1
|
Bianchi M, Guzzo S, Lunghi A, Greco P, Pisciotta A, Murgia M, Carnevale G, Fadiga L, Biscarini F. Synergy of Nanotopography and Electrical Conductivity of PEDOT/PSS for Enhanced Neuronal Development. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59224-59235. [PMID: 38091494 PMCID: PMC10755694 DOI: 10.1021/acsami.3c15278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Biomaterials able to promote neuronal development and neurite outgrowth are highly desired in neural tissue engineering for the repair of damaged or disrupted neural tissue and restoring the axonal connection. For this purpose, the use of either electroactive or micro- and nanostructured materials has been separately investigated. Here, the use of a nanomodulated conductive poly(3,4-ethylendioxithiophene) poly(styrenesulfonate) (PEDOT/PSS) substrate that exhibits instructive topographical and electrical cues at the same time was investigated for the first time. In particular, thin films featuring grooves with sizes comparable with those of neuronal neurites (NanoPEDOT) were fabricated by electrochemical polymerization of PEDOT/PSS on a nanomodulated polycarbonate template. The ability of NanoPEDOT to support neuronal development and direct neurite outgrowth was demonstrated by assessing cell viability and proliferation, expression of neuronal markers, average neurite length, and direction of neuroblastoma N2A cells induced to differentiate on this novel support. In addition to the beneficial effect of the nanogrooved topography, a 30% increase was shown in the average length of neurites when differentiating cells were subjected to an electrical stimulation of a few microamperes for 6 h. The results reported here suggest a favorable effect on the neuronal development of the synergistic combination of nanotopography and electrical stimulation, supporting the use of NanoPEDOT in neural tissue engineering to promote physical and functional reconnection of impaired neural networks.
Collapse
Affiliation(s)
- Michele Bianchi
- Department
of Life Sciences, Università degli
Studi di Modena e Reggio Emilia, 44125 Modena, Italy
- Center
for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Sonia Guzzo
- Center
for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
- Section
of Physiology, Università di Ferrara, 44121 Ferrara, Italy
| | - Alice Lunghi
- Center
for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
- Section
of Physiology, Università di Ferrara, 44121 Ferrara, Italy
| | - Pierpaolo Greco
- Section
of Physiology, Università di Ferrara, 44121 Ferrara, Italy
| | - Alessandra Pisciotta
- Department
of Surgery, Medicine, Dentistry and Morphological Sciences with Interest
in Transplant, Oncology and Regenerative Medicine, Università di Modena e Reggio Emilia, 44125 Modena, Italy
| | - Mauro Murgia
- Center
for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN-CNR), 40129 Bologna, Italy
| | - Gianluca Carnevale
- Department
of Surgery, Medicine, Dentistry and Morphological Sciences with Interest
in Transplant, Oncology and Regenerative Medicine, Università di Modena e Reggio Emilia, 44125 Modena, Italy
| | - Luciano Fadiga
- Center
for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
- Section
of Physiology, Università di Ferrara, 44121 Ferrara, Italy
| | - Fabio Biscarini
- Department
of Life Sciences, Università degli
Studi di Modena e Reggio Emilia, 44125 Modena, Italy
- Center
for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Guo R, Li J, Chen C, Xiao M, Liao M, Hu Y, Liu Y, Li D, Zou J, Sun D, Torre V, Zhang Q, Chai R, Tang M. Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation. Colloids Surf B Biointerfaces 2021; 200:111590. [PMID: 33529926 DOI: 10.1016/j.colsurfb.2021.111590] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/29/2020] [Accepted: 01/22/2021] [Indexed: 01/09/2023]
Abstract
Neural stem cell (NSC)-based therapy is a promising candidate for treating neurodegenerative diseases and the preclinical researches call an urgent need for regulating the growth and differentiation of such cells. The recognition that three-dimensional culture has the potential to be a biologically significant system has stimulated an extraordinary impetus for scientific researches in tissue engineering and regenerative medicine. Here, A novel scaffold for culturing NSCs, three-dimensional bacterial cellulose-graphene foam (3D-BC/G), which was prepared via in situ bacterial cellulose interfacial polymerization on the skeleton surface of porous graphene foam has been reported. 3D-BC/G not only supports NSC growth and adhesion, but also maintains NSC stemness and enhances their proliferative capacity. Further phenotypic analysis indicated that 3D-BC/G induces NSCs to selectively differentiate into neurons, forming a neural network in a short amount of time. The scaffold has good biocompatibility with primary cortical neurons enhancing the neuronal network activities. To explore the underlying mechanisms, RNA-Seq analysis to identify genes and signaling pathways was performed and it suggests that 3D-BC/G offers a more promising three-dimensional conductive substrate for NSC research and neural tissue engineering, and the repertoire of gene expression serves as a basis for further studies to better understand NSC biology.
Collapse
Affiliation(s)
- Rongrong Guo
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical College of Soochow University, Suzhou, Jiangsu, 215123, China; Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China; Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jian Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, Jiangsu Province, China
| | - Miao Xiao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China; International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, 34136, Italy
| | - Menghui Liao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yangnan Hu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yun Liu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Dan Li
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China; Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, Jiangsu Province, China
| | - Vincent Torre
- International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, 34136, Italy
| | - Qi Zhang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China; Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
3
|
Liu Y, Tang Y, Yan J, Du D, Yang Y, Chen F. Deletion of Kv10.2 Causes Abnormal Dendritic Arborization and Epilepsy Susceptibility. Neurochem Res 2020; 45:2949-2958. [PMID: 33033860 DOI: 10.1007/s11064-020-03143-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
The abnormal function of the voltage-gated potassium channel Kv10.2 can induce epilepsy. However, the physiological function of Kv10.2 in the central nervous system remains unclear. In this study, we found that Kv10.2 knockout (KO) increased the complexity of neurons in the CA3 subarea of hippocampus. Kv10.2 KO led to enlarged somata, elongated dendritic length, and increased the number of dendritic tips in cultured rat hippocampus neurons. Kv10.2 KO also increased Synapsin I and PSD95 protein density in cultured rat hippocampal neurons. Whole cell patch-clamp recordings of brain slices in the CA3 subarea of hippocampus revealed that Kv10.2 KO increased the amplitude of spontaneous excitatory postsynaptic currents (sEPSC) and miniature excitatory postsynaptic currents (mEPSC), depolarized the resting membrane potential and increased the action potential firing, reduced the rheobase and increased the input resistance, which results in enhanced neuronal excitability. Furthermore, we made electroencephalogram (EEG) recordings of brain activity in freely moving rats before and after inducing seizures by pentylenetetrazole (PTZ) injection. Kv10.2 KO rats dramatically increased the EEG amplitude during epilepsy. Behavioral observation after seizure induction revealed that Kv10.2 KO rats demonstrated shortened onset latency, prolonged duration, and increased seizure severity when compared with wild type rats. Therefore, this study provides a new link between Kv10.2 and neuronal morphology and higher intrinsic excitability.
Collapse
Affiliation(s)
- Yamei Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yunfei Tang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jinyu Yan
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dongshu Du
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|