1
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Sun X, Hou J, Xu H, Qu H. Efficacy of bumetanide in animal models of ischemic stroke: a systematic review and meta-analysis. Aging (Albany NY) 2024; 16:9959-9971. [PMID: 38850525 PMCID: PMC11210250 DOI: 10.18632/aging.205910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/03/2024] [Indexed: 06/10/2024]
Abstract
This meta-analysis aimed to describe the efficacy of bumetanide in improving infarct volume, brain edema, and behavioral outcomes in animal models of cerebral ischemia. Embase, PubMed and Web of Science databases were searched from their inception to February 2024 (INPLASY:202430023). Data on the animal species, stroke model, drug dose, time of treatment, method of administration, study quality, and outcomes were extracted and pooled in a meta-analysis. The combined standardized mean difference (SMD) or mean difference (MD) estimates and 95% confidence intervals (CIs) were calculated using random- or fixed-effects models. Thirteen eligible studies involving >200 animals fulfilled the inclusion criteria and were included in this meta-analysis. Meta-analyses demonstrated that bumetanide treatment significantly reduced cerebral infarct volume (SMD: -0.42; 95% CI: -0.75, -0.09; p < 0.01; n = 186 animals) and consistently relieved brain edema (SMD: -1.39; 95% CI: -2.06, -0.72; p < 0.01; n = 64 animals). Subgroup analyses demonstrated that bumetanide treatment reduced infarct volume in transient but not permanent cerebral ischemia models. When administered after the stroke, it was more effective than treatment initiation before the stroke. Eight studies assessed the effect of bumetanide on behavioral function and the results showed that bumetanide treatment significantly improved neurobehavioral deficits (SMD: -2.35; 95% CI: -2.72, -1.97; p < 0.01; n = 250 animals). We conclude that bumetanide appears to be effective in reducing infarct volume and brain edema and improving behavioral recovery in animal models of cerebral ischemia. This mechanism needs to be confirmed through further investigation.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, China
| | - Jiadi Hou
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, China
| | - Haichun Xu
- Department of Psychiatry, Shenyang Jing’an Mental Health Hospital, Shenyang, China
| | - Huiling Qu
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
3
|
Zhang X, Zhang Y, Su Q, Liu Y, Li Z, Yong VW, Xue M. Ion Channel Dysregulation Following Intracerebral Hemorrhage. Neurosci Bull 2024; 40:401-414. [PMID: 37755675 PMCID: PMC10912428 DOI: 10.1007/s12264-023-01118-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/14/2023] [Indexed: 09/28/2023] Open
Abstract
Injury to the brain after intracerebral hemorrhage (ICH) results from numerous complex cellular mechanisms. At present, effective therapy for ICH is limited and a better understanding of the mechanisms of brain injury is necessary to improve prognosis. There is increasing evidence that ion channel dysregulation occurs at multiple stages in primary and secondary brain injury following ICH. Ion channels such as TWIK-related K+ channel 1, sulfonylurea 1 transient receptor potential melastatin 4 and glutamate-gated channels affect ion homeostasis in ICH. They in turn participate in the formation of brain edema, disruption of the blood-brain barrier, and the generation of neurotoxicity. In this review, we summarize the interaction between ions and ion channels, the effects of ion channel dysregulation, and we discuss some therapeutics based on ion-channel modulation following ICH.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
4
|
