1
|
Shen J, Lai W, Li Z, Zhu W, Bai X, Yang Z, Wang Q, Ji J. SDS3 regulates microglial inflammation by modulating the expression of the upstream kinase ASK1 in the p38 MAPK signaling pathway. Inflamm Res 2024; 73:1547-1564. [PMID: 39008037 PMCID: PMC11349808 DOI: 10.1007/s00011-024-01913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Microglia, the main innate immune cells in the central nervous system, are key drivers of neuroinflammation, which plays a crucial role in the pathogenesis of neurodegenerative diseases. The Sin3/histone deacetylase (HDAC) complex, a highly conserved multiprotein co-repressor complex, primarily performs transcriptional repression via deacetylase activity; however, the function of SDS3, which maintains the integrity of the complex, in microglia remains unclear. METHODS To uncover the regulatory role of the transcriptional co-repressor SDS3 in microglial inflammation, we used chromatin immunoprecipitation to identify SDS3 target genes and combined with transcriptomics and proteomics analysis to explore expression changes in cells following SDS3 knocking down. Subsequently, we validated our findings through experimental assays. RESULTS Our analysis revealed that SDS3 modulates the expression of the upstream kinase ASK1 of the p38 MAPK pathway, thus regulating the activation of signaling pathways and ultimately influencing inflammation. CONCLUSIONS Our findings provide important evidence of the contributions of SDS3 toward microglial inflammation and offer new insights into the regulatory mechanisms of microglial inflammatory responses.
Collapse
Affiliation(s)
- Jian Shen
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Wenjia Lai
- Division of Nanotechnology Development, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zeyang Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xue Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zihao Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Szade A, Szade K, Mahdi M, Józkowicz A. The role of heme oxygenase-1 in hematopoietic system and its microenvironment. Cell Mol Life Sci 2021; 78:4639-4651. [PMID: 33787980 PMCID: PMC8195762 DOI: 10.1007/s00018-021-03803-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
Hematopoietic system transports all necessary nutrients to the whole organism and provides the immunological protection. Blood cells have high turnover, therefore, this system must be dynamically controlled and must have broad regeneration potential. In this review, we summarize how this complex system is regulated by the heme oxygenase-1 (HO-1)-an enzyme, which degrades heme to biliverdin, ferrous ion and carbon monoxide. First, we discuss how HO-1 influences hematopoietic stem cells (HSC) self-renewal, aging and differentiation. We also describe a critical role of HO-1 in endothelial cells and mesenchymal stromal cells that constitute the specialized bone marrow niche of HSC. We further discuss the molecular and cellular mechanisms by which HO-1 modulates innate and adaptive immune responses. Finally, we highlight how modulation of HO-1 activity regulates the mobilization of bone marrow hematopoietic cells to peripheral blood. We critically discuss the issue of metalloporphyrins, commonly used pharmacological modulators of HO-1 activity, and raise the issue of their important HO-1-independent activities.
Collapse
Affiliation(s)
- Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Mahdi Mahdi
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| |
Collapse
|
3
|
Role of Heme-Oxygenase-1 in Biology of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. Cells 2021; 10:cells10030522. [PMID: 33804563 PMCID: PMC8000937 DOI: 10.3390/cells10030522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1, encoded by HMOX1) is a cytoprotective enzyme degrading heme into CO, Fe2+, and biliverdin. HO-1 was demonstrated to affect cardiac differentiation of murine pluripotent stem cells (PSCs), regulate the metabolism of murine adult cardiomyocytes, and influence regeneration of infarcted myocardium in mice. However, the enzyme’s effect on human cardiogenesis and human cardiomyocytes’ electromechanical properties has not been described so far. Thus, this study aimed to investigate the role of HO-1 in the differentiation of human induced pluripotent stem cells (hiPSCs) into hiPSC-derived cardiomyocytes (hiPSC-CMs). hiPSCs were generated from human fibroblasts and peripheral blood mononuclear cells using Sendai vectors and subjected to CRISPR/Cas9-mediated HMOX1 knock-out. After confirming lack of HO-1 expression on the protein level, isogenic control and HO-1-deficient hiPSCs were differentiated into hiPSC-CMs. No differences in differentiation efficiency and hiPSC-CMs metabolism were observed in both cell types. The global transcriptomic analysis revealed, on the other hand, alterations in electrophysiological pathways in hiPSC-CMs devoid of HO-1, which also demonstrated increased size. Functional consequences in changes in expression of ion channels genes were then confirmed by patch-clamp analysis. To the best of our knowledge, this is the first report demonstrating the link between HO-1 and electrophysiology in human cardiomyocytes.
