation (SD) is common in military personnel engaged in combat operations leading to brain dysfunction. Military personnel during acute or chronic SD often prone to traumatic brain injury (TBI) indicating the possibility of further exacerbating brain pathology. Several lines of evidence suggest that in both TBI and SD alpha-melanocyte-stimulating hormone (α-MSH) and brain-derived neurotrophic factor (BDNF) levels decreases in plasma and brain. Thus, a possibility exists that exogenous supplement of α-MSH and/or BDNF induces neuroprotection in SD compounded with TBI. In addition, mesenchymal stem cells (MSCs) are very portent in inducing neuroprotection in TBI. We examined the effects of concussive head injury (CHI) in SD on brain pathology. Furthermore, possible neuroprotective effects of α-MSH, MSCs and neurotrophic factors treatment were explored in a rat model of SD and CHI. Rats subjected to 48h SD with CHI exhibited higher leakage of BBB to Evans blue and radioiodine compared to identical SD or CHI alone. Brain pathology was also exacerbated in SD with CHI group as compared to SD or CHI alone together with a significant reduction in α-MSH and BDNF levels in plasma and brain and enhanced level of tumor necrosis factor-alpha (TNF-α). Exogenous administration of α-MSH (250μg/kg) together with MSCs (1×106) and cerebrolysin (a balanced composition of several neurotrophic factors and active peptide fragments) (5mL/kg) significantly induced neuroprotection in SD with CHI. Interestingly, TiO2 nanowired delivery of α-MSH (100μg), MSCs, and cerebrolysin (2.5mL/kg) induced enhanced neuroprotection with higher levels of α-MSH and BDNF and decreased the TNF-α in SD with CHI. These observations are the first to show that TiO2 nanowired administration of α-MSH, MSCs and cerebrolysin induces superior neuroprotection following SD in CHI, not reported earlier. The clinical significance of our findings in light of the current literature is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
25
|
Sharma A, Patnaik R, Sharma HS. Neuroprotective effects of 5-HT 3 receptor antagonist ondansetron on morphine withdrawal induced brain edema formation, blood-brain barrier dysfunction, neuronal injuries, glial activation and heat shock protein upregulation in the brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:209-228. [PMID: 31349928 DOI: 10.1016/bs.irn.2019.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Morphine withdrawal response is associated with brain edema formation, blood-brain barrier (BBB) disruption, activation of glial cells and heat shock protein (HSP 72kDa) responses in the CNS. Thus, exploration of suitable therapeutic measures is the need of the hour to induce neuroprotection in morphine withdrawal cases. There are reports that 5-HT3-receptor antagonists ondansetron attenuate some of the behavioral changes in morphine-withdrawal symptoms. However, brain protection in morphine withdrawal using pharmacological approaches is still not well known. In present investigation, effect of ondansetron the potent 5-HT3 receptor antagonist on brain edema formation BBB disruption, glial activation and/or HSP response following morphine withdrawal was examined. Rats received ondansetron (1mg or 2mg/kg, s.c) or saline once daily from 2days before morphine administration (10mg/kg, s.c. once daily for 10days) that continued up to 2days after its withdrawal (day 13th). Cessation of morphine on day 11th results in withdrawal symptoms and BBB breakdown to proteins in the cerebral cortex, hippocampus, cerebellum, thalamus, hypothalamus, brain stem and spinal cord along with activation of glial fibrillary acidic protein (GFAP) and HSP immunoreactivity. In these animals brain edema and neurotoxicity are prominent on day 13th as compared to controls. Ondansetron treatment significantly reduced withdrawal symptoms on the day 13th in a dose dependent manner and attenuated BBB breakdown, edema formation, GFAP and HSP expression and neuronal injuries. These observations are the first to show that ondansetron is neuroprotective following morphine withdrawal indicating an important role of 5-HT3 receptors in psychostimulants abuse.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Ranjana Patnaik
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
26
|