Hugues N, Pin-Barre C, Brioche T, Pellegrino C, Berton E, Rivera C, Laurin J. High-intensity training with short and long intervals regulate cortical neurotrophic factors, apoptosis markers and chloride homeostasis in rats with stroke. Physiol Behav 2023; 266:114190. [PMID: 37055005 DOI: 10.1016/j.physbeh.2023.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND/PURPOSE The optimal endurance exercise parameters remain to be defined to potentiate long-term functional recovery after stroke. We aim to assess the effects of individualized high-intensity interval training (HIIT) with either long or short intervals on neurotrophic factors and their receptors, apoptosis markers and the two-main cation-chloride cotransporters in the ipsi- and contralesional cerebral cortices in rats with cerebral ischemia. Endurance performance and sensorimotor functions were also assessed METHODS: : Rats with a 2-hour transient middle cerebral artery occlusion (tMCAO) performed work-matched HIIT4 (intervals: 4min) or HIIT1 (intervals: 1min) on treadmill for 2 weeks. Incremental exercises and sensorimotor tests were performed at day 1 (D1), D8, and D15 after tMCAO. Molecular analyses were achieved in both the paretic and non-paretic triceps brachii muscles and the ipsi- and contralesional cortices at D17 RESULTS: : Gains in endurance performance are in a time-dependent manner from the first week of training. This enhancement is supported by the upregulation of metabolic markers in both triceps brachii muscles. Both regimens alter the expression of neurotrophic markers and chloride homeostasis in a specific manner in the ipsi- and contralesional cortices. HIIT acts on apoptosis markers by promoting anti-apoptotic proteins in the ipsilesional cortex CONCLUSION: : HIIT regimens seem to be of clinical relevance in the critical period of stroke rehabilitation by strongly improving aerobic performance. Also, the observed cortical changes suggest an influence of HIIT on neuroplasticity in both ipsi- and contralesional hemispheres. Such neurotrophic markers might be considered as biomarkers of functional recovery in individuals with stroke.
Collapse
Affiliation(s)
- Nicolas Hugues
- Aix Marseille Univ, INSERM, INMED, Marseille, France; Aix Marseille Univ, CNRS, ISM, Marseille, France
| | | | - Thomas Brioche
- Université de Montpellier, INRAE, DMEM, Montpellier, France
| | | | - Eric Berton
- Aix Marseille Univ, CNRS, ISM, Marseille, France
| | | | - Jérôme Laurin
- Aix Marseille Univ, INSERM, INMED, Marseille, France.
| |
Collapse
|
5
|
Chen C, Fan P, Zhang L, Xue K, Hu J, Huang J, Lu W, Xu J, Xu S, Qiu G, Ran J, Gan S. Bumetanide Rescues Aquaporin-4 Depolarization via Suppressing β-Dystroglycan Cleavage and Provides Neuroprotection in Rat Retinal Ischemia-Reperfusion Injury. Neuroscience 2023; 510:95-108. [PMID: 36493910 DOI: 10.1016/j.neuroscience.2022.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Aquaporin-4 (AQP4) regulates retinal water homeostasis and participates in retinal oedema pathophysiology. β-dystroglycan (β-DG) is responsible for AQP4 polarization and can be cleaved by matrix metalloproteinase-9 (MMP9). Retinal oedema induced by ischemia-reperfusion (I/R) injury is an early complication. Bumetanide (BU) has potential efficacy against cytotoxic oedema. Our study investigated the effects of β-DG cleavage on AQP4 and the roles of BU in a rat retinal I/R injury model. The model was induced by applying 110 mm Hg intraocular pressure to the anterior eye chamber. BU and U0126 (a selective ERK inhibitor) were intraperitoneally administered 15 and 30 min, respectively, before I/R induction. Rhodamine isothiocyanate extravasation detection, quantitative real-time PCR, transmission electron microscopy, hematoxylin-eosin staining, immunofluorescence staining, western blotting, and TUNEL staining were performed. AQP4 lost its polarization in the retinal perivascular domain as a result of β-DG cleavage. BU rescued AQP4 depolarization, suppressed AQP4 protein expression, attenuated retinal cytotoxic oedema, and downregulated β-DG and AQP4 mRNA expression. BU suppressed glial responses and mitochondria-mediated apoptotic protein expression, including that of Caspase-3 and Cyto C, raised the Bcl-2/Bax ratio, and lowered the number of apoptotic cells in the retina. Both BU and U0126 downregulated p-ERK and MMP9 expression. Thus, BU treatment suppressed β-DG cleavage, recovered AQP4 polarization partially via inhibiting ERK/MMP9 signaling pathway, and possess potential neuroprotective efficacy in the rat retinal ischemia-reperfusion injury model.
