1
|
Okamoto S, Echigoya Y, Tago A, Segawa T, Sato Y, Itou T. Antiviral Efficacy of RNase H-Dependent Gapmer Antisense Oligonucleotides against Japanese Encephalitis Virus. Int J Mol Sci 2023; 24:14846. [PMID: 37834294 PMCID: PMC10573891 DOI: 10.3390/ijms241914846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
RNase H-dependent gapmer antisense oligonucleotides (ASOs) are a promising therapeutic approach via sequence-specific binding to and degrading target RNAs. However, the efficacy and mechanism of antiviral gapmer ASOs have remained unclear. Here, we investigated the inhibitory effects of gapmer ASOs containing locked nucleic acids (LNA gapmers) on proliferating a mosquito-borne flavivirus, Japanese encephalitis virus (JEV), with high mortality. We designed several LNA gapmers targeting the 3' untranslated region of JEV genomic RNAs. In vitro screening by plaque assay using Vero cells revealed that LNA gapmers targeting a stem-loop region effectively inhibit JEV proliferation. Cell-based and RNA cleavage assays using mismatched LNA gapmers exhibited an underlying mechanism where the inhibition of viral production results from JEV RNA degradation by LNA gapmers in a sequence- and modification-dependent manner. Encouragingly, LNA gapmers potently inhibited the proliferation of five JEV strains of predominant genotypes I and III in human neuroblastoma cells without apparent cytotoxicity. Database searching showed a low possibility of off-target binding of our LNA gapmers to human RNAs. The target viral RNA sequence conservation observed here highlighted their broad-spectrum antiviral potential against different JEV genotypes/strains. This work will facilitate the development of an antiviral LNA gapmer therapy for JEV and other flavivirus infections.
Collapse
Affiliation(s)
- Shunsuke Okamoto
- Laboratory of Preventive Veterinary Medicine and Animal Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan; (S.O.); (T.S.); (T.I.)
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
| | - Yusuke Echigoya
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Ayaka Tago
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Takao Segawa
- Laboratory of Preventive Veterinary Medicine and Animal Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan; (S.O.); (T.S.); (T.I.)
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
| | - Yukita Sato
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
- Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Takuya Itou
- Laboratory of Preventive Veterinary Medicine and Animal Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan; (S.O.); (T.S.); (T.I.)
- Nihon University Veterinary Research Center, Fujisawa, Kanagawa 252-0880, Japan; (A.T.); (Y.S.)
| |
Collapse
|
2
|
Yang CC, Hsiao LD, Yang CM. Galangin Inhibits LPS-Induced MMP-9 Expression via Suppressing Protein Kinase-Dependent AP-1 and FoxO1 Activation in Rat Brain Astrocytes. J Inflamm Res 2020; 13:945-960. [PMID: 33244253 PMCID: PMC7685391 DOI: 10.2147/jir.s276925] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Neuroinflammation, characterized by the increased expression of inflammatory proteins such as matrix metalloproteinases (MMPs), plays a critical role in neurodegenerative disorders. Lipopolysaccharide (LPS) has been shown to upregulate MMP-9 expression through the activation of various transcription factors, including activator protein 1 (AP-1) and forkhead box protein O1 (FoxO1). The flavonoid 3,5,7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one (galangin) has been demonstrated to possess antioxidant and anti-inflammatory properties in various types of cells. Here, we investigated the mechanisms underlying the inhibitory effect of galangin on LPS-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells). Methods Pharmacological inhibitors and siRNAs were employed to explore the effects of galangin on LPS-challenged RBA-1 cells. Gelatin zymography, Western blotting, real-time PCR, and a luciferase reporter assay were used to detect MMP-9 activity, protein expression, mRNA levels, and promoter activity, respectively. The protein kinases involved in the LPS-induced MMP-9 expression were determined by Western blot. A chromatin immunoprecipitation (ChIP) assay was employed to evaluate the activity of c-Jun at the MMP-9 promoter. Results