Ross AM, Mc Nulty D, O'Dwyer C, Grabrucker AM, Cronin P, Mulvihill JJ. Standardization of research methods employed in assessing the interaction between metallic-based nanoparticles and the blood-brain barrier: Present and future perspectives. J Control Release 2019; 296:202-224. [DOI: 10.1016/j.jconrel.2019.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 01/31/2023]
|
27
|
Sharma A, Muresanu DF, Ozkizilcik A, Tian ZR, Lafuente JV, Manzhulo I, Mössler H, Sharma HS. Sleep deprivation exacerbates concussive head injury induced brain pathology: Neuroprotective effects of nanowired delivery of cerebrolysin with α-melanocyte-stimulating hormone. PROGRESS IN BRAIN RESEARCH 2019; 245:1-55. [PMID: 30961865 DOI: 10.1016/bs.pbr.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Cao Y, Gong Y, Liao W, Luo Y, Wu C, Wang M, Yang Q. A review of cardiovascular toxicity of TiO2, ZnO and Ag nanoparticles (NPs). Biometals 2018; 31:457-476. [PMID: 29748744 DOI: 10.1007/s10534-018-0113-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022]
|
29
|
Novel Treatment Strategies Using TiO 2 -Nanowired Delivery of Histaminergic Drugs and Antibodies to Tau With Cerebrolysin for Superior Neuroprotection in the Pathophysiology of Alzheimer's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 137:123-165. [DOI: 10.1016/bs.irn.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Histaminergic Receptors Modulate Spinal Cord Injury-Induced Neuronal Nitric Oxide Synthase Upregulation and Cord Pathology: New Roles of Nanowired Drug Delivery for Neuroprotection. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 137:65-98. [DOI: 10.1016/bs.irn.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
|
32
|
Yokel RA. Physicochemical properties of engineered nanomaterials that influence their nervous system distribution and effects. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2081-2093. [DOI: 10.1016/j.nano.2016.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
|
33
|
Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:887-900. [PMID: 26705676 PMCID: PMC4821735 DOI: 10.1016/j.bbadis.2015.12.016] [Citation(s) in RCA: 375] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 02/07/2023]
Abstract
Vascular insults can initiate a cascade of molecular events leading to neurodegeneration, cognitive impairment, and dementia. Here, we review the cellular and molecular mechanisms in cerebral blood vessels and the pathophysiological events leading to cerebral blood flow dysregulation and disruption of the neurovascular unit and the blood-brain barrier, which all may contribute to the onset and progression of dementia and Alzheimer's disease (AD). Particularly, we examine the link between neurovascular dysfunction and neurodegeneration including the effects of AD genetic risk factors on cerebrovascular functions and clearance of Alzheimer's amyloid-β peptide toxin, and the impact of vascular risk factors, environment, and lifestyle on cerebral blood vessels, which in turn may affect synaptic, neuronal, and cognitive functions. Finally, we examine potential experimental treatments for dementia and AD based on the neurovascular model, and discuss some critical questions to be addressed by future studies. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Amy R Nelson
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Melanie D Sweeney
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Abhay P Sagare
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Berislav V Zlokovic
- Department of Physiology and Biophysics and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
34
|
Chanana P, Kumar A. GABA-BZD Receptor Modulating Mechanism of Panax quinquefolius against 72-h Sleep Deprivation Induced Anxiety like Behavior: Possible Roles of Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation. Front Neurosci 2016; 10:84. [PMID: 27013946 PMCID: PMC4779932 DOI: 10.3389/fnins.2016.00084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/19/2016] [Indexed: 11/25/2022] Open
Abstract