Collapse
Affiliation(s)
- Chunyan Chen
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Ping Fan
- Department of Gynecology and Obstetrics of The Fifth People's Hospital of Chongqing, PR China
| | - Lirong Zhang
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Kaige Xue
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Jiaheng Hu
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Juan Huang
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Weitian Lu
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Jin Xu
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Shiye Xu
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Guoping Qiu
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Jianhua Ran
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China
| | - Shengwei Gan
- Institute of Neuroscience, Basic Medicine College of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
6
|
Abstract
In 1959, E. G. Gray described two different types of synapses in the brain for the first time: symmetric and asymmetric. Later on, symmetric synapses were associated with inhibitory terminals, and asymmetric synapses to excitatory signaling. The balance between these two systems is critical to maintain a correct brain function. Likewise, the modulation of both types of synapses is also important to maintain a healthy equilibrium. Cerebral circuitry responds differently depending on the type of damage and the timeline of the injury. For example, promoting symmetric signaling following ischemic damage is beneficial only during the acute phase; afterwards, it further increases the initial damage. Synapses can be also altered by players not directly related to them; the chronic and long-term neurodegeneration mediated by tau proteins primarily targets asymmetric synapses by decreasing neuronal plasticity and functionality. Dopamine represents the main modulating system within the central nervous system. Indeed, the death of midbrain dopaminergic neurons impairs locomotion, underlying the devastating Parkinson’s disease. Herein, we will review studies on symmetric and asymmetric synapses plasticity after three different stressors: symmetric signaling under acute damage—ischemic stroke; asymmetric signaling under chronic and long-term neurodegeneration—Alzheimer’s disease; symmetric and asymmetric synapses without modulation—Parkinson’s disease.
Collapse
|
7
|
Zhu J, Lin X, Chen C, Tan H, Gao Y, Li D, Chen G. WNK3 Promotes Neuronal Survival after Traumatic Brain Injury in Rats. Neuroscience 2021; 477:76-88. [PMID: 34626749 DOI: 10.1016/j.neuroscience.2021.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022]
Abstract
With-no-lysine kinase 3 (WNK3) is a key regulator of chloride ion transport and neuronal survival in diverse cell types. WNK3 was previously found to regulate the activity of Na+-K+-2Cl- cotransporter-1 (NKCC1) in ischemia-associated brain damage. However, the role of WNK3 in traumatic brain injury (TBI) has not yet been studied. A weight-drop TBI model was established in Sprague-Dawley rats. Overexpression and specific inhibition were used to investigate the role of WNK3 in TBI via Western blot, immunofluorescence, neuronal apoptosis, brain water content, and neurological score analyses. We found pronounced TBI-induced downregulation of WNK3 expression and upregulation of NKCC1 expression in neurons, especially at 48 h. Overexpression of WNK3 significantly ameliorated neuronal apoptosis, blood-brain barrier (BBB) disruption, brain edema and neurological deficits at 48 h after TBI. These effects were concomitant with reductions in p-NKCC1 and phosphorylated extracellular signal-regulated kinase (p-ERK1/2) expression. Furthermore, bumetanide administration enhanced the neuroprotective effects of WNK3 overexpression against brain injury. Thus, WNK3 plays a neuroprotective role in TBI, and overexpression of WNK3 may increase cell resistance to apoptotic insults and brain edema, thereby alleviating secondary brain injury.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Xiaolong Lin
- Department of Orthopaedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Chen Chen
- Department of Intensive Care Unit, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Helian Tan
- Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Yanping Gao
- Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China.