Collapse
|
4
|
Rubio-Atonal LF, Serrano-García N, Limón-Pacheco JH, Pedraza-Chaverri J, Orozco-Ibarra M. Cobalt protoporphyrin decreases food intake, body weight, and the number of neurons in the Nucleus Accumbens in female rats. Brain Res 2021; 1758:147337. [PMID: 33548272 DOI: 10.1016/j.brainres.2021.147337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Cobalt protoporphyrin (CoPP) is a potent heme oxygenase-1 inductor that produces temporary hypophagia and chronic weight loss. A complete description of this effect and the underlying mechanisms are unknown. In this work, we challenged the ability of CoPP to produce changes in rat behavior and cellular alterations in the Nucleus Accumbens that would explain those effects. We subcutaneously administered 25 µmol/kgbody weight CoPP in female rats and determined body weight, food intake, hyperactivity, and anxiety-like behavior, as well as the number of neurons and glial cells in the Nucleus Accumbens. CoPP significantly reduced food intake, water consumption, and body weight. Behavioral tests showed that anxiety-like behaviors and locomotor activity were not modified five days after the administration of CoPP. We also found a reduced number of neurons in the Nucleus Accumbens Shell. The above results could be relevant to diseases like anorexia, so it is necessary to deepen the study about the molecular mechanisms involved in reducing the food intake and weight loss elicited by CoPP.
Collapse
Affiliation(s)
- Luis Fernando Rubio-Atonal
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico
| | - Norma Serrano-García
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico
| | - Jorge Humberto Limón-Pacheco
- Laboratorio de Biología Celular y Tisular, Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, CP 11200, Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyoacán, CP 04510, Ciudad de México, Mexico
| | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico.
| |
Collapse
|
5
|
SUMO E3 ligase PIAS1 is a potential biomarker indicating stress susceptibility. Psychoneuroendocrinology 2020; 120:104800. [PMID: 32688147 DOI: 10.1016/j.psyneuen.2020.104800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 11/23/2022]
Abstract
Prior studies suggest that individual differences in stress responses contribute to the pathogenesis of neuropsychiatric disorders. In the present study, we investigated the role of small ubiquitin-like modifier (SUMO) E3 ligase protein inhibitor of activated STAT1 (PIAS1) in mediating stress responses to chronic social defeat stress (CSDS). We found that mRNA and protein levels of PIAS 1 were decreased in the hippocampus of high-susceptibility (HS) mice but not in low-susceptibility (LS) mice after CSDS. Local overexpression of PIAS1 in the hippocampus followed by CSDS exposure promoted stress resilience by attenuating social avoidance and improving anxiety-like behaviors. Viral-mediated gene transfer to generate a conditional knockdown of PIAS1 in the hippocampus promoted social avoidance and stress vulnerability after subthreshold microdefeat. HS mice displayed decreased levels of glucocorticoid receptor (GR) expression, and GR SUMOylation in the hippocampus was associated with stress vulnerability. Furthermore, cytokine/chemokine levels were changed predominantly in the hippocampus of HS mice. These results suggest that hippocampal PIAS1 plays a role in the regulation of stress susceptibility by post-translational modification of GRs.
