1
|
Decraene B, Vanmechelen M, Clement P, Daisne JF, Vanden Bempt I, Sciot R, Garg AD, Agostinis P, De Smet F, De Vleeschouwer S. Cellular and molecular features related to exceptional therapy response and extreme long-term survival in glioblastoma. Cancer Med 2023. [PMID: 36776000 DOI: 10.1002/cam4.5681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/14/2023] Open
Abstract
Glioblastoma Multiforme (GBM) remains the most common malignant primary brain tumor with a dismal prognosis that rarely exceeds beyond 2 years despite extensive therapy, which consists of maximal safe surgical resection, radiotherapy, and/or chemotherapy. Recently, it has become clear that GBM is not one homogeneous entity and that both intra-and intertumoral heterogeneity contributes significantly to differences in tumoral behavior which may consequently be responsible for differences in survival. Strikingly and in spite of its dismal prognosis, small fractions of GBM patients seem to display extremely long survival, defined as surviving over 10 years after diagnosis, compared to the large majority of patients. Although the underlying mechanisms for this peculiarity remain largely unknown, emerging data suggest that still poorly characterized both cellular and molecular factors of the tumor microenvironment and their interplay probably play an important role. We hereby give an extensive overview of what is yet known about these cellular and molecular features shaping extreme long survival in GBM.
Collapse
Affiliation(s)
- B Decraene
- KU Leuven, Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Leuven, Belgium.,KU Leuven Department of Neurosciences, Experimental Neurosurgery and Neuroanatomy Research Group, Leuven, Belgium.,Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - M Vanmechelen
- KU Leuven, Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Leuven, Belgium.,Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - P Clement
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - J F Daisne
- Radiation Oncology Department, University Hospitals Leuven, Leuven, Belgium
| | - I Vanden Bempt
- Department of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - R Sciot
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - A D Garg
- KU Leuven, VIB Center for Cancer Biology Research, Leuven, Belgium
| | - P Agostinis
- KU Leuven, Laboratory of Cell Stress & Immunity (CSI), Department of Cellular & Molecular Medicine, Leuven, Belgium
| | - F De Smet
- KU Leuven, Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Leuven, Belgium
| | - S De Vleeschouwer
- KU Leuven Department of Neurosciences, Experimental Neurosurgery and Neuroanatomy Research Group, Leuven, Belgium.,Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
2
|
Debernardi A, Meurisse A, Prétet JL, Guenat D, Monnien F, Spehner L, Vienot A, Roncarati P, André T, Abramowitz L, Molimard C, Mougin C, Herfs M, Kim S, Borg C. Prognostic role of HPV integration status and molecular profile in advanced anal carcinoma: An ancillary study to the epitopes-HPV02 trial. Front Oncol 2022; 12:941676. [DOI: 10.3389/fonc.2022.941676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Squamous Cell Carcinoma of the Anal canal (SCCA) is a rare disease associated with a Human Papillomavirus (HPV) infection in most cases, predominantly the HPV16 genotype. About 15% of SCCA are diagnosed in metastatic stage and some will relapse after initial chemoradiotherapy (CRT). Treatment of patients by Docetaxel, Cisplatin and 5-fluorouracil (DCF) has been recently shown to improve their complete remission and progression-free survival. The aim of this retrospective study was to explore the impact of HPV infection, HPV DNA integration, TERT promoter mutational status and somatic mutations of oncogenes on both progression-free (PFS) and overall survivals (OS) of patients treated by DCF. Samples obtained from 49 patients included in the Epitopes-HPV02 clinical trial, diagnosed with metastatic or non-resectable local recurrent SCCA treated by DCF, were used for analyses. Median PFS and OS were not associated with HPV status. Patients with episomal HPV had an improved PFS compared with SCCA patients with integrated HPV genome (p=0.07). TERT promoter mutations were rarely observed and did not specifically distribute in a subset of SCCA and did not impact DCF efficacy. Among the 42 genes investigated, few gene alterations were observed, and were in majority amplifications (68.4%), but none were significantly correlated to PFS. As no biomarker is significantly associated with patients’ survival, it prompts us to include every patient failing CRT or with metastatic disease in DCF strategy.