| | - Di Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Katnik C, Cuevas J. Loop Diuretics Inhibit Ischemia-Induced Intracellular Ca 2+ Overload in Neurons via the Inhibition of Voltage-Gated Ca 2+ and Na + Channels. Front Pharmacol 2021; 12:732922. [PMID: 34603048 PMCID: PMC8479115 DOI: 10.3389/fphar.2021.732922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
One consequence of ischemic stroke is disruption of intracellular ionic homeostasis. Intracellular overload of both Na+ and Ca2+ has been linked to neuronal death in this pathophysiological state. The etiology of ionic imbalances resulting from stroke-induced ischemia and acidosis includes the dysregulation of multiple plasma membrane transport proteins, such as increased activity of sodium-potassium-chloride cotransporter-1 (NKCC-1). Experiments using NKCC1 antagonists, bumetanide (BMN) and ethacrynic acid (EA), were carried out to determine if inhibition of this cotransporter affects Na+ and Ca2+ overload observed following in vitro ischemia-acidosis. Fluorometric Ca2+ and Na+ measurements were performed using cultured cortical neurons, and measurements of whole-cell membrane currents were used to determine target(s) of BMN and EA, other than the electroneutral NKCC-1. Both BMN and EA depressed ischemia-acidosis induced [Ca2+]i overload without appreciably reducing [Na+]i increases. Voltage-gated Ca2+ channels were inhibited by both BMN and EA with half-maximal inhibitory concentration (IC50) values of 4 and 36 μM, respectively. Similarly, voltage-gated Na+ channels were blocked by BMN and EA with IC50 values of 13 and 30 μM, respectively. However, neither BMN nor EA affected currents mediated by acid-sensing ion channels or ionotropic glutamatergic receptors, both of which are known to produce [Ca2+]i overload following ischemia. Data suggest that loop diuretics effectively inhibit voltage-gated Ca2+ and Na+ channels at clinically relevant concentrations, and block of these channels by these compounds likely contributes to their clinical effects. Importantly, inhibition of these channels, and not NKCC1, by loop diuretics reduces [Ca2+]i overload in neurons during ischemia-acidosis, and thus BMN and EA could potentially be used therapeutically to lessen injury following ischemic stroke.
Collapse
Affiliation(s)
- Christopher Katnik
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Javier Cuevas
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
9
|
Ji MJ, Ryu HJ, Hong JH. Synovial Fluid of Patient With Rheumatoid Arthritis Enhanced Osmotic Sensitivity Through the Cytotoxic Edema Module in Synoviocytes. Front Cell Dev Biol 2021; 9:700879. [PMID: 34532317 PMCID: PMC8438158 DOI: 10.3389/fcell.2021.700879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation of the synovial membrane ultimately leading to permanent damage in the affected joints. For this study, synovial fluids from 16 patients diagnosed with either RA or osteoarthritis (OA) were used to examine volume regulation and cooperative water channels, both of which are involved in the cytotoxic edema identified in RA-fibroblast-like synoviocytes (FLS). The osmolarity and inflammatory cytokine interleukin (IL)-6 of synovial fluids from RA patients were mildly enhanced compared to that from OA patients. RA-FLS demonstrated the enhanced property of regulatory volume increase in response to IL-6 and synovial fluids from RA patients. Although there was no difference in the protein expression of the volume-associated protein sodium–potassium–chloride cotransporter1 (NKCC1), its activity was increased by treatment with IL-6. Membrane localization of NKCC1 was also increased by IL-6 treatment. Additionally, both the protein and membrane expressions of aquaporin-1 were increased in RA-FLS by IL-6 stimulation. The IL-6-mediated enhanced osmotic sensitivity of RA-FLS likely involves NKCC1 and aquaporin-1, which mainly constitute the volume-associated ion transporter and water channel elements. These results suggest that RA-FLS provide enhanced electrolytes and concomitant water movement through NKCC1 and aquaporin-1, thereby inducing cellular swelling ultimately resulting in cytotoxic edema. Attenuation of cytotoxic edema and verification of its related mechanism will provide novel therapeutic approaches to RA treatment within the scope of cytotoxic edema.