Collapse
|
6
|
Wu LH, Huang BR, Lai SW, Lin C, Lin HY, Yang LY, Lu DY. SIRT1 activation by minocycline on regulation of microglial polarization homeostasis. Aging (Albany NY) 2020; 12:17990-18007. [PMID: 33021962 PMCID: PMC7585093 DOI: 10.18632/aging.103542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/25/2020] [Indexed: 01/24/2023]
Abstract
Sirtuin 1 (SIRT1) has been reported to be involved in the mechanisms underlying longevity and has also been indicated as a valuable regulator of age-related neurological disorders. Some natural products increase SIRT1 activity and stimulate deacetylation of various proteins. In the present study, SIRT1 overexpression by genetic modification or treatment with SIRT1 activators significantly inhibited the secretion of nitric oxide and expression of inducible nitric oxide synthase, cyclooxygenase 2, and proinflammatory mediator-interleukin 1β-in microglia. SIRT1 activation also decreased the levels of K379 acetyl-p53 and the protein inhibitor of activated Stat 1 expression in microglial cells. In addition, it dramatically promoted M2 polarization of microglia, which enhanced cell motility and altered phagocytic ability. We also used minocycline, a well-known inhibitor of microglial activation, to study the mechanism of SIRT1 signaling. Minocycline treatment decreased neuroinflammatory responses and promoted M2 polarization of microglia. It also reduced the acetyl-p53 level in the brain tissues in an inflammatory mouse model. Our findings demonstrated that SIRT1 participates in the maintenance of microglial polarization homeostasis and that minocycline exerts regulatory effects on SIRT1 activation. Therefore, our results indicate that SIRT1 activation may be a useful therapeutic target for the treatment of neuroinflammation-associated disorders.
Collapse
Affiliation(s)
- Ling-Hsuan Wu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsiao-Yun Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan,Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan,Biomedical Technology R&D Center, China Medical University Hospital, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan,Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
7
|
Huang BR, Liu YS, Lai SW, Lin HJ, Shen CK, Yang LY, Lu DY. CAIX Regulates GBM Motility and TAM Adhesion and Polarization through EGFR/STAT3 under Hypoxic Conditions. Int J Mol Sci 2020; 21:ijms21165838. [PMID: 32823915 PMCID: PMC7461579 DOI: 10.3390/ijms21165838] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/02/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Carbonic anhydrases (CAs) are acid-base regulatory proteins that modulate a variety of physiological functions. Recent findings have shown that CAIX is particularly upregulated in glioblastoma multiforme (GBM) and is associated with a poor patient outcome and survival rate. An analysis of the GSE4290 dataset of patients with gliomas showed that CAIX was highly expressed in GBM and was negatively associated with prognosis. The expression of CAIX under hypoxic conditions in GBM significantly increased in protein, mRNA, and transcriptional activity. Importantly, CAIX upregulation also regulated GBM motility, monocyte adhesion to GBM, and the polarization of tumor-associated monocytes/macrophages (TAM). Furthermore, the overexpression of CAIX was observed in intracranial GBM cells. Additionally, epidermal growth factor receptor/signal transducer and activator of transcription 3 regulated CAIX expression under hypoxic conditions by affecting the stability of hypoxia-inducible factor 1α. In contrast, the knockdown of CAIX dramatically abrogated the change in GBM motility and monocyte adhesion to GBM under hypoxic conditions. Our results provide a comprehensive understanding of the mechanisms of CAIX in the GBM microenvironment. Hence, novel therapeutic targets of GBM progression are possibly developed.
Collapse
Affiliation(s)
- Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (Y.-S.L.); (H.-J.L.)
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan;
| | - Hui-Jung Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (Y.-S.L.); (H.-J.L.)
| | - Ching-Kai Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung 40402, Taiwan
- Biomedical Technology R&D Center, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: (L.-Y.Y.); (D.-Y.L.); Tel.: +886-4-2205-3366 (ext. 1615) (L.-Y.Y.); +886-4-2205-3366 (ext. 2253) (D.-Y.L.)
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (Y.-S.L.); (H.-J.L.)
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: (L.-Y.Y.); (D.-Y.L.); Tel.: +886-4-2205-3366 (ext. 1615) (L.-Y.Y.); +886-4-2205-3366 (ext. 2253) (D.-Y.L.)