Galangin treatment attenuated the LPS-mediated induction of MMP-9 protein and mRNA expression, as well as the activity at the MMP-9 promoter. In addition, galangin exerted its inhibitory effects on MMP-9 expression through suppressing the LPS-stimulated activation of proline-rich tyrosine kinase (Pyk2), platelet-derived growth factor receptor beta (PDGFRβ), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), and mitogen-activated protein kinases (MAPKs). Pretreatment with galangin attenuated the LPS-induced phosphorylation of c-Jun and FoxO1. LPS-induced cell migration was also suppressed by galangin pretreatment. Conclusion Galangin attenuates the LPS-induced inflammatory responses, including the induction of MMP-9 expression and cell migration, via inhibiting Pyk2/PDGFRβ/PI3K/Akt/mTOR/JNK1/JNK2 and p44/p42 MAPK cascade-dependent AP-1 and FoxO1 activities. These results provide new insights into the mechanisms through which galangin mitigates LPS-induced inflammatory responses, and suggest novel strategies for the management of LPS-related brain diseases.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan.,Program for Biotch Pharmaceutical Industry, China Medical University, Taichung 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung 41354, Taiwan
| |
Collapse
|
3
|
Yang CC, Hsiao LD, Tseng HC, Kuo CM, Yang CM. Pristimerin Inhibits MMP-9 Expression and Cell Migration Through Attenuating NOX/ROS-Dependent NF-κB Activation in Rat Brain Astrocytes Challenged with LPS. J Inflamm Res 2020; 13:325-341. [PMID: 32765041 PMCID: PMC7381777 DOI: 10.2147/jir.s252659] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Neuroinflammation plays a crucial role in neurodegenerative diseases. Matrix metalloproteinases (MMPs) are a landmark of neuroinflammation. Lipopolysaccharide (LPS) has been demonstrated to induce MMP-9 expression. The mechanisms underlying LPS-induced MMP-9 expression have not been completely elucidated in astrocytes. Nuclear factor-kappaB (NF-κB) is well known as one of the crucial transcription factors in MMP-9 induction. Moreover, reactive oxygen species (ROS) could be an important mediator of neuroinflammation. Here, we differentiated whether ROS and NF-κB contributed to LPS-mediated MMP-9 expression in rat brain astrocytes (RBA-1). Besides, pristimerin has been revealed to possess antioxidant and anti-inflammatory effects. We also evaluated the effects of pristimerin on LPS-induced inflammatory responses. Methods RBA-1 cells were used for analyses. Pharmacological inhibitors and siRNAs were used to evaluate the signaling pathway. Western blotting and gelatin zymography were conducted to evaluate protein and MMP-9 expression, respectively. Real-time PCR was for mRNA expression. Wound healing assay was for cell migration. 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA) and dihydroethidium (DHE) staining were for ROS generation. Immunofluorescence staining was conducted to assess NF-κB p65. Promoter-reporter gene assay and chromatin immunoprecipitation (ChIP) assay were used to detect promoter activity and the association of nuclear proteins with the promoter. Results Our results showed that the increased level of ROS generation was attenuated by edaravone (a ROS scavenger), apocynin (APO; an inhibitor of p47Phox), diphenyleneiodonium (DPI; an inhibitor of NOX), and pristimerin in RBA-1 cells exposed to LPS. Besides, pretreatment with APO, DPI, edaravone, Bay11-7082, and pristimerin also inhibited the phosphorylation, nuclear translocation, promoter binding activity of NF-κB p65 as well as upregulation of MMP-9 expression-mediated cell migration in RBA-1 cells challenged with LPS. Conclusion These results suggested that LPS enhances the upregulation of MMP-9 through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)/ROS-dependent NF-κB activity. These results also provide new insights into the mechanisms by which pristimerin attenuates LPS-mediated MMP-9 expression and neuroinflammatory responses.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Tao-Yuan 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hui-Ching Tseng
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ching-Ming Kuo
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
4
|
