1
|
Zhang Y, Wu J, Zheng Y, Xu Y, Yu Z, Ping Y. Voltage Gated Ion Channels and Sleep. J Membr Biol 2024:10.1007/s00232-024-00325-0. [PMID: 39354150 DOI: 10.1007/s00232-024-00325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Ion channels are integral components of the nervous system, playing a pivotal role in shaping membrane potential, neuronal excitability, synaptic transmission and plasticity. Dysfunction in these channels, such as improper expression or localization, can lead to irregular neuronal excitability and synaptic communication, which may manifest as various behavioral abnormalities, including disrupted rest-activity cycles. Research has highlighted the significant impact of voltage gated ion channels on sleep parameters, influencing sleep latency, duration and waveforms. Furthermore, these ion channels have been implicated in the vulnerability to, and the pathogenesis of, several neurological and psychiatric disorders, including epilepsy, autism, schizophrenia, and Alzheimer's disease (AD). In this comprehensive review, we aim to provide a summary of the regulatory role of three predominant types of voltage-gated ion channels-calcium (Ca2+), sodium (Na+), and potassium (K+)-in sleep across species, from flies to mammals. We will also discuss the association of sleep disorders with various human diseases that may arise from the dysfunction of these ion channels, thereby underscoring the potential therapeutic benefits of targeting specific ion channel subtypes for sleep disturbance treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wu
- Faculty of Brain Sciences, University College London, London, UK
| | - Yuxian Zheng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangkun Xu
- Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Ziqi Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Upregulation of IP 3 receptor mediates APP-induced defects in synaptic downscaling and sleep homeostasis. Cell Rep 2022; 38:110594. [PMID: 35354048 DOI: 10.1016/j.celrep.2022.110594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/14/2021] [Accepted: 03/09/2022] [Indexed: 11/22/2022] Open
Abstract
Evidence suggests that impaired synaptic and firing homeostasis represents a driving force of early Alzheimer's disease (AD) progression. Here, we examine synaptic and sleep homeostasis in a Drosophila model by overexpressing human amyloid precursor protein (APP), whose duplication and mutations cause familial early-onset AD. We find that APP overexpression induces synaptic hyperexcitability. RNA-seq data indicate exaggerated expression of Ca2+-related signaling genes in APP mutants, including genes encoding Dmca1D, calcineurin (CaN) complex, and IP3R. We further demonstrate that increased CaN activity triggers transcriptional activation of Itpr (IP3R) through activating nuclear factor of activated T cells (NFAT). Strikingly, APP overexpression causes defects in synaptic downscaling and sleep deprivation-induced sleep rebound, and both defects could be restored by inhibiting IP3R. Our findings uncover IP3R as a shared signaling molecule in synaptic downscaling and sleep homeostasis, and its dysregulation may lead to synaptic hyperexcitability and AD progression at early stage.
Collapse
|
3
|
Ruan W, Shen S, Xu Y, Ran N, Zhang H. Mechanistic insights into procyanidins as therapies for Alzheimer's disease: A review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
4
|
Kuang H, Zhu YG, Zhou ZF, Yang MW, Hong FF, Yang SL. Sleep disorders in Alzheimer's disease: the predictive roles and potential mechanisms. Neural Regen Res 2021; 16:1965-1972. [PMID: 33642368 PMCID: PMC8343328 DOI: 10.4103/1673-5374.308071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sleep disorders are common in patients with Alzheimer's disease, and can even occur in patients with amnestic mild cognitive impairment, which appears before Alzheimer's disease. Sleep disorders further impair cognitive function and accelerate the accumulation of amyloid-β and tau in patients with Alzheimer's disease. At present, sleep disorders are considered as a risk factor for, and may be a predictor of, Alzheimer's disease development. Given that sleep disorders are encountered in other types of dementia and psychiatric conditions, sleep-related biomarkers to predict Alzheimer's disease need to have high specificity and sensitivity. Here, we summarize the major Alzheimer's disease-specific sleep changes, including abnormal non-rapid eye movement sleep, sleep fragmentation, and sleep-disordered breathing, and describe their ability to predict the onset of Alzheimer's disease at its earliest stages. Understanding the mechanisms underlying these sleep changes is also crucial if we are to clarify the role of sleep in Alzheimer's disease. This paper therefore explores some potential mechanisms that may contribute to sleep disorders, including dysregulation of the orexinergic, glutamatergic, and γ-aminobutyric acid systems and the circadian rhythm, together with amyloid-β accumulation. This review could provide a theoretical basis for the development of drugs to treat Alzheimer's disease based on sleep disorders in future work.