| |
Collapse
|
8
|
SOCS-1 Suppresses Inflammation Through Inhibition of NALP3 Inflammasome Formation in Smoke Inhalation-Induced Acute Lung Injury. Inflammation 2019; 41:1557-1567. [PMID: 29907905 PMCID: PMC7102050 DOI: 10.1007/s10753-018-0802-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Smoke inhalation leads to acute lung injury (ALI), a devastating clinical problem associated with high mortality rates. Suppressor of cytokine signaling-1 (SOCS-1) is a negative regulator of proinflammatory cytokine signaling. We have found that adenoviral gene transfer of SOCS-1 ameliorates smoke inhalation-induced lung injury in C57BL/6 mice. We also found that the release of adenosine triphosphate (ATP) was increased post smoke exposure, while oxidized ATP, an inhibitor of purinergic P2X7 receptor, suppressed smoke-induced NALP3 inflammasome assembly, caspase-1 activation, and K+ efflux. Similar to oxidized ATP, high protein level of SOCS-1 dampened the formation of NALP3 inflammasome and the activation of caspase-1 and IL-1β induced by smoke exposure in mouse alveolar macrophages. In conclusion, SOCS-1 relieves smoke inhalation-induced pulmonary inflammation and injury by inhibiting NALP3 inflammasome formation.
Collapse
|
9
|
Chenxu G, Minxuan X, Yuting Q, Tingting G, Jing F, Jinxiao L, Sujun W, Yongjie M, Deshuai L, Qiang L, Linfeng H, Xuyuan N, Mingxing W, Ping H, Jun T. Loss of RIP3 initiates annihilation of high-fat diet initialized nonalcoholic hepatosteatosis: A mechanism involving Toll-like receptor 4 and oxidative stress. Free Radic Biol Med 2019; 134:23-41. [PMID: 30599260 DOI: 10.1016/j.freeradbiomed.2018.12.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/15/2018] [Accepted: 12/28/2018] [Indexed: 12/31/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent and complex disease that confers a high risk of severe liver disorders. Although such public and clinical health importance, very few effective therapies are presently available for NAFLD. Here, we showed that receptor-interacting kinase-3 (RIP3) was up-regulated in liver of mouse with hepatic steatosis induced by high fat diet (HFD). After 16 weeks on a HFD, obesity, insulin resistance, metabolic syndrome, hepatic steatosis, inflammatory response and oxidative stress were significantly alleviated in liver of mice with the loss of RIP3. We provided mechanistic evidence that RIP3 knockdown attenuated hepatic dyslipidemia through preventing the expression of lipogenesis-associated genes. Furthermore, in the absence of RIP3, the transcription factor of nuclear factor-κB (NF-κB) signaling pathway activated by HFD was blocked, accompanied with the inhibition of NLRP3 inflammasome. We also found that RIP3 knockdown-induced activation of nuclear factor-erythroid 2 related factor 2/heme oxygenase-1 (Nrf-2/HO-1) led to the inhibition of oxidative stress. The detrimental effects of RIP3 on hepatic steatosis and related pathologies were confirmed in palmitate (PAL)-treated mouse liver cells. Of note, lipopolysaccharide (LPS)- or PAL-activated TLR-4 resulted in the up-regulation of RIP3 that was accompanied by the elevated inflammation and lipid deposition, and these effects were reversed in TLR-4 knockdown cells. Furthermore, promoting Nrf-2 pathway activation effectively reduced reactive oxygen species (ROS) generation and RIP3 expression in PAL-stimulated cells, consequently leading to the suppression of cellular inflammation and lipid accumulation. In contrast, blocking Nrf-2/HO-1 signaling abrogated RIP3 knockdown-reduced reactive oxygen species (ROS), inflammatory response and lipid deposition in PAL-stimulated cells. Taken together, the present study helped to elucidate how HFD-induced hepatic steatosis was regulated by RIP3, via the TLR-4/NF-κB and Nrf-2/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Ge Chenxu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Xu Minxuan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| | - Qin Yuting
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, PR China
| | - Gu Tingting
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, PR China
| | - Feng Jing
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Lv Jinxiao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, PR China
| | - Wang Sujun
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Ma Yongjie
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Lou Deshuai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Li Qiang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Hu Linfeng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Nie Xuyuan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Wang Mingxing
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Huang Ping