Lipopolysaccharide-Induced Matrix Metalloproteinase-9 Expression Associated with Cell Migration in Rat Brain Astrocytes. Int J Mol Sci 2019; 21:ijms21010259. [PMID: 31905967 PMCID: PMC6982104 DOI: 10.3390/ijms21010259] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation is a landmark of neuroinflammatory and neurodegenerative diseases. Matrix metalloproteinase (MMP)-9, one member of MMPs, has been shown to contribute to the pathology of these brain diseases. Several experimental models have demonstrated that lipopolysaccharide (LPS) exerts a pathological role through Toll-like receptors (TLRs) in neuroinflammation and neurodegeneration. However, the mechanisms underlying LPS-induced MMP-9 expression in rat brain astrocytes (RBA-1) are not completely understood. Here, we applied pharmacological inhibitors and siRNA transfection to assess the levels of MMP-9 protein, mRNA, and promoter activity, as well as protein kinase phosphorylation in RBA-1 cells triggered by LPS. We found that LPS-induced expression of pro-form MMP-9 and cell migration were mediated through TLR4, proto-oncogene tyrosine-protein kinase (c-Src), proline-rich tyrosine kinase 2 (Pyk2), platelet-derived growth factor receptor (PDGFR), phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), p38 mitogen-activated protein kinase (MAPK), and Jun amino-terminal kinase (JNK)1/2 signaling molecules in RBA-1 cells. In addition, LPS-stimulated binding of c-Jun to the MMP-9 promoter was confirmed by chromatin immunoprecipitation (ChIP) assay, which was blocked by pretreatment with c-Src inhibitor II, PF431396, AG1296, LY294002, Akt inhibitor VIII, p38 MAP kinase inhibitor VIII, SP600125, and tanshinone IIA. These results suggest that in RBA-1 cells, LPS activates a TLR4/c-Src/Pyk2/PDGFR/PI3K/Akt/p38 MAPK and JNK1/2 pathway, which in turn triggers activator protein 1 (AP-1) activation and ultimately induces MMP-9 expression and cell migration.
Collapse
|
5
|
Lin CC, Hsiao LD, Cho RL, Yang CM. Carbon Monoxide Releasing Molecule-2-Upregulated ROS-Dependent Heme Oxygenase-1 Axis Suppresses Lipopolysaccharide-Induced Airway Inflammation. Int J Mol Sci 2019; 20:ijms20133157. [PMID: 31261663 PMCID: PMC6651427 DOI: 10.3390/ijms20133157] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022] Open
Abstract
The up-regulation of heme oxygenase-1 (HO-1) is mediated through nicotinamaide adenine dinucleotide phosphate (NADPH) oxidases (Nox) and reactive oxygen species (ROS) generation, which could provide cytoprotection against inflammation. However, the molecular mechanisms of carbon monoxide-releasing molecule (CORM)-2-induced HO-1 expression in human tracheal smooth muscle cells (HTSMCs) remain unknown. Here, we found that pretreatment with CORM-2 attenuated the lipopolysaccharide (LPS)-induced intercellular adhesion molecule (ICAM-1) expression and leukocyte count through the up-regulation of HO-1 in mice, which was revealed by immunohistochemistrical staining, Western blot, real-time PCR, and cell count. The inhibitory effects of HO-1 by CORM-2 were reversed by transfection with HO-1 siRNA. Next, Western blot, real-time PCR, and promoter activity assay were performed to examine the HO-1 induction in HTSMCs. We found that CORM-2 induced HO-1 expression via the activation of protein kinase C (PKC)α and proline-rich tyrosine kinase (Pyk2), which was mediated through Nox-derived ROS generation using pharmacological inhibitors or small interfering ribonucleic acids (siRNAs). CORM-2-induced HO-1 expression was mediated through Nox-(1, 2, 4) or p47phox, which was confirmed by transfection with their own siRNAs. The Nox-derived ROS signals promoted the activities of extracellular signal-regulated kinase 1/2 (ERK1/2). Subsequently, c-Fos and c-Jun-activator protein-1 (AP-1) subunits-were up-regulated by activated ERK1/2, which turned on transcription of the HO-1 gene by regulating the HO-1 promoter. These results suggested that in HTSMCs, CORM-2 activates PKCα/Pyk2-dependent Nox/ROS/ERK1/2/AP-1, leading to HO-1 up-regulation, which suppresses the lipopolysaccharide (LPS)-induced airway inflammation.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Rou-Ling Cho
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Chuen-Mao Yang
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan.
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 Road, Kwei-San, Tao-Yuan 33302, Taiwan.