Collapse
Affiliation(s)
- Huang Kuang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Ge Zhu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi-Feng Zhou
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang, Jiangxi Province, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
5
|
Yi X, Li M, He G, Du H, Li X, Cao D, Wang L, Wu X, Yang F, Chen X, He L, Ping Y, Zhou D. Genetic and functional analysis reveals TENM4 contributes to schizophrenia. iScience 2021; 24:103063. [PMID: 34568788 PMCID: PMC8449235 DOI: 10.1016/j.isci.2021.103063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/23/2021] [Accepted: 08/26/2021] [Indexed: 12/09/2022] Open
Abstract
TENM4, encoding a member of the teneurin protein family, is a risk gene shared by many types of mental diseases and is implicated in neuronal plasticity and signaling. However, the role and the mechanisms of TENM4 in schizophrenia (SCZ) remain unclear. We identified possible pathogenic mutations in the TENM4 gene through target sequencing of TENM4 in 68 SCZ families. We further demonstrated that aberrant expression of Ten-m leads to lower learning ability, sleep reduction, and increased aggressiveness in animal models. RNA sequencing showed that aberrant expression of Ten-m was related to stimulus perception and metabolic process, and Gene Ontology enrichment terms were neurogenesis and ATPase activity. This study provides strong evidence that TENM4 contributes to SCZ, and its functional mutations might be responsible for the impaired neural circuits and behaviors observed in SCZ. Possible pathogenic rare missense mutations in TENM4 gene contribute to SCZ Aberrant expression of Ten-m leads to behavioral disturbances related to SCZ symptoms Ten-m affects stimulation, metabolic process, neurogenesis, and ATPase activity
Collapse
Affiliation(s)
- Xin Yi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Minzhe Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huihui Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongmei Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Lu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| | - Xu Chen
- Department of Neurology, Shanghai Eighth People's Hospital, Shanghai Sixth People's Hospital Xuhui Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daizhan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030, PR China
| |
Collapse
|
6
|
Wu B, He L, Xiao Y, Du J, Wang X, Zhao Z. Juvenile hormone receptor Met regulates sleep and neuronal morphology via glial-neuronal crosstalk. J Genet Genomics 2021; 48:706-715. [PMID: 34376377 DOI: 10.1016/j.jgg.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 11/24/2022]
Abstract
Juvenile hormone (JH) is one of the most important hormones in insects since it is essential for insect development. The mechanism by which JH affects the central nervous system still remains a mystery. In this study, we demonstrate that one of the JH receptors, Methoprene-tolerant (Met), is important for the control of neurite development and sleep behavior in Drosophila. With the identification of Met-expressing glial cells, the mechanism that Met negatively controls the mushroom body (MB) β lobes fusion and positively maintains pigment-dispersing factor sLNvs projection pruning has been established. Furthermore, despite the developmental effects, Met can also maintain nighttime sleep in a development-independent manner through the α/β lobe of MB. Combining analyses of neuronal morphology and entomological behavior, this study advances our understanding of how the JH receptor regulates the nervous system.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lei He
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yutong Xiao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaoxiao Wang
- College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Zhang H, Zhang L, Zhou D, Li H, Xu Y. ErbB4 mediates amyloid β-induced neurotoxicity through JNK/tau pathway activation: Implications for Alzheimer's disease. J Comp Neurol 2021; 529:3497-3512. [PMID: 34212389 DOI: 10.1002/cne.25207] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/13/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
Accumulation of amyloid β (Aβ) in the brain is a hallmark of Alzheimer's disease (AD). We previously showed that ErbB4 in parvalbumin (PV)-positive interneurons was associated with Aβ-induced cognitive deficits; however, the underlying mechanism remains undetermined. Here we found that specific deletion of ErbB4 in PV neurons significantly attenuated oligomeric Aβ-induced neuronal toxicity and inhibited Aβ-induced decreases of PSD95 and synaptophysin. Moreover, specific ablation of ErbB4 in PV neurons altered activity-related protein c-Fos and decreased hippocampal PV neurons, especially in the dentate gyrus (DG) of hAPP-J20 mice. Furthermore, c-Jun N-terminal kinase (JNK), a protein downstream of ErbB4, was activated by Aβ but not ErbB4's ligand neuregulin 1 (NRG1) β1, suggesting different downstream pathways for Aβ and NRG1β1. JNK phosphorylation was inhibited by the ErbB4 inhibitor AG1478 and by pretreatment with NRG1β1. More importantly, siRNA knockdown of ErbB4 decreased JNK phosphorylation and expression, tau phosphorylation at Ser396 and Thr 205, and Bax expression. Therefore, ErbB4 might mediate Aβ-induced neuropathology through the JNK/tau pathway and represent a potential therapeutic target in patients with AD.