- Department Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China
| | - Tan Jun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| |
Collapse
|
10
|
Huang BR, Bau DT, Chen TS, Chuang IC, Tsai CF, Chang PC, Hsu HC, Lu DY. Pro-Inflammatory Stimuli Influence Expression of Intercellular Adhesion Molecule 1 in Human Anulus Fibrosus Cells through FAK/ERK/GSK3 and PKCδ Signaling Pathways. Int J Mol Sci 2018; 20:ijms20010077. [PMID: 30585203 PMCID: PMC6337379 DOI: 10.3390/ijms20010077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/06/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Intervertebral disc (IVD) degeneration and disc herniation are major causes of lower back pain, which involve the presence of inflammatory mediators and tissue invasion by immune cells. Intercellular adhesion molecule 1 (ICAM1, also termed CD54) is an adhesion molecule that mediates cell-cell interactions, particularly between immune cells and target tissue. The aim of this study was to examine the intracellular signaling pathways involved in inflammatory stimuli-induced ICAM1 expression in human anulus fibrosus (AF) cells. METHODS Quantitative reverse transcription-polymerase chain reaction (qPCR), western blotting, and flow cytometry were performed to dissect the roles of different signaling pathways in inflammatory stimuli-mediated ICAM1 expression. RESULTS Using qPCR and western blot analyses, a significant increase in ICAM1 expression was observed in AF cells after stimulation of lipopolysaccharide (LPS) plus interferon-gamma (IFNγ) in a time-dependent manner. Flow cytometry revealed ICAM1 upregulation on the surface of AF cells. Importantly, LPS plus IFNγ treatment also significantly promoted Chemokine ligand (CCL)2 expression, but not CCL3. The enhanced ICAM1 expression was abolished after incubation with antibody against CCL2. In AF cells, treatment with LPS plus IFNγ activated the FAK/ERK/GSK3 signaling pathways, promoted a time-dependent increase in PKCδ phosphorylation, and promoted PKCδ translocation to the nucleus. Treatment with the pharmacological PKCδ inhibitor; rottlerin, effectively blocked the enhanced productions of ICAM1 and CCL2. CONCLUSIONS Inflammatory stimuli in AF cells are part of a specific pathophysiology in IVD degeneration and disc herniation that modulates CCL2/ICAM1 activation through the FAK/ERK/GSK3 and PKCδ signaling pathways in AF cells.
Collapse
Affiliation(s)
- Bor-Ren Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
- Neurosurgery Department, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan.
- School of Medicine, Tzu Chi University, Hualien 97002, Taiwan.
| | - Da-Tian Bau
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Tzu-Sheng Chen
- Department of Pathology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan.
| | - I-Chen Chuang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Pei-Chun Chang
- Department of Bioinformatics, Asia University, Taichung 41354, Taiwan.
| | - Horng-Chaung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
11
|
Lin HY, Liu YS, Liu YC, Chen CJ, Lu DY. Targeted Ubiquitin-Proteasomal Proteolysis Pathway in Chronic Social Defeat Stress. J Proteome Res 2018; 18:182-190. [PMID: 30351951 DOI: 10.1021/acs.jproteome.8b00519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stressful events promote psychopathogenic changes that might contribute to the development of mental illnesses. Some individuals tend to recover from the stress response, while some do not. However, the molecular mechanisms of stress resilience during stress are not well-characterized. Here, we identify proteomic changes in the hippocampus using proteomic technique to examine mice following chronic social defeat stress. We showed that small ubiquitin-like modifier (SUMO)-1 expression was significantly decreased in susceptible mice following chronic social defeat stress. We also examined a protein inhibitor of activated signal transducer of transcription (PIAS)1 levels, an E3 SUMO-protein ligase protein inhibitor of activated STAT1, which is known to interact with SUMO-1. PIAS1 was shown to be profoundly decreased and monoamine oxidase (MAO)-A increased in the hippocampus of susceptible mice following chronic social defeat stress. Furthermore, the manipulated PIAS1 expression in the hippocampus also has an influence on glucocorticoid receptor (GR) translocation. We also found that knockdown of PIAS1 expression in the hippocampus then subject to submaximal stress increased GR to glucocorticoid response element (GRE)-binding site on the MAO-A promoter. The present study raises the possibility of different levels of PIAS1 between individuals in response to chronic social defeat stress and that such differences may contribute to the susceptibility to stress.