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 33302, Taiwan.
| |
Collapse
|
6
|
Imperatorin Suppresses Anaphylactic Reaction and IgE-Mediated Allergic Responses by Inhibiting Multiple Steps of FceRI Signaling in Mast Cells: IMP Alleviates Allergic Responses in PCA. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7823761. [PMID: 30800677 PMCID: PMC6360561 DOI: 10.1155/2019/7823761] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022]
Abstract
This study is to investigate the effects of imperatorin (IMP) on allergic responses mediated by mast cells, both in vitro and in vivo. Passive cutaneous anaphylaxis (PCA) model was established. Histological detection was performed to assess the ear histology. ELISA and Western blot analysis were used to detect the levels of corresponding cytokines and signalling pathway proteins. IMP decreased the leakage of Evans blue and the ear thickness in the PCA models, in a dose-dependent manner, and alleviated the degranulation of mast cells. Moreover, IMP reduced the expression of TNF-α, IL-4, IL-1β, IL-8, and IL-13. Furthermore, IMP inhibited the phosphorylation levels of Syk, Lyn, PLC-γ1, and Gab2, as well as the downstream MAPK, PI3K/AKT, and NF-κB signaling pathways. In addition, IMP inhibited the mast cell-mediated allergic responses through the Nrf2/HO-1 pathway. IMP attenuates the allergic responses through inhibiting the degranulation and decreasing the expression levels of proinflammatory cytokines in the mast cells, involving the PI3K/Akt, MAPK, NF-κB, and Nrf2/HO-1 pathways.
Collapse
|
7
|
Galangin Inhibits Thrombin-Induced MMP-9 Expression in SK-N-SH Cells via Protein Kinase-Dependent NF-κB Phosphorylation. Int J Mol Sci 2018; 19:ijms19124084. [PMID: 30562971 PMCID: PMC6321481 DOI: 10.3390/ijms19124084] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
Abstract
Galangin, a member of the flavonol compounds of the flavonoids, could exert anti-inflammatory effects in various cell types. It has been used for the treatment of arthritis, airway inflammation, stroke, and cognitive impairment. Thrombin, one of the regulators of matrix metalloproteinase (MMPs), has been known as a vital factor of physiological and pathological processes, including cell migration, the blood–brain barrier breakdown, brain edema formation, neuroinflammation, and neuronal death. MMP-9 especially may contribute to neurodegenerative diseases. However, the effect of galangin in combating thrombin-induced MMP-9 expression is not well understood in neurons. Therefore, we attempted to explore the molecular mechanisms by which galangin inhibited MMP-9 expression and cell migration induced by thrombin in SK-N-SH cells (a human neuroblastoma cell line). Gelatin zymography, western blot, real-time PCR, and cell migration assay were used to elucidate the inhibitory effects of galangin on the thrmbin-mediated responses. The results showed that galangin markedly attenuated the thrombin-stimulated phosphorylation of proto-oncogene tyrosine-protein kinase (c-Src), proline-rich tyrosine kinase 2 (Pyk2), protein kinase C (PKC)α/β/δ, protein kinase B (Akt), mammalian target of rapamycin (mTOR), p42/p44 mitogen-activated protein kinase (MAPK), Jun amino-terminal kinases (JNK)1/2, p38 MAPK, forkhead box protein O1 (FoxO1), p65, and c-Jun and suppressed MMP-9 expression and cell migration in SK-N-SH cells. Our results concluded that galangin blocked the thrombin-induced MMP-9 expression in SK-N-SH cells via inhibiting c-Src, Pyk2, PKCα/βII/δ, Akt, mTOR, p42/p44 MAPK, JNK1/2, p38 MAPK, FoxO1, c-Jun, and p65 phosphorylation and ultimately attenuated cell migration. Therefore, galangin may be a potential candidate for the management of brain inflammatory diseases.
Collapse
|
8
|
Jiang JZ, Ye J, Jin GY, Piao HM, Cui H, Zheng MY, Yang JS, Che N, Choi YH, Li LC, Yan GH. Asiaticoside Mitigates the Allergic Inflammation by Abrogating the Degranulation of Mast Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8128-8135. [PMID: 28891650 DOI: 10.1021/acs.jafc.7b01590] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of asiaticoside (AS) on allergic responses mediated by mast cells were investigated. AS showed no obvious cytotoxicity on RPMCs (rat peritoneal mast cells). AS reduced the intracellular calcium in RPMCs and deprived the histamine release and degranulation. AS also decreased the generation of antigen-induced tumor necrosis factor α, interleukin (IL)-4, IL-8, and IL-1β in RBL-2H3 cells sensitized by IgE. The suppression of AS on pro-inflammatory cytokines was related with the activation of the intracellular FcεRI and the inhibition of the nuclear factor-κB signaling pathway. In addition, AS disabled the phosphorylation of antigen-induced Syk, Lyn, Gab2, and PLCγ1, thus suppressing the downstream Akt phosphorylation and MAPKs pathways. It also increased HO-1 and Nrf2 expression time dependently. In summary, we demonstrate that AS suppresses the allergic inflammation mediated by mast cells and this effect might be mediated by FcεRI-dependent signaling pathways.