Collapse
Affiliation(s)
- Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China.,Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of MOH, Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zhang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of MOH, Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongfei Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yang Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
8
|
Deciphering the Interacting Mechanisms of Circadian Disruption and Alzheimer's Disease. Neurochem Res 2021; 46:1603-1617. [PMID: 33871799 DOI: 10.1007/s11064-021-03325-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is one of the crucial causative factors for progressive dementia. Neuropathologically, AD is characterized by the extracellular accumulation of amyloid beta plaques and intracellular neurofibrillary tangles in cortical and limbic regions of the human brain. The circadian system is one of the many affected physiological processes in AD, the dysfunction of which may reflect in the irregularity of the sleep/wake cycle. The interplay of circadian and sleep disturbances inducing AD progression is bidirectional. Sleep-associated pathological alterations are frequently evident in AD. Understanding the interrelation between circadian disruption and AD may allow for earlier identification of AD pathogenesis as well as better suited approaches and potential therapies to combat dementia. In this article, we examine the existing literature related to the molecular mechanisms of the circadian clock and interacting mechanisms of circadian disruption and AD pathogenesis.
Collapse
|
9
|
Dissel S. Drosophila as a Model to Study the Relationship Between Sleep, Plasticity, and Memory. Front Physiol 2020; 11:533. [PMID: 32547415 PMCID: PMC7270326 DOI: 10.3389/fphys.2020.00533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/30/2020] [Indexed: 12/28/2022] Open
Abstract
Humans spend nearly a third of their life sleeping, yet, despite decades of research the function of sleep still remains a mystery. Sleep has been linked with various biological systems and functions, including metabolism, immunity, the cardiovascular system, and cognitive functions. Importantly, sleep appears to be present throughout the animal kingdom suggesting that it must provide an evolutionary advantage. Among the many possible functions of sleep, the relationship between sleep, and cognition has received a lot of support. We have all experienced the negative cognitive effects associated with a night of sleep deprivation. These can include increased emotional reactivity, poor judgment, deficit in attention, impairment in learning and memory, and obviously increase in daytime sleepiness. Furthermore, many neurological diseases like Alzheimer’s disease often have a sleep disorder component. In some cases, the sleep disorder can exacerbate the progression of the neurological disease. Thus, it is clear that sleep plays an important role for many brain functions. In particular, sleep has been shown to play a positive role in the consolidation of long-term memory while sleep deprivation negatively impacts learning and memory. Importantly, sleep is a behavior that is adapted to an individual’s need and influenced by many external and internal stimuli. In addition to being an adaptive behavior, sleep can also modulate plasticity in the brain at the level of synaptic connections between neurons and neuronal plasticity influences sleep. Understanding how sleep is modulated by internal and external stimuli and how sleep can modulate memory and plasticity is a key question in neuroscience. In order to address this question, several animal models have been developed. Among them, the fruit fly Drosophila melanogaster with its unparalleled genetics has proved to be extremely valuable. In addition to sleep, Drosophila has been shown to be an excellent model to study many complex behaviors, including learning, and memory. This review describes our current knowledge of the relationship between sleep, plasticity, and memory using the fly model.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
10
|