Collapse
Affiliation(s)
- Hsiao-Yun Lin
- Department of Pharmacology, School of Medicine , China Medical University , Taichung 40402 , Taiwan.,Fishberg Department of Neuroscience and the Friedman Brain Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine , China Medical University , Taichung 40402 , Taiwan
| | - Yu-Ching Liu
- Proteomics Core Laboratory, Department of Medical Research , China Medical University Hospital , Taichung 40402 , Taiwan
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Department of Medical Research , China Medical University Hospital , Taichung 40402 , Taiwan.,Graduate Institute of Integrated Medicine , China Medical University , Taichung 40402 , Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine , China Medical University , Taichung 40402 , Taiwan.,Brain Disease Research Center , China Medical University Hospital , Taichung 40402 , Taiwan
| |
Collapse
|
12
|
Lai SW, Chen JH, Lin HY, Liu YS, Tsai CF, Chang PC, Lu DY, Lin C. Regulatory Effects of Neuroinflammatory Responses Through Brain-Derived Neurotrophic Factor Signaling in Microglial Cells. Mol Neurobiol 2018; 55:7487-7499. [PMID: 29427085 DOI: 10.1007/s12035-018-0933-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/25/2018] [Indexed: 11/26/2022]
Abstract
Inhibition of microglial over-activation is an important strategy to counter balance neurodegenerative progression. We previously demonstrated that the adenosine monophosphate-activated protein kinase (AMPK) may be a therapeutic target in mediating anti-neuroinflammatory responses in microglia. Brain-derived neurotrophic factor (BDNF) is one of the major neurotrophic factors produced by astrocytes to maintain the development and survival of neurons in the brain, and have recently been shown to modulate homeostasis of neuroinflammation. Therefore, the present study focused on BDNF-mediated neuroinflammatory responses and may provide an endogenous regulation of neuroinflammation. Among the tested neuroinflammation, epigallocatechin gallate (EGCG) and minocycline exerted BDNF upregulation to inhibit COX-2 and proinflammatory mediator expressions. Furthermore, both EGCG and minocycline upregulated BDNF expression in microglia through AMPK signaling. In addition, minocycline and EGCG also increased expressions of erythropoietin (EPO) and sonic hedgehog (Shh). In the endogenous modulation of neuroinflammation, astrocyte-conditioned medium (AgCM) also decreased the expression of COX-2 and upregulated BDNF expression in microglia. The anti-inflammatory effects of BDNF were mediated through EPO/Shh in microglia. Our results indicated that the BDNF-EPO-Shh novel-signaling pathway underlies the regulation of inflammatory responses and may be regarded as a potential therapeutic target in neurodegenerative diseases. This study also reveals a better understanding of an endogenous crosstalk between astrocytes and microglia to regulate anti-inflammatory actions, which could provide a novel strategy for the treatment of neuroinflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsiao-Yun Lin
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
13
|
Li J, Wu B, Teng D, Sun X, Li J, Li J, Zhang G, Cai J. Cobalt-protoporphyrin enhances heme oxygenase 1 expression and attenuates liver ischemia/reperfusion injury by inhibiting apoptosis. Mol Med Rep 2018; 17:4567-4572. [PMID: 29328470 DOI: 10.3892/mmr.2018.8384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 02/27/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the preconditioning effect and underlying mechanisms of cobalt-protoporphyrin (CoPP) in a mouse model of liver ischemia‑reperfusion (I/R) injury. Mice were divided into five groups: Sham‑operated (control), I/R, I/R + CoPP, I/R + CoPP and zinc‑protoporphyrin (ZnPP) and I/R + ZnPP. Serum levels of aspartate transaminase (AST) and alanine aminotransferase (ALT) were detected using commercial kits. The expression of the pro‑apoptotic protein caspase‑3 was detected by immunohistochemistry and the expression levels of the anti‑apoptotic protein B‑cell lymphoma 2 (Bcl‑2) and heme oxygenase 1 (HO‑1) were analyzed by western blotting. Sections of liver tissue were stained with hematoxylin and eosin to observe pathologic alterations. Furthermore, hepatocyte apoptosis was detected using a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. AST and ALT levels of the CoPP preconditioned group were significantly reduced compared with the IR injury group (P<0.05) and liver damage was attenuated. The expression levels of the pro‑apoptotic protein caspase3 was inhibited and those of HO‑1 and Bcl‑2 were increased in the CoPP group compared with the I/R group; the opposite results were observed in the ZnPP group. Furthermore, the percentage of apoptotic cells as detected by TUNEL was significantly decreased in the CoPP group compared with the I/R group (P<0.05); these protective effects were abrogated by ZnPP. In conclusion, the results of the present study suggested that CoPP may induce HO‑1 overexpression and produce anti‑apoptotic effects in liver I/R injury.