Collapse
Affiliation(s)
- Jing Zhi Jiang
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Jing Ye
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Guang Yu Jin
- Department of Respiratory Medicine, Yanbian University Hospital , Yanji 133000, Jilin China
| | - Hong Mei Piao
- Department of Respiratory Medicine, Yanbian University Hospital , Yanji 133000, Jilin China
| | - Hong Cui
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Ming Yu Zheng
- College of Pharmacy, Yanbian University , Yanji 133002, Jilin, China
| | - Jin Shi Yang
- College of Pharmacy, Yanbian University , Yanji 133002, Jilin, China
| | - Nan Che
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Yun Ho Choi
- Department of Anatomy, Medical School of Institute of Medical Sciences, Chonbuk National University , Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Liang Chang Li
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Guang Hai Yan
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| |
Collapse
|
9
|
Resveratrol inhibits BK-induced COX-2 transcription by suppressing acetylation of AP-1 and NF-κB in human rheumatoid arthritis synovial fibroblasts. Biochem Pharmacol 2017; 132:77-91. [DOI: 10.1016/j.bcp.2017.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 01/27/2023]
|
10
|
Yang CC, Hsiao LD, Yang CM, Lin CC. Thrombin Enhanced Matrix Metalloproteinase-9 Expression and Migration of SK-N-SH Cells via PAR-1, c-Src, PYK2, EGFR, Erk1/2 and AP-1. Mol Neurobiol 2016; 54:3476-3491. [PMID: 27181591 DOI: 10.1007/s12035-016-9916-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/03/2016] [Indexed: 01/30/2023]
Abstract
Neuroinflammation is a hallmark of neurodegenerative disorders in the central nerve system (CNS). Thrombin has been known as one of the factors in pathological processes including migration, blood-brain barrier breakdown, brain edema formation, neuroinflammation, and neuronal death. Thrombin has been shown to be a regulator of matrix metalloproteinase (MMPs) expression leading to cell migration. Among MMPs, the elevated expression of MMP-9 has been observed in patients with brain diseases, which may contribute to the pathology of neuroinflammatory and neurodegenerative diseases. However, the mechanisms underlying thrombin-induced MMP-9 expression in SK-N-SH cells were not completely understood. Here, we used gelatin zymography, Western blot, real-time PCR, promoter activity assay, and cell migration assay to demonstrate that thrombin induced the expression of pro-form MMP-9 protein and messenger RNA (mRNA), and promoter activity in SK-N-SH cells, which were attenuated by pretreatment with the pharmacological inhibitor of protease-activated receptor-1 (PAR-1, SCH79797), Gi-coupled receptor (GPA2), c-Src (PP1), Pyk2 (PF431396), EGFR (AG1478), PI3K (LY294002), Akt (SH-5), MEK1/2 (U0126), or AP-1 (TanshinoneIIA) and transfection with small interfering RNA (siRNA) of PAR-1, Gi, c-Src, Pyk2, EGFR, Akt, p44, p42, or c-Jun. Moreover, thrombin-stimulated c-Src, Pyk2, EGFR, Akt, p42/p44 MAPK, or c-Jun phosphorylation was attenuated by their respective inhibitor of PP1, PF431396, AG1478, SH-5, U0126, or TanshinoneIIA. Finally, pretreatment with these inhibitors also blocked thrombin-induced SK-N-SH cell migration. Our results concluded that thrombin binding to PAR-1 receptor activated Gi-protein/c-Src/Pyk2/EGFR/PI3K/Akt/p42/p44 MAPK cascade, which in turn elicited AP-1 activation and ultimately evoked MMP-9 expression and cell migration in SK-N-SH cells.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Lin-Kou, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan. .,Department of Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan, Taiwan.
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou, 5 Fu-Hsin Street, Kwei-San, Tao-Yuan, Taiwan.
| |
Collapse
|