Ferini-Strambi L, Galbiati A, Casoni F, Salsone M. Therapy for Insomnia and Circadian Rhythm Disorder in Alzheimer Disease. Curr Treat Options Neurol 2020; 22:4. [PMID: 32025925 DOI: 10.1007/s11940-020-0612-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF THE REVIEW There is strong evidence for a bidirectional association between sleep disorders and Alzheimer's disease (AD). In particular, insomnia may be a potentially modifiable risk factor for AD. The present review summarizes recent advances in treatment of sleep disorders in AD. RECENT FINDINGS Some studies investigated the efficacy and safety of hypnotic agents as ramelteon and mirtazapine to treat sleep disorders in AD but no significant therapeutic effects have been observed. Benzodiazepines are the most frequently used medication for treatment of insomnia but they may cause significant side effects in old subjects. Suvorexant, an orexin receptor antagonist, showed a positive effect on AD insomnia. Recent report suggests an association between trazodone use and delayed cognitive decline in AD. With respect to circadian rhythm disorders, non-pharmacological treatments, especially bright light therapy, could be useful and safe options for treatment in AD. Some pharmacological and non-pharmacological treatments might have benefits in AD patients with sleep disturbances, but further well-designed controlled trials are needed.
Collapse
Affiliation(s)
- Luigi Ferini-Strambi
- Department of Clinical Neurosciences, "Vita-Salute" San Raffaele University, Milan, Italy. .,Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Andrea Galbiati
- Department of Clinical Neurosciences, "Vita-Salute" San Raffaele University, Milan, Italy
| | - Francesca Casoni
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Salsone
- National Research Council, Institute of Molecular Bioimaging and Physiology, Catanzaro, Italy
| |
Collapse
|
11
|
Genetic Dissection of Alzheimer's Disease Using Drosophila Models. Int J Mol Sci 2020; 21:ijms21030884. [PMID: 32019113 PMCID: PMC7037931 DOI: 10.3390/ijms21030884] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to abnormal accumulation of the amyloid β (Aβ) protein. Despite decades of intensive research, the mechanisms underlying AD remain elusive, and the only available treatment remains symptomatic. Molecular understanding of the pathogenesis and progression of AD is necessary to develop disease-modifying treatment. Drosophila, as the most advanced genetic model, has been used to explore the molecular mechanisms of AD in the last few decades. Here, we introduce Drosophila AD models based on human Aβ and summarize the results of their genetic dissection. We also discuss the utility of functional genomics using the Drosophila system in the search for AD-associated molecular mechanisms in the post-genomic era.
Collapse
|
12
|
Song Q, Feng G, Zhang J, Xia X, Ji M, Lv L, Ping Y. NMDA Receptor-mediated Ca2+ Influx in the Absence of Mg2+ Block Disrupts Rest: Activity Rhythms in Drosophila. Sleep 2018; 40:4330652. [PMID: 29029290 DOI: 10.1093/sleep/zsx166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Study Objectives The correlated activation of pre- and postsynaptic neurons is essential for the NMDA receptor-mediated Ca2+ influx by removing Mg2+ from block site and NMDA receptors have been implicated in phase resetting of circadian clocks. So we assessed rest:activity rhythms in Mg2+ block defective animals. Methods Using Drosophila locomotor monitoring system, we checked circadian rest:activity rhythms of different mutants under constant darkness (DD) and light:dark (LD) conditions. We recorded NMDA receptor-mediated currents or Ca2+ increase in neurons using patch-clamp and Ca2+ imaging techniques. Results We found that Mg2+ block defective mutant flies were completely arrhythmic under DD. To further understand the role of Mg2+ block in daily circadian rest:activity, we observed the mutant files under LD cycles, and we found severely reduced morning anticipation and advanced evening peak compared to control flies. We also used tissue-specific expression of Mg2+ block defective NMDA receptors and demonstrated pigment-dispersing factor receptor (PDFR)-expressing circadian neurons were implicated in mediating the circadian rest:activity deficits. Endogenous functional NMDA receptors are expressed in most Drosophila neurons, including in a subgroup of dorsal neurons (DN1s). Subsequently, we determined that the uncorrelated extra Ca2+ influx may act in part through Ca2+/Calmodulin (CaM)-stimulated PDE1c pathway leading to morning behavior phenotypes. Conclusions These results demonstrate that Mg2+ block of NMDA receptors at resting potential is essential for the daily circadian rest:activity rhythms and we propose that Mg2+ block functions to suppress CaM-stimulated PDE1c activation at resting potential, thus regulating Ca2+ and cyclic AMP oscillations in circadian and sleep circuits.
Collapse
Affiliation(s)
- Qian Song
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Ge Feng
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaxing Zhang
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xuechun Xia
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Min Ji
- Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lei Lv
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Yong Ping
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Xu T, Lu B. The effects of phytochemicals on circadian rhythm and related diseases. Crit Rev Food Sci Nutr 2018; 59:882-892. [DOI: 10.1080/10408398.2018.1493678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tao Xu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Baiyi Lu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Control of Sleep Onset by Shal/K v4 Channels in Drosophila Circadian Neurons. J Neurosci 2018; 38:9059-9071. [PMID: 30185460 DOI: 10.1523/jneurosci.0777-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/25/2018] [Accepted: 08/29/2018] [Indexed: 11/21/2022] Open
Abstract
Sleep is highly conserved across animal species. Both wake- and sleep-promoting neurons are implicated in the regulation of wake-sleep transition at dusk in Drosophila However, little is known about how they cooperate and whether they act via different mechanisms. Here, we demonstrated that in female Drosophila, sleep onset was specifically delayed by blocking the Shaker cognate L channels [Shal; also known as voltage-gated K+ channel 4 (Kv4)] in wake-promoting cells, including large ventral lateral neurons (l-LNvs) and pars intercerebralis (PI), but not in sleep-promoting dorsal neurons (DN1s). Delayed sleep onset was also observed in males by blocking Kv4 activity in wake-promoting neurons. Electrophysiological recordings show that Kv4 channels contribute A-type currents in LNvs and PI cells, but are much less conspicuous in DN1s. Interestingly, blocking Kv4 in wake-promoting neurons preferentially increased firing rates at dusk ∼ZT13, when the resting membrane potentials and firing rates were at lower levels. Furthermore, pigment-dispersing factor (PDF) is essential for the regulation of sleep onset by Kv4 in l-LNvs, and downregulation of PDF receptor (PDFR) in PI neurons advanced sleep onset, indicating Kv4 controls sleep onset via regulating PDF/PDFR signaling in wake-promoting neurons. We propose that Kv4 acts as a sleep onset controller by suppressing membrane excitability in a clock-dependent manner to balance the wake-sleep transition at dusk. Our results have important implications for the understanding and treatment of sleep disorders such as insomnia.SIGNIFICANCE STATEMENT The mechanisms by which our brains reversibly switch from waking to sleep state remain an unanswered and intriguing question in biological research. In this study, we identified that Shal/Kv4, a well known voltage-gated K+ channel, acts as a controller of wake-sleep transition at dusk in Drosophila circadian neurons. We find that interference of Kv4 function with a dominant-negative form (DNKv4) in subsets of circadian neurons specifically disrupts sleep onset at dusk, although Kv4 itself does not exhibit circadian oscillation. Kv4 preferentially downregulates neuronal firings at ZT9-ZT17, supporting that it plays an essential role in wake-sleep transition at dusk. Our findings may help understand and eventually treat sleep disorders such as insomnia.
Collapse
|
15
|
Abstract
Alzheimer's disease (AD) is increasing in prevalence and has a significant impact on caregivers and the healthcare system. One of the many physiologic process affected by AD is the circadian system, with disruption reflected in abnormalities of the sleep-wake cycle. This interaction is bidirectional, with circadian and sleep disruption influencing disease progression. Understanding the bidirectional relationship between AD and circadian disruption may allow for earlier recognition of the potential to develop dementia as well as improved targeted approaches for therapy. Therapies including melatonin and bright light therapy may be advantageous in improving sleep and circadian rhythms and preventing the progression of disease. However, unfortunately, these modalities are not curative, and additional research is needed to improve treatment options for these individuals.
Collapse
Affiliation(s)
- Yumna Saeed
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sabra M Abbott
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Song J, Whitcomb DJ, Kim BC. The role of melatonin in the onset and progression of type 3 diabetes. Mol Brain 2017; 10:35. [PMID: 28764741 PMCID: PMC5539639 DOI: 10.1186/s13041-017-0315-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is defined by the excessive accumulation of toxic peptides, such as beta amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFT). The risk factors associated with AD include genetic mutations, aging, insulin resistance, and oxidative stress. To date, several studies that have demonstrated an association between AD and diabetes have revealed that the common risk factors include insulin resistance, sleep disturbances, blood brain barrier (BBB) disruption, and altered glucose homeostasis. Many researchers have discovered that there are mechanisms common to both diabetes and AD. AD that results from insulin resistance in the brain is termed “type 3 diabetes”. Melatonin synthesized by the pineal gland is known to contribute to circadian rhythms, insulin resistance, protection of the BBB, and cell survival mechanisms. Here, we review the relationship between melatonin and type 3 diabetes, and suggest that melatonin might regulate the risk factors for type 3 diabetes. We suggest that melatonin is crucial for attenuating the onset of type 3 diabetes by intervening in Aβ accumulation, insulin resistance, glucose metabolism, and BBB permeability.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, 61469, South Korea
| | - Daniel J Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Healthy Sciences, University of Bristol, Whitson street, Bristol, BS1 3NY, UK
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, South Korea.
| |
Collapse
|
17
|
Prakash P, Nambiar A, Sheeba V. Oscillating PDF in termini of circadian pacemaker neurons and synchronous molecular clocks in downstream neurons are not sufficient for sustenance of activity rhythms in constant darkness. PLoS One 2017; 12:e0175073. [PMID: 28558035 PMCID: PMC5448722 DOI: 10.1371/journal.pone.0175073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/19/2017] [Indexed: 12/14/2022] Open
Abstract
In Drosophila, neuropeptide Pigment Dispersing Factor (PDF) is expressed in small and large ventral Lateral Neurons (sLNv and lLNv), among which sLNv are critical for activity rhythms in constant darkness. Studies show that this is mediated by rhythmic accumulation and likely secretion of PDF from sLNv dorsal projections, which in turn synchronises molecular oscillations in downstream circadian neurons. Using targeted expression of a neurodegenerative protein Huntingtin in LNv, we evoke a selective loss of neuropeptide PDF and clock protein PERIOD from sLNv soma. However, PDF is not lost from sLNv dorsal projections and lLNv. These flies are behaviourally arrhythmic in constant darkness despite persistence of PDF oscillations in sLNv dorsal projections and synchronous PERIOD oscillations in downstream circadian neurons. We find that PDF oscillations in sLNv dorsal projections are not sufficient for sustenance of activity rhythms in constant darkness and this is suggestive of an additional component that is possibly dependent on sLNv molecular clock and PDF in sLNv soma. Additionally, despite loss of PERIOD in sLNv, their activity rhythms entrain to light/dark cycles indicating that sLNv molecular clocks are not necessary for entrainment. Under constant light, these flies lack PDF from both soma and dorsal projections of sLNv, and when subjected to light/dark cycles, show morning and evening anticipation and accurately phased morning and evening peaks. Thus, under light/dark cycles, PDF in sLNv is not necessary for morning anticipation.
Collapse
Affiliation(s)
- Pavitra Prakash
- Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Aishwarya Nambiar
- Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vasu Sheeba
- Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- * E-mail: ,
| |
Collapse
|