Collapse
Affiliation(s)
- Jing Li
- Departments of Transplantation and Gastroenterology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Bin Wu
- Department of Transplantation, Tianjin First Central Hospital of Tianjin Medical University, Tianjin 300192, P.R. China
| | - Dahong Teng
- Department of Transplantation, Tianjin First Central Hospital of Tianjin Medical University, Tianjin 300192, P.R. China
| | - Xiaoye Sun
- Department of Transplantation, Tianjin First Central Hospital of Tianjin Medical University, Tianjin 300192, P.R. China
| | - Junjie Li
- Department of Transplantation, Tianjin First Central Hospital of Tianjin Medical University, Tianjin 300192, P.R. China
| | - Jiang Li
- Department of Transplantation, Tianjin First Central Hospital of Tianjin Medical University, Tianjin 300192, P.R. China
| | - Guoliang Zhang
- Department of Gastroenterology, Tianjin First Central Hospital of Tianjin Medical University, Tianjin 300192, P.R. China
| | - Jinzhen Cai
- Department of Transplantation, Tianjin First Central Hospital of Tianjin Medical University, Tianjin 300192, P.R. China
| |
Collapse
|
14
|
Adinolfi E, Giuliani AL, De Marchi E, Pegoraro A, Orioli E, Di Virgilio F. The P2X7 receptor: A main player in inflammation. Biochem Pharmacol 2017; 151:234-244. [PMID: 29288626 DOI: 10.1016/j.bcp.2017.12.021] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
Damage associated molecular patterns (DAMPs) are intracellular molecules released from infected or injured cells to activate inflammatory and reparatory responses. One of the most ancient and conserved DAMPs is extracellular ATP that exerts its phlogistic activity mainly through activation of the P2X7 receptor (P2X7R). The P2X7R is an ATP gated ion channel, expressed by most immune cells, including the monocyte-derived cell lineages, T and B lymphocytes and their precursors. Here we give an overview of recent and established literature on the role of P2X7R in septic and sterile inflammation. P2X7R ability in restraining intracellular bacteria and parasite infection by modulation of the immune response are described, with particular focus on Mycobacteria and Plasmodium. Emerging literature on the role of P2X7 in viral infections such as HIV-1 is also briefly covered. Finally, we describe the numerous intracellular pathways related to inflammation and activated by the P2X7R, including the NLRP3 inflammasome, NF-kB, NFAT, GSK3β and VEGF, and discuss the involvement of P2X7R in chronic diseases. The possible therapeutic applications of P2X7R antagonists are also described.
Collapse
Affiliation(s)
- Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Anna Pegoraro
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Elisa Orioli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
15
|
Pichler A, Fatouros C, Lee H, Eisenhardt N. SUMO conjugation - a mechanistic view. Biomol Concepts 2017; 8:13-36. [PMID: 28284030 DOI: 10.1515/bmc-2016-0030] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/06/2017] [Indexed: 02/08/2023] Open
Abstract
The regulation of protein fate by modification with the small ubiquitin-related modifier (SUMO) plays an essential and crucial role in most cellular pathways. Sumoylation is highly dynamic due to the opposing activities of SUMO conjugation and SUMO deconjugation. SUMO conjugation is performed by the hierarchical action of E1, E2 and E3 enzymes, while its deconjugation involves SUMO-specific proteases. In this review, we summarize and compare the mechanistic principles of how SUMO gets conjugated to its substrate. We focus on the interplay of the E1, E2 and E3 enzymes and discuss how specificity could be achieved given the limited number of conjugating enzymes and the thousands of substrates.
Collapse
Affiliation(s)
- Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Chronis Fatouros
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Heekyoung Lee
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Nathalie Eisenhardt
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| |
Collapse
|