Rationale:Panax quinquefolius (American Ginseng) is known for its therapeutic potential against various neurological disorders, but its plausible mechanism of action still remains undeciphered. GABA (Gamma Amino Butyric Acid) plays an important role in sleep wake cycle homeostasis. Thus, there exists rationale in exploring the GABA-ergic potential of Panax quinquefolius as neuroprotective strategy in sleep deprivation induced secondary neurological problems. Objective: The present study was designed to explore the possible GABA-ergic mechanism in the neuro-protective effect of Panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior, oxidative stress, mitochondrial dysfunction, HPA-axis activation and neuroinflammation. Materials and Methods: Male laca mice were sleep deprived for 72-h by using Grid suspended over water method. Panax quinquefolius (American Ginseng 50, 100, and 200 mg/kg) was administered alone and in combination with GABA modulators (GABA Cl− channel inhibitor, GABA-benzodiazepine receptor inhibitor and GABAA agonist) for 8 days, starting 5 days prior to 72-h sleep deprivation period. Various behavioral (locomotor activity, mirror chamber test), biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels), mitochondrial complexes, neuroinflammation marker (Tumor Necrosis Factor, TNF-alpha), serum corticosterone, and histopathological sections of brains were assessed. Results: Seventy two hours sleep deprivation significantly impaired locomotor activity, caused anxiety-like behavior, conditions of oxidative stress, alterations in mitochondrial enzyme complex activities, raised serum corticosterone levels, brain TNFα levels and led to neuroinflammation like signs in discrete brain areas as compared to naive group. Panax quinquefolius (100 and 200 mg/kg) treatment restored the behavioral, biochemical, mitochondrial, molecular and histopathological alterations. Pre-treatment of GABA Cl− channel inhibitor as well as GABA-benzodiazepine receptor inhibitor, significantly reversed the protective effect of P. quinquefolius (100 mg/kg) in 72-h sleep deprived animals (P < 0.05). However, pretreatment with GABAA agonist, potentiated Panax quinquefolius's protective effect which was significant as compared to their effect per se (p < 0.05). Conclusion: GABA-ergic mechanism could be involved in the neuroprotective effect of P.quinquefolius against sleep deprivation induced anxiety-like behavior, oxidative stress, mitochondrial dysfunction, HPA axis activation and neuroinflammation.
Collapse
Affiliation(s)
- Priyanka Chanana
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University Chandigarh, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University Chandigarh, India
| |
Collapse
|
35
|
Zoladz PR, Krivenko A, Eisenmann ED, Bui AD, Seeley SL, Fry ME, Johnson BL, Rorabaugh BR. Sex-dependent effects of sleep deprivation on myocardial sensitivity to ischemic injury. Stress 2016; 19:264-8. [PMID: 26953626 DOI: 10.3109/10253890.2016.1152469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sleep deprivation is associated with increased risk of myocardial infarction. However, it is unknown whether the effects of sleep deprivation are limited to increasing the likelihood of experiencing a myocardial infarction or if sleep deprivation also increases the extent of myocardial injury. In this study, rats were deprived of paradoxical sleep for 96 h using the platform-over-water method. Control rats were subjected to the same condition except the control platform was large enough for the rats to sleep. Hearts from sleep deprived and control rats were subjected to 20 min ischemia on a Langendorff isolated heart system. Infarct size and post ischemic recovery of contractile function were unaffected by sleep deprivation in male hearts. In contrast, hearts from sleep-deprived females exhibited significantly larger infarcts than hearts from control females. Post ischemic recovery of rate pressure product and + dP/dT were significantly attenuated by sleep deprivation in female hearts, and post ischemic recovery of end diastolic pressure was significantly elevated in hearts from sleep deprived females compared to control females, indicating that post ischemic recovery of both systolic and diastolic function were worsened by sleep deprivation. These data provide evidence that sleep deprivation increases the extent of ischemia-induced injury in a sex-dependent manner.
Collapse
Affiliation(s)
| | - Anna Krivenko
- a Department of Psychology , Sociology & Criminal Justice and
| | | | - Albert D Bui
- b Department of Pharmaceutical & Biomedical Sciences , Ohio Northern University , Ada , OH , USA
| | - Sarah L Seeley
- b Department of Pharmaceutical & Biomedical Sciences , Ohio Northern University , Ada , OH , USA
| | - Megan E Fry
- a Department of Psychology , Sociology & Criminal Justice and
| | | | - Boyd R Rorabaugh
- b Department of Pharmaceutical & Biomedical Sciences , Ohio Northern University , Ada , OH , USA
| |
Collapse
|