Collapse
|
3
|
Emerging mechanisms of telomerase reactivation in cancer. Trends Cancer 2022; 8:632-641. [PMID: 35568649 PMCID: PMC7614490 DOI: 10.1016/j.trecan.2022.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Mutations in the promoter of human telomerase reverse transcriptase (hTERT) result in hyperactivation of hTERT. Notably, all mutations are G>A transitions, frequently found in a wide range of cancer types, and causally associated with cancer progression. Initially, the mutations were understood to reactivate hTERT by generating novel E26 transformation-specific (ETS) binding sites. Recent work reveals the role of DNA secondary structure G-quadruplexes, telomere binding factor(s), and chromatin looping in hTERT regulation. Here, we discuss these emerging findings in relation to the clinically significant promoter mutations to provide a broader understanding of the context-dependent outcomes that result in hTERT activation in normal and pathogenic conditions.
Collapse
|
4
|
TRIM28 is a transcriptional activator of the mutant TERT promoter in human bladder cancer. Proc Natl Acad Sci U S A 2021; 118:2102423118. [PMID: 34518220 DOI: 10.1073/pnas.2102423118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer (BC) has a 70% telomerase reverse transcriptase (TERT or hTERT in humans) promoter mutation prevalence, commonly at -124 base pairs, and this is associated with increased hTERT expression and poor patient prognosis. We inserted a green fluorescent protein (GFP) tag in the mutant hTERT promoter allele to create BC cells expressing an hTERT-GFP fusion protein. These cells were used in a fluorescence-activated cell sorting-based pooled CRISPR-Cas9 Kinome knockout genetic screen to identify tripartite motif containing 28 (TRIM28) and TRIM24 as regulators of hTERT expression. TRIM28 activates, while TRIM24 suppresses, hTERT transcription from the mutated promoter allele. TRIM28 is recruited to the mutant promoter where it interacts with TRIM24, which inhibits its activity. Phosphorylation of TRIM28 through the mTOR complex 1 (mTORC1) releases it from TRIM24 and induces hTERT transcription. TRIM28 expression promotes in vitro and in vivo BC cell growth and stratifies BC patient outcome. mTORC1 inhibition with rapamycin analog Ridaforolimus suppresses TRIM28 phosphorylation, hTERT expression, and cell viability. This study may lead to hTERT-directed cancer therapies with reduced effects on normal progenitor cells.
Collapse
|
5
|
Kim HJ, Kim DY. Present and Future of Anti-Glioblastoma Therapies: A Deep Look into Molecular Dependencies/Features. Molecules 2020; 25:molecules25204641. [PMID: 33053763 PMCID: PMC7587213 DOI: 10.3390/molecules25204641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is aggressive malignant tumor residing within the central nervous system. Although the standard treatment options, consisting of surgical resection followed by combined radiochemotherapy, have long been established for patients with GBM, the prognosis is still poor. Despite recent advances in diagnosis, surgical techniques, and therapeutic approaches, the increased patient survival after such interventions is still sub-optimal. The unique characteristics of GBM, including highly infiltrative nature, hard-to-access location (mainly due to the existence of the blood brain barrier), frequent and rapid recurrence, and multiple drug resistance mechanisms, pose challenges to the development of an effective treatment. To overcome current limitations on GBM therapy and devise ideal therapeutic strategies, efforts should focus on an improved molecular understanding of GBM pathogenesis. In this review, we summarize the molecular basis for the development and progression of GBM as well as some emerging therapeutic approaches.
Collapse
Affiliation(s)
- Hyeon Ji Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41940, Korea
- Correspondence: ; Tel.: +82-53-660-6880
| |
Collapse
|
6
|
Song YS, Park YJ. Mechanisms of TERT Reactivation and Its Interaction with BRAFV600E. Endocrinol Metab (Seoul) 2020; 35:515-525. [PMID: 32981294 PMCID: PMC7520576 DOI: 10.3803/enm.2020.304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
The telomerase reverse transcriptase (TERT) gene, which is repressed in most differentiated human cells, can be reactivated by somatic TERT alterations and epigenetic modulations. Moreover, the recruitment, accessibility, and binding of transcription factors also affect the regulation of TERT expression. Reactivated TERT contributes to the development and progression of cancer through telomere lengthening-dependent and independent ways. In particular, because of recent advances in high-throughput sequencing technologies, studies on genomic alterations in various cancers that cause increased TERT transcriptional activity have been actively conducted. TERT reactivation has been reported to be associated with poor prognosis in several cancers, and TERT promoter mutations are among the most potent prognostic markers in thyroid cancer. In particular, when a TERT promoter mutation coexists with the BRAFV600E mutation, these mutations exert synergistic effects on a poor prognosis. Efforts have been made to uncover the mechanisms of these synergistic interactions. In this review, we discuss the role of TERT reactivation in tumorigenesis, the mechanisms of TERT reactivation across all human cancers and in thyroid cancer, and the mechanisms of interactions between BRAFV600E and TERT promoter mutations.
Collapse
Affiliation(s)
- Young Shin Song
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
The TERT copy number gain is sensitive to telomerase inhibitors in human melanoma. Clin Sci (Lond) 2020; 134:193-205. [PMID: 31919521 DOI: 10.1042/cs20190890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Telomerase reverse transcriptase (TERT) copy number gain is frequently observed in Asian melanoma patients. Here, we explored the correlation between TERT copy number and the effect of telomerase inhibitors in melanoma. A total of 78 melanoma cases were enrolled in the study. The TERT copy number was examined by QuantiGene Plex DNA assay. The sensitivity to telomerase inhibitors was evaluated in cell lines and patient-derived xenograft (PDX) models with or without TERT copy number gain. Among the 78 patients, 33.3% showed TERT copy number gain, and the incidence of this gain in acral melanoma (61.5%) was higher than that in other melanoma subtypes (P=0.02). The telomerase inhibitors 6-thio-2'-deoxyguanosine (6-Thio-dG) and epigallocatechin-3-gallate (EGCG) inhibited cell viability and repressed tumor growth in PDX models with TERT copy number gain. TERT copy number gain is frequently observed in Chinese patients with melanoma. Targeting telomerase may benefit melanoma patients with TERT copy number gain.
Collapse
|
8
|
Yuan X, Larsson C, Xu D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene 2019; 38:6172-6183. [PMID: 31285550 PMCID: PMC6756069 DOI: 10.1038/s41388-019-0872-9] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022]
Abstract
Long-lived species Homo sapiens have evolved robust protection mechanisms against cancer by repressing telomerase and maintaining short telomeres, thereby delaying the onset of the majority of cancer types until post-reproductive age. Indeed, telomerase is silent in most differentiated human cells, predominantly due to the transcriptional repression of its catalytic component telomerase reverse transcriptase (TERT) gene. The lack of telomerase/TERT expression leads to progressive telomere erosion in dividing human cells, whereas critically shortened telomere length induces a permanent growth arrest stage named replicative senescence. TERT/telomerase activation has been experimentally shown to be essential to cellular immortalization and malignant transformation by stabilizing telomere length and erasing the senescence barrier. Consistently, TERT expression/telomerase activity is detectable in up to 90% of human primary cancers. Compelling evidence has also accumulated that TERT contributes to cancer development and progression via multiple activities beyond its canonical telomere-lengthening function. Given these key roles of telomerase and TERT in oncogenesis, great efforts have been made to decipher mechanisms underlying telomerase activation and TERT induction. In the last two decades since the TERT gene and promoter were cloned, the derepression of the TERT gene has been shown to be achieved typically at a transcriptional level through dysregulation of oncogenic factors or signaling, post-transcriptional/translational regulation and genomic amplification. However, advances in high-throughput next-generation sequencing technologies have prompted a revolution in cancer genomics, which leads to the recent discovery that genomic alterations take center stage in activating the TERT gene. In this review article, we summarize critical mechanisms activating TERT transcription, with special emphases on the contribution of TERT promoter mutations and structural alterations at the TERT locus, and briefly discuss the underlying implications of these genomic events-driven TERT hyperactivity in cancer initiation/progression and potential clinical applications as well.
Collapse
Affiliation(s)
- Xiaotian Yuan
- School of Medicine, Shandong University, 250012, Jinan, People's Republic of China. .,Department of Medicine, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institutet and Karolinska University Hospital Solna, 171 64, Solna, Sweden.
| | - Catharina Larsson
- Department of Oncology-Pathology and Bioclinicum, Karolinska Institutet and Karolinska University Hospital Solna, 171 64, Solna, Sweden
| | - Dawei Xu
- Department of Medicine, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institutet and Karolinska University Hospital Solna, 171 64, Solna, Sweden.
| |
Collapse
|
9
|
Abstract
Glioblastoma (GBM) is the most common and most aggressive type of primary brain tumour in adults. It represents 54% of all gliomas and 16% of all brain tumours (Ostrom et al. 2016). Despite surgery and treatment with radiotherapy plus an oral alkylating agent, temozolomide (TMZ), tumours invariably recur, and the patient survival is an average of ~14–16 months. In this review we summarise the current understanding of multiple factors that may affect survival of patients with GBMs. In particular, we discuss recent advancements in surgery and detection of genomic-based markers with prognostic values, such as IDH1/2 mutations, MGMT gene promoter methylation, and TERT gene promoter alterations. We address the issue of tumour heterogeneity and evolution that may result in different parts of the same tumour exhibiting different GBM subtypes and in subtype switching, which may restrict the usefulness of the expression-based classification as a prognostic marker before relapse. The determinants of long-term survival in patients with IDH1/2wt GBM, beyond MGMT promoter methylation, remain to be identified, and even the absence of both IDH1/2 mutations and MGMT promoter methylation does not preclude long-term survival. These findings suggest that host-derived factors, such as immune system responsiveness may contribute to long-term survival in such patients. We report the results of high-throughput approaches, suggesting links between long-term survival and enhanced immune-related gene expression. The further search for new gene candidates, promoter methylation status, and specific features of host immunity should provide prognostic biomarkers for the evaluation of survival of IDH1 wild-type/non-G-CIMP GBMs.
Collapse
|
10
|
Vuong HG, Altibi AMA, Duong UNP, Ngo HTT, Pham TQ, Chan AKY, Park CK, Fung KM, Hassell L. TERT promoter mutation and its interaction with IDH mutations in glioma: Combined TERT promoter and IDH mutations stratifies lower-grade glioma into distinct survival subgroups-A meta-analysis of aggregate data. Crit Rev Oncol Hematol 2017; 120:1-9. [PMID: 29198322 DOI: 10.1016/j.critrevonc.2017.09.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/02/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022] Open
Abstract
The clinical significance of telomerase reverse transcriptase (TERT) promoter mutation in glioma remains unclear. The aim of our meta-analysis is to investigate the prognostic impact TERT promoter mutation in glioma patients and its interaction with other molecular markers, particularly Isocitrate Dehydrogenase (IDH) mutation from aggregate level data. Relevant articles were searched in four electronic databases including PubMed, Scopus, Web of Science and Virtual Health Library. Pooled HRs were calculated using random effect model weighted by inverse variance method. From 1010 studies, we finally included 28 studies with 11519 patients for meta-analyses. TERT mutation is significantly associated with compromised overall survival (OS) (HR=1.38; 95% CI=1.15-1.67) and progression-free survival (PFS) (HR=1.31; 95% CI=1.06-1.63) in glioma patients. In studying its reaction with IDH, TERT promoter mutation was associated with reduced OS in both IDH-mutant (IDH-mut) and IDH-wild type (IDH-wt) glioblastomas but shown to have inverse effects on IDH-mut and IDH-wt grade II/III tumors. Our analysis categorized WHO grade II/III glioma patients into four distinct survival subgroups with descending survival as follow: TERT-mut/IDH-mut≫TERT-wt/IDH-mut≫TERT-wt/IDH-wt≫TERT-mut/IDH-wt. Prognostic value of TERT promoter mutations in gliomas is dependent on tumor grade and the IDH mutational status. With the same tumor grade in WHO grade II and III tumors and the same IDH mutation status, TERT-mut is a prognostic factor.
Collapse
Affiliation(s)
- Huy Gia Vuong
- Department of Pathology, Cho Ray Hospital, Ho Chi Minh City 70000, Viet Nam.
| | | | - Uyen N P Duong
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City 70000, Viet Nam
| | - Hanh T T Ngo
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Viet Nam; Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Viet Nam
| | - Thong Quang Pham
- Department of Pathology, Cho Ray Hospital, Ho Chi Minh City 70000, Viet Nam
| | - Aden Ka-Yin Chan
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University, College of Medicine, Seoul 110-744, Republic of Korea
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Lewis Hassell
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| |
Collapse
|
11
|
Cancer-Specific Telomerase Reverse Transcriptase (TERT) Promoter Mutations: Biological and Clinical Implications. Genes (Basel) 2016; 7:genes7070038. [PMID: 27438857 PMCID: PMC4962008 DOI: 10.3390/genes7070038] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
The accumulated evidence has pointed to a key role of telomerase in carcinogenesis. As a RNA-dependent DNA polymerase, telomerase synthesizes telomeric DNA at the end of linear chromosomes, and attenuates or prevents telomere erosion associated with cell divisions. By lengthening telomeres, telomerase extends cellular life-span or even induces immortalization. Consistent with its functional activity, telomerase is silent in most human normal somatic cells while active only in germ-line, stem and other highly proliferative cells. In contrast, telomerase activation widely occurs in human cancer and the enzymatic activity is detectable in up to 90% of malignancies. Recently, hotspot point mutations in the regulatory region of the telomerase reverse transcriptase (TERT) gene, encoding the core catalytic component of telomerase, was identified as a novel mechanism to activate telomerase in cancer. This review discusses the cancer-specific TERT promoter mutations and potential biological and clinical significances.
Collapse
|