Collapse
Affiliation(s)
- Min Jeong Ji
- Department of Physiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hee Jung Ryu
- Division of Rheumatology, Department of Internal Medicine, Gachon University College of Medicine Gil Medical Center, Incheon, South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| |
Collapse
|
10
|
Bothwell SW, Omileke D, Patabendige A, Spratt NJ. CSF Secretion Is Not Altered by NKCC1 Nor TRPV4 Antagonism in Healthy Rats. Brain Sci 2021; 11:brainsci11091117. [PMID: 34573139 PMCID: PMC8471756 DOI: 10.3390/brainsci11091117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Cerebrospinal fluid (CSF) secretion can be targeted to reduce elevated intracranial pressure (ICP). Sodium-potassium-chloride cotransporter 1 (NKCC1) antagonism is used clinically. However, supporting evidence is limited. The transient receptor potential vanilloid-4 (TRPV4) channel may also regulate CSF secretion and ICP elevation. We investigated whether antagonism of these proteins reduces CSF secretion. Methods: We quantified CSF secretion rates in male Wistar rats. The cerebral aqueduct was blocked with viscous mineral oil, and a lateral ventricle was cannulated. Secretion rate was measured at baseline and after antagonist administration. Acetazolamide was administered as a positive control to confirm changes in CSF secretion rates. Results: Neither NKCC1, nor TRPV4 antagonism altered CSF secretion rate from baseline, n = 3, t(2) = 1.14, p = 0.37, and n = 4, t(3) = 0.58, p = 0.6, respectively. Acetazolamide reduced CSF secretion by ~50% across all groups, n = 7, t(6) = 4.294, p = 0.005. Conclusions: Acute antagonism of NKCC1 and TRPV4 proteins at the choroid plexus does not reduce CSF secretion in healthy rats. Further investigation of protein changes and antagonism should be explored in neurological disease where increased CSF secretion and ICP are observed before discounting the therapeutic potential of protein antagonism at these sites.
Collapse
Affiliation(s)
- Steven W. Bothwell
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (S.W.B.); (D.O.)
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Daniel Omileke
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (S.W.B.); (D.O.)
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Adjanie Patabendige
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (S.W.B.); (D.O.)
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Wirral CH64 7TE, UK
- Correspondence: (A.P.); (N.J.S.)
| | - Neil J. Spratt
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (S.W.B.); (D.O.)
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter New England Local Health District, New Lambton Heights, NSW 2305, Australia
- Correspondence: (A.P.); (N.J.S.)
| |
Collapse
|
11
|
Zhou X, Li Y, Lenahan C, Ou Y, Wang M, He Y. Glymphatic System in the Central Nervous System, a Novel Therapeutic Direction Against Brain Edema After Stroke. Front Aging Neurosci 2021; 13:698036. [PMID: 34421575 PMCID: PMC8372556 DOI: 10.3389/fnagi.2021.698036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke is the destruction of brain function and structure, and is caused by either cerebrovascular obstruction or rupture. It is a disease associated with high mortality and disability worldwide. Brain edema after stroke is an important factor affecting neurologic function recovery. The glymphatic system is a recently discovered cerebrospinal fluid (CSF) transport system. Through the perivascular space and aquaporin 4 (AQP4) on astrocytes, it promotes the exchange of CSF and interstitial fluid (ISF), clears brain metabolic waste, and maintains the stability of the internal environment within the brain. Excessive accumulation of fluid in the brain tissue causes cerebral edema, but the glymphatic system plays an important role in the process of both intake and removal of fluid within the brain. The changes in the glymphatic system after stroke may be an important contributor to brain edema. Understanding and targeting the molecular mechanisms and the role of the glymphatic system in the formation and regression of brain edema after stroke could promote the exclusion of fluids in the brain tissue and promote the recovery of neurological function in stroke patients. In this review, we will discuss the physiology of the glymphatic system, as well as the related mechanisms and therapeutic targets involved in the formation of brain edema after stroke, which could provide a new direction for research against brain edema after stroke.
Collapse
Affiliation(s)
- Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youwei Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Yao Y, Zhang Y, Liao X, Yang R, Lei Y, Luo J. Potential Therapies for Cerebral Edema After Ischemic Stroke: A Mini Review. Front Aging Neurosci 2021; 12:618819. [PMID: 33613264 PMCID: PMC7890111 DOI: 10.3389/fnagi.2020.618819] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
Stroke is the leading cause of global mortality and disability. Cerebral edema and intracranial hypertension are common complications of cerebral infarction and the major causes of mortality. The formation of cerebral edema includes three stages (cytotoxic edema, ionic edema, and vasogenic edema), which involve multiple proteins and ion channels. A range of therapeutic agents that successfully target cerebral edema have been developed in animal studies, