1
|
Montagud-Romero S, Gómez-Murcia V, Fernández-Gómez FJ, Núñez C. Editorial: Exploring prevention strategies and treatment in addictive disorders. Front Psychiatry 2024; 15:1432822. [PMID: 39026523 PMCID: PMC11256990 DOI: 10.3389/fpsyt.2024.1432822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Victoria Gómez-Murcia
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) – Pascual Parrilla, Murcia, Spain
| | - Francisco José Fernández-Gómez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) – Pascual Parrilla, Murcia, Spain
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) – Pascual Parrilla, Murcia, Spain
| |
Collapse
|
2
|
Franco-García A, Gómez-Murcia V, Fernández-Gómez FJ, González-Andreu R, Hidalgo JM, Victoria Milanés M, Núñez C. Morphine-withdrawal aversive memories and their extinction modulate H4K5 acetylation and Brd4 activation in the rat hippocampus and basolateral amygdala. Biomed Pharmacother 2023; 165:115055. [PMID: 37356373 DOI: 10.1016/j.biopha.2023.115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023] Open
Abstract
Chromatin modification is a crucial mechanism in several important phenomena in the brain, including drug addiction. Persistence of drug craving and risk of relapse could be attributed to drug-induced epigenetic mechanisms that seem to be candidates explaining long-lasting drug-induced behaviour and molecular alterations. Histone acetylation has been proposed to regulate drug-seeking behaviours and the extinction of rewarding memory of drug taking. In this work, we studied the epigenetic regulation during conditioned place aversion and after extinction of aversive memory of opiate withdrawal. Through immunofluorescence assays, we assessed some epigenetic marks (H4K5ac and p-Brd4) in crucial areas related to memory retrieval -basolateral amygdala (BLA) and hippocampus-. Additionally, to test the degree of transcriptional activation, we evaluated the immediate early genes (IEGs) response (Arc, Bdnf, Creb, Egr-1, Fos and Nfkb) and Smarcc1 (chromatin remodeler) through RT-qPCR in these nuclei. Our results showed increased p-Brd4 and H4K5ac levels during aversive memory retrieval, suggesting a more open chromatin state. However, transcriptional activation of these IEGs was not found, therefore suggesting that other secondary response may already be happening. Additionally, Smarcc1 levels were reduced due to morphine chronic administration in BLA and dentate gyrus. The activation markers returned to control levels after the retrieval of aversive memories, revealing a more repressed chromatin state. Taken together, our results show a major role of the tandem H4K5ac/p-Brd4 during the retrieval of aversive memories. These results might be useful to elucidate new molecular targets to improve and develop pharmacological treatments to address addiction and to avoid drug relapse.
Collapse
Affiliation(s)
- Aurelio Franco-García
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - Victoria Gómez-Murcia
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - Francisco José Fernández-Gómez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - Raúl González-Andreu
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain
| | - Juana M Hidalgo
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - M Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain.
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain.
| |
Collapse
|
3
|
Franco-García A, Guerrero-Bautista R, Hidalgo JM, Gómez-Murcia V, Milanés MV, Núñez C. Dopamine D3 Receptor Modulates Akt/mTOR and ERK 1/2 Pathways Differently during the Reinstatement of Cocaine-Seeking Behavior Induced by Psychological versus Physiological Stress. Int J Mol Sci 2023; 24:11214. [PMID: 37446391 DOI: 10.3390/ijms241311214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Stress triggers relapses in cocaine use that engage the activity of memory-related nuclei, such as the basolateral amygdala (BLA) and dentate gyrus (DG). Preclinical research suggests that D3 receptor (D3R) antagonists may be a promising means to attenuate cocaine reward and relapse. As D3R regulates the activity of the Akt/mTOR and MEK/ERK1/2 pathways, we assessed the effects of SB-277011-A, a D3R antagonist, on the activity of these kinases during the reinstatement of cocaine-induced conditioned place preference (CPP) induced by psychological (restraint) and physiological (tail pinch) stress. Both stimuli reactivated an extinguished cocaine-CPP, but only restrained animals decreased their locomotor activity during reinstatement. Cocaine-seeking behavior reactivation was correlated with decreased p-Akt, p-mTOR, and p-ERK1/2 activation in both nuclei of restrained animals. While a D3R blockade prevented stress-induced CPP reinstatement and plasma corticosterone enhancement, SB-277011-A distinctly modulated Akt, mTOR, and ERK1/2 activation depending on the stressor and the dose used. Our data support the involvement of corticosterone in the SB-277011-A effects in restrained animals. Additionally, the ratios p-mTOR/mTOR and/or p-ERK1/2 /ERK1/2 in the BLA during stress-induced relapse seem to be related to the locomotor activity of animals receiving 48 mg/kg of the antagonist. Hence, our study indicates the D3R antagonist's efficacy to prevent stress-induced relapses in drug use through distinct modulation of Akt/mTOR and MEK/ERK1/2 pathways in memory-processing nuclei.
Collapse
Affiliation(s)
- Aurelio Franco-García
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120 Murcia, Spain
| | - Rocío Guerrero-Bautista
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120 Murcia, Spain
| | - Juana María Hidalgo
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120 Murcia, Spain
| | - Victoria Gómez-Murcia
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120 Murcia, Spain
| | - María Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120 Murcia, Spain
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120 Murcia, Spain
| |
Collapse
|
4
|
Montesinos J, Montagud-Romero S, Núñez C. Editorial: Unraveling vulnerability factors in addiction drug use and potential treatments. Front Neurosci 2022; 16:958492. [PMID: 35971562 PMCID: PMC9374589 DOI: 10.3389/fnins.2022.958492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jorge Montesinos
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
- *Correspondence: Jorge Montesinos
| | - Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de València, Valencia, Spain
- Sandra Montagud-Romero
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) - Arrixaca, Murcia, Spain
- Cristina Núñez
| |
Collapse
|
5
|
Dai ZH, Xu X, Chen WQ, Nie LN, Liu Y, Sui N, Liang J. The role of hippocampus in memory reactivation: an implication for a therapeutic target against opioid use disorder. CURRENT ADDICTION REPORTS 2022; 9:67-79. [PMID: 35223369 PMCID: PMC8857535 DOI: 10.1007/s40429-022-00407-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2022] [Indexed: 12/29/2022]
Abstract
Purpose of the review The abuse of opioids induces many terrible problems in human health and social stability. For opioid-dependent individuals, withdrawal memory can be reactivated by context, which is then associated with extremely unpleasant physical and emotional feelings during opioid withdrawal. The reactivation of withdrawal memory is considered one of the most important reasons for opioid relapse, and it also allows for memory modulation based on the reconsolidation phenomenon. However, studies exploring withdrawal memory modulation during the reconsolidation window are lacking. By summarizing the previous findings about the reactivation of negative emotional memories, we are going to suggest potential neural regions and systems for modulating opioid withdrawal memory. Recent findings Here, we first present the role of memory reactivation in its modification, discuss how the hippocampus participates in memory reactivation, and discuss the importance of noradrenergic signaling in the hippocampus for memory reactivation. Then, we review the engagement of other limbic regions receiving noradrenergic signaling in memory reactivation. We suggest that noradrenergic signaling targeting hippocampus neurons might play a potential role in strengthening the disruptive effect of withdrawal memory extinction by facilitating the degree of memory reactivation. Summary This review will contribute to a better understanding of the mechanisms underlying reactivation-dependent memory malleability and will provide new therapeutic avenues for treating opioid use disorders.
Collapse
Affiliation(s)
- Zhong-hua Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xing Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wei-qi Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Li-na Nie
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Pintori N, Piva A, Guardiani V, Decimo I, Chiamulera C. Brief Environmental Enrichment exposure enhances contextual-induced sucrose-seeking with and without memory reactivation in rats. Behav Brain Res 2022; 416:113556. [PMID: 34474039 DOI: 10.1016/j.bbr.2021.113556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Chronic Environmental Enrichment (EE) has been shown to prevent the relapse to addictive behaviours, such as drug-taking and -seeking. Recently, acute EE was shown to reduce cue-induced sucrose-seeking, but its effects on contextual (Cx)-induced sucrose-seeking is still unknown. Here we report the effects of brief EE exposure on Cx-induced sucrose-seeking with and without prior Cx-memory reactivation. Adult male Sprague-Dawley rats were trained to sucrose self-administration associated to a specific conditioning Cx (CxA), followed by a 7-day extinction in a different Cx (CxB). Afterwards, rats were exposed for 22 h to EE, and 1 h later to either i) Cx-induced sucrose-seeking (1 h, renewal without Cx-memory reactivation), ii) or two different Cx-memory reactivations: short (2-min) and long (15-min) CxA-retrieval session (Cx-Ret). In Cx-Ret experiments, CxA-induced sucrose-seeking test (1 h) was done after a subsequent 3-day extinction phase. The assessment of molecular markers of memory reactivation/reconsolidation, Zif-268 and rpS6P, was performed 2 h after Cx-Ret. Brief EE exposure enhanced Cx-induced sucrose-seeking without and with short but not long Cx-retrieval. Moreover, EE impaired discriminative responding at test prior to long, whereas improved it with or without short Cx-retrieval. Different changes in Zif-268 and rpS6P expression induced by short vs. long Cx-Ret were correlated to behavioural data, suggesting the occurrence of different memory processes affected by EE. Our data show that brief EE exposure may differently affect subsequent appetitive relapse depending on the modality of re-exposure to conditioned context. This finding suggests caution and further studies to understand the proper conditions for the use of EE against appetitive and addiction disorders.
Collapse
Affiliation(s)
- N Pintori
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy.
| | - A Piva
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - V Guardiani
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - I Decimo
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - C Chiamulera
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
7
|
The Paradoxical Effect Hypothesis of Abused Drugs in a Rat Model of Chronic Morphine Administration. J Clin Med 2021; 10:jcm10153197. [PMID: 34361981 PMCID: PMC8348660 DOI: 10.3390/jcm10153197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
A growing body of studies has recently shown that abused drugs could simultaneously induce the paradoxical effect in reward and aversion to influence drug addiction. However, whether morphine induces reward and aversion, and which neural substrates are involved in morphine’s reward and aversion remains unclear. The present study first examined which doses of morphine can simultaneously produce reward in conditioned place preference (CPP) and aversion in conditioned taste aversion (CTA) in rats. Furthermore, the aversive dose of morphine was determined. Moreover, using the aversive dose of 10 mg/kg morphine tested plasma corticosterone (CORT) levels and examined which neural substrates were involved in the aversive morphine-induced CTA on conditioning, extinction, and reinstatement. Further, we analyzed c-Fos and p-ERK expression to demonstrate the paradoxical effect—reward and aversion and nonhomeostasis or disturbance by morphine-induced CTA. The results showed that a dose of more than 20 mg/kg morphine simultaneously induced reward in CPP and aversion in CTA. A dose of 10 mg/kg morphine only induced the aversive CTA, and it produced higher plasma CORT levels in conditioning and reacquisition but not extinction. High plasma CORT secretions by 10 mg/kg morphine-induced CTA most likely resulted from stress-related aversion but were not a rewarding property of morphine. For assessments of c-Fos and p-ERK expression, the cingulate cortex 1 (Cg1), prelimbic cortex (PrL), infralimbic cortex (IL), basolateral amygdala (BLA), nucleus accumbens (NAc), and dentate gyrus (DG) were involved in the morphine-induced CTA, and resulted from the aversive effect of morphine on conditioning and reinstatement. The c-Fos data showed fewer neural substrates (e.g., PrL, IL, and LH) on extinction to be hyperactive. In the context of previous drug addiction data, the evidence suggests that morphine injections may induce hyperactivity in many neural substrates, which mediate reward and/or aversion due to disturbance and nonhomeostasis in the brain. The results support the paradoxical effect hypothesis of abused drugs. Insight from the findings could be used in the clinical treatment of drug addiction.
Collapse
|
8
|
Guerrero-Bautista R, Franco-García A, Hidalgo JM, Fernández-Gómez FJ, Ribeiro Do Couto B, Milanés MV, Núñez C. Distinct Regulation of Dopamine D3 Receptor in the Basolateral Amygdala and Dentate Gyrus during the Reinstatement of Cocaine CPP Induced by Drug Priming and Social Stress. Int J Mol Sci 2021; 22:3100. [PMID: 33803578 PMCID: PMC8002864 DOI: 10.3390/ijms22063100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 01/16/2023] Open
Abstract
Relapse in the seeking and intake of cocaine is one of the main challenges when treating its addiction. Among the triggering factors for the recurrence of cocaine use are the re-exposure to the drug and stressful events. Cocaine relapse engages the activity of memory-related nuclei, such as the basolateral amygdala (BLA) and the hippocampal dentate gyrus (DG), which are responsible for emotional and episodic memories. Moreover, D3 receptor (D3R) antagonists have recently arisen as a potential treatment for preventing drug relapse. Thus, we have assessed the impact of D3R blockade in the expression of some dopaminergic markers and the activity of the mTOR pathway, which is modulated by D3R, in the BLA and DG during the reinstatement of cocaine-induced conditioned place preference (CPP) evoked by drug priming and social stress. Reinstatement of cocaine CPP paralleled an increasing trend in D3R and dopamine transporter (DAT) levels in the BLA. Social stress, but not drug-induced reactivation of cocaine memories, was prevented by systemic administration of SB-277011-A (a selective D3R antagonist), which was able, however, to impede D3R and DAT up-regulation in the BLA during CPP reinstatement evoked by both stress and cocaine. Concomitant with cocaine CPP reactivation, a diminution in mTOR phosphorylation (activation) in the BLA and DG occurred, which was inhibited by D3R blockade in both nuclei before the social stress episode and only in the BLA when CPP reinstatement was provoked by a cocaine prime. Our data, while supporting a main role for D3R signalling in the BLA in the reactivation of cocaine memories evoked by social stress, indicate that different neural circuits and signalling mechanisms might mediate in the reinstatement of cocaine-seeking behaviours depending upon the triggering stimuli.
Collapse
Affiliation(s)
- Rocío Guerrero-Bautista
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Aurelio Franco-García
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Juana M. Hidalgo
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Francisco José Fernández-Gómez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Bruno Ribeiro Do Couto
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
- Department of Anatomy and Psychobiology, University of Murcia, 30100 Murcia, Spain
| | - M. Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| |
Collapse
|
9
|
Baidoo N, Wolter M, Leri F. Opioid withdrawal and memory consolidation. Neurosci Biobehav Rev 2020; 114:16-24. [PMID: 32294487 DOI: 10.1016/j.neubiorev.2020.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
It is well established that learning and memory are central to substance dependence. This paper specifically reviews the effect of opioid withdrawal on memory consolidation. Although there is evidence that opioid withdrawal can interfere with initial acquisition and retrieval of older memories, there are several reasons to postulate a facilitatory action on the consolidation of newly acquired memories. In fact, there is substantial evidence that memory consolidation is facilitated by the release of stress hormones, that it requires the activation of the amygdala, of central noradrenergic and cholinergic pathways, and that it involves long-term potentiation. This review highlights evidence that very similar neurobiological processes are involved in opioid withdrawal, and summarizes recent results indicating that naltrexone-precipitated withdrawal enhanced consolidation in rats. From this neurocognitive perspective, therefore, opioid use may escalate during the addiction cycle in part because memories of stimuli and actions experienced during withdrawal are strengthened.
Collapse
Affiliation(s)
- Nana Baidoo
- Department of Psychology & Neuroscience, Guelph, Ontario, Canada
| | - Michael Wolter
- Department of Psychology & Neuroscience, Guelph, Ontario, Canada
| | - Francesco Leri
- Department of Psychology & Neuroscience, Guelph, Ontario, Canada.
| |
Collapse
|
10
|
García‐Pérez D, Milanés MV. Role of glucocorticoids on noradrenergic and dopaminergic neurotransmission within the basolateral amygdala and dentate gyrus during morphine withdrawal place aversion. Addict Biol 2020; 25:e12728. [PMID: 30784175 DOI: 10.1111/adb.12728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 11/28/2022]
Abstract
Aversive memories related to drug withdrawal can generate a motivational state leading to compulsive drug taking. However, the mechanisms underlying the generation of these withdrawal memories remain unclear. Limbic structures, such as the basolateral amygdala (BLA) and the dentate gyrus (DG) of the hippocampus, play a crucial role in the negative affective component of morphine withdrawal. Given the prominent role of glucocorticoids (GCs), noradrenaline (NA), and dopamine (DA) in memory-related processes, in the present study, we employed the conditioned place aversion (CPA) paradigm to uncover the role of GCs on NA and DA neurotransmission within the BLA and NA neurotransmission within the DG during opiate-withdrawal conditioning (memory formation consolidation), and after reexposure to the conditioned environment (memory retrieval). We observed that adrenalectomy impaired naloxone-induced CPA. Memory retrieval was associated with an increase in dihydroxyphenylacetic acid (DOPAC) levels in the BLA in morphine-addicted animals in a GC-independent manner. Importantly, NA turnover was related with the expression of withdrawal physical signs during the conditioning phase and with locomotor activity during the test phase. On the other hand, reduced DA concentration in the BLA was correlated with the CPA score. Our results indicate that while noradrenergic system is more associated with the somatic consequences of withdrawal, dopaminergic neurotransmission modulates the affective state. Nevertheless, it seems necessary that both systems work together with GCs to enable aversive-memory formation and recall.
Collapse
Affiliation(s)
| | - Maria Victoria Milanés
- Department of PharmacologyUniversity of Murcia Murcia Spain
- Farmacología Celular y MolecularMurcia Institute of Biomedical Research (IMIB) Murcia Spain
| |
Collapse
|
11
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
12
|
Gómez-Murcia V, Ribeiro Do Couto B, Gómez-Fernández JC, Milanés MV, Laorden ML, Almela P. Liposome-Encapsulated Morphine Affords a Prolonged Analgesia While Facilitating Extinction of Reward and Aversive Memories. Front Pharmacol 2019; 10:1082. [PMID: 31616299 PMCID: PMC6764324 DOI: 10.3389/fphar.2019.01082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/26/2019] [Indexed: 01/25/2023] Open
Abstract
Morphine is thoroughly used for pain control; however, it has a high addictive potential. Opioid liposome formulations produce controlled drug release and have been thoroughly tested for pain treatment although their role in addiction is still unknown. This study investigated the effects of free morphine and morphine encapsulated in unilamellar and multilamellar liposomes on antinociception and on the expression and extinction of the positive and negative memories associated with environmental cues. The hot plate test was used to measure central pain. The rewarding effects of morphine were analyzed by the conditioned-place preference (CPP) test, and the aversive aspects of naloxone-precipitated morphine withdrawal were evaluated by the conditioned-place aversion (CPA) paradigm. Our results show that encapsulated morphine yields prolonged antinociceptive effects compared with the free form, and that CPP and CPA expression were similar in the free- or encapsulated-morphine groups. However, we demonstrate, for the first time, that morphine encapsulation reduces the duration of reward and aversive memories, suggesting that this technological process could transform morphine into a potentially less addictive drug. Morphine encapsulation in liposomes could represent a pharmacological approach for enhancing extinction, which might lead to effective clinical treatments in drug addiction with fewer side effects.
Collapse
Affiliation(s)
- Victoria Gómez-Murcia
- Department of Pharmacology, Faculty of Medicine, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Department of Human Anatomy and Psychobiology, Faculty of Psychology, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Juan C Gómez-Fernández
- Department of Biochemistry and Molecular Biology A, Faculty of Veterinary, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - María V Milanés
- Department of Pharmacology, Faculty of Medicine, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - María L Laorden
- Department of Pharmacology, Faculty of Medicine, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Pilar Almela
- Department of Pharmacology, Faculty of Medicine, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
13
|
He ABH, Huang CL, Kozłowska A, Chen JC, Wu CW, Huang ACW, Liu YQ. Involvement of neural substrates in reward and aversion to methamphetamine addiction: Testing the reward comparison hypothesis and the paradoxical effect hypothesis of abused drugs. Neurobiol Learn Mem 2019; 166:107090. [PMID: 31521799 DOI: 10.1016/j.nlm.2019.107090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/23/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022]
Abstract
Clinical studies of drug addiction focus on the reward impact of abused drugs that produces compulsive drug-seeking behavior and drug dependence. However, a small amount of research has examined the opposite effect of aversion to abused drugs to balance the reward effect for drug taking. An aversive behavioral model of abused drugs in terms of conditioned taste aversion (CTA) was challenged by the reward comparison hypothesis (Grigson, 1997). To test the reward comparison hypothesis, the present study examined the rewarding or aversive neural substrates involved in methamphetamine-induced conditioned suppression. The behavioral data showed that methamphetamine induced conditioned suppression on conditioning and reacquisition but extinguished it on extinction. A higher level of stressful aversive corticosterone occurred on conditioning and reacquisition but not extinction. The c-Fos or p-ERK immunohistochemical activity showed that the cingulated cortex area 1 (Cg1), infralimbic cortex (IL), prelimbic cortex (PrL), basolateral amygdala (BLA), nucleus accumbens (NAc), and dentate gyrus (DG) of the hippocampus were overexpressed in aversive CTA induced by methamphetamine. These data may indicate that the Cg1, IL, PrL, BLA, NAc, and DG probably mediated the paradoxical effect-reward and aversion. Altogether, our data conflicted with the reward comparison hypothesis, and methamphetamine may simultaneously induce the paradoxical effect of reward and aversion in the brain to support the paradoxical effect hypothesis of abused drugs. The present data implicate some insights for drug addiction in clinical aspects.
Collapse
Affiliation(s)
- Alan Bo Han He
- Department of Psychology, Fo Guang University, Yilan County 26247, Taiwan
| | - Chung Lei Huang
- Department of Psychology, Fo Guang University, Yilan County 26247, Taiwan
| | - Anna Kozłowska
- Department of Human Physiology, School Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av, 30, 10-082 Olsztyn, Poland
| | - Jun Chien Chen
- Department of Substance Abuse and Psychiatry, Tri-Service General Hospital Beitou Branch, Taipei 11243, Taiwan
| | - Chi-Wen Wu
- Department of Psychology, Fo Guang University, Yilan County 26247, Taiwan; Department of Pharmacy, Keelung Hospital, Ministry of Health and Welfare, Keelung City 20148, Taiwan
| | | | - Yu Qin Liu
- Department of Psychology, Fo Guang University, Yilan County 26247, Taiwan
| |
Collapse
|
14
|
Geoffroy H, Canestrelli C, Marie N, Noble F. Morphine-Induced Dendritic Spine Remodeling in Rat Nucleus Accumbens Is Corticosterone Dependent. Int J Neuropsychopharmacol 2019; 22:394-401. [PMID: 30915438 PMCID: PMC6545536 DOI: 10.1093/ijnp/pyz014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic morphine treatments produce important morphological changes in multiple brain areas including the nucleus accumbens. METHODS In this study, we have investigated the effect of chronic morphine treatment at a relatively low dose on the morphology of medium spiny neurons in the core and shell of the nucleus accumbens in rats 1 day after the last injection of a chronic morphine treatment (5 mg/kg once per day for 14 days). Medium spiny neurons were labeled with 1,1' dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate crystal and analyzed by confocal laser-scanning microscope. RESULTS Our results show an increase of thin spines and a decrease of stubby spines specifically in the shell of morphine-treated rats compared with control. Since morphine-treated rats also presented an elevation of corticosterone level in plasma, we explored whether spine alterations induced by morphine treatment in the nucleus accumbens could be affected by the depletion of the hormone. Thus, bilaterally adrenalectomized rats were treated with morphine in the same conditions. No more alteration in stubby spines in the shell was detected in morphine-treated rats with a depletion of corticosterone, while a significant increase was observed in mushroom spines in the shell and stubby spines in the core. Regarding the thin spines, the increase observed with morphine compared with saline was lower in adrenalectomized rats than in nonadrenalectomized animals. CONCLUSION These results indicate that dendritic spine remodeling in nucleus accumbens following chronic morphine treatment at relatively low doses is dependent on corticosterone levels.
Collapse
Affiliation(s)
- Hélène Geoffroy
- Centre National de la Recherche Scientifique, France,Institut National de la Santé et de la Recherche Médicale, France,Université Paris Descartes, Paris, France
| | - Corinne Canestrelli
- Centre National de la Recherche Scientifique, France,Institut National de la Santé et de la Recherche Médicale, France,Université Paris Descartes, Paris, France
| | - Nicolas Marie
- Centre National de la Recherche Scientifique, France,Institut National de la Santé et de la Recherche Médicale, France,Université Paris Descartes, Paris, France
| | - Florence Noble
- Centre National de la Recherche Scientifique, France,Institut National de la Santé et de la Recherche Médicale, France,Université Paris Descartes, Paris, France,Correspondence: Florence Noble, PhD, Neuroplasticité et thérapie des addictions, CNRS ERL 3649 – INSERM U 1124, 45 rue des Saint-Pères, 75006 Paris, France ()
| |
Collapse
|
15
|
Solecki WB, Kus N, Gralec K, Klasa A, Pradel K, Przewłocki R. Noradrenergic and corticosteroid receptors regulate somatic and motivational symptoms of morphine withdrawal. Behav Brain Res 2019; 360:146-157. [DOI: 10.1016/j.bbr.2018.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/28/2018] [Accepted: 11/26/2018] [Indexed: 01/25/2023]
|
16
|
Distinct regulation pattern of Egr-1, BDNF and Arc during morphine-withdrawal conditioned place aversion paradigm: Role of glucocorticoids. Behav Brain Res 2018; 360:244-254. [PMID: 30550948 DOI: 10.1016/j.bbr.2018.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
Abstract
Negative affective aspects of opiate abstinence contribute to the persistence of substance abuse. Importantly, interconnected brain areas involved in aversive motivational processes, such as the ventral tegmental area (VTA) and medial prefrontal cortex (mPFC), become activated when animals are confined to withdrawal-paired environments. In the present study, place aversion was elicited in sham and adrenalectomized (ADX) animals by conditioned naloxone-precipitated drug withdrawal following exposure to chronic morphine. qPCR was employed to detect the expression of brain derived neurotrophic factor (Bdnf) and the immediate early genes (IEG) early growth response 1 (Egr-1) and activity-regulated cytoskeletal-associated protein (Arc) mRNAs in the VTA and mPFC at different time points of the conditioned place aversion (CPA) paradigm: after the conditioning phase and after the test phase. Sham + morphine rats exhibited robust CPA, which was impaired in ADX + morphine animals. Egr-1 and Arc were induced in the VTA and mPFC after morphine-withdrawal conditioning phase. Furthermore, Bdnf expression was enhanced in the VTA during the test phase. Bdnf induction seemed to be glucocorticoid-dependent, given that was correlated with HPA axis function and was not observed in morphine-dependent ADX animals. In addition, BDNF regulation and function was opposite in the VTA and mPFC during aversive-withdrawal memory retrieval. Our results suggest that IEGs and BDNF in these brain regions may play key roles in mediating the negative motivational component of opiate withdrawal.
Collapse
|
17
|
The involvement of CRF1 receptor within the basolateral amygdala and dentate gyrus in the naloxone-induced conditioned place aversion in morphine-dependent mice. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:102-114. [PMID: 29407532 DOI: 10.1016/j.pnpbp.2018.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
Abstract
Drug withdrawal-associated aversive memories trigger relapse to drug-seeking behavior. Corticotrophin-releasing factor (CRF) is an important mediator of the reinforcing properties of drugs of abuse. However, the involvement of CRF1 receptor (CRF1R) in aversive memory induced by opiate withdrawal has yet to be elucidated. We used the conditioned-place aversion (CPA) paradigm to evaluate the role of CRF1R on opiate withdrawal memory acquisition, along with plasticity-related processes that occur after CPA within the basolateral amygdala (BLA) and dentate gyrus (DG). Male mice were rendered dependent on morphine and injected acutely with naloxone before paired to confinement in a naloxone-associated compartment. The CPA scores as well as the number of TH-positive neurons (in the NTS-A2 noradrenergic cell group), and the expression of the transcription factors Arc and pCREB (in the BLA and DG) were measured with and without CRF1R blockade. Mice subjected to conditioned naloxone-induced morphine withdrawal robustly expressed CPA. Pre-treatment with the selective CRF1R antagonist CP-154,526 before naloxone conditioning session impaired morphine withdrawal-induced aversive memory acquisition. CP-154,526 also antagonized the enhanced number of TH-positive neurons in the NTS-A2 that was seen after CPA. Increased Arc expression and Arc-pCREB co-localization were seen in the BLA after CPA, which was not modified by CP-154,526. In the DG, CPA was accompanied by a decrease of Arc expression and no changes in Arc-pCREB co-localization, whereas pre-treatment with CP-154,526 induced an increase in both parameters. These results indicate that CRF-CRF1R pathway could be a critical factor governing opiate withdrawal memory storage and retrieval and might suggest a role for TH-NA pathway in the effects of withdrawal on memory. Our results might indicate that the blockade of CRF1R could represent a promising pharmacological treatment strategy approach for the attenuation of the relapse to drug-seeking/taking behavior triggered by opiate withdrawal-associated aversive memories.
Collapse
|
18
|
Duclot F, Kabbaj M. The Role of Early Growth Response 1 (EGR1) in Brain Plasticity and Neuropsychiatric Disorders. Front Behav Neurosci 2017; 11:35. [PMID: 28321184 PMCID: PMC5337695 DOI: 10.3389/fnbeh.2017.00035] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
It is now clearly established that complex interactions between genes and environment are involved in multiple aspects of neuropsychiatric disorders, from determining an individual's vulnerability to onset, to influencing its response to therapeutic intervention. In this perspective, it appears crucial to better understand how the organism reacts to environmental stimuli and provide a coordinated and adapted response. In the central nervous system, neuronal plasticity and neurotransmission are among the major processes integrating such complex interactions between genes and environmental stimuli. In particular, immediate early genes (IEGs) are critical components of these interactions as they provide the molecular framework for a rapid and dynamic response to neuronal activity while opening the possibility for a lasting and sustained adaptation through regulation of the expression of a wide range of genes. As a result, IEGs have been tightly associated with neuronal activity as well as a variety of higher order processes within the central nervous system such as learning, memory and sensitivity to reward. The immediate early gene and transcription factor early growth response 1 (EGR1) has thus been revealed as a major mediator and regulator of synaptic plasticity and neuronal activity in both physiological and pathological conditions. In this review article, we will focus on the role of EGR1 in the central nervous system. First, we will summarize the different factors influencing its activity. Then, we will analyze the amount of data, including genome-wide, that has emerged in the recent years describing the wide variety of genes, pathways and biological functions regulated directly or indirectly by EGR1. We will thus be able to gain better insights into the mechanisms underlying EGR1's functions in physiological neuronal activity. Finally, we will discuss and illustrate the role of EGR1 in pathological states with a particular interest in cognitive functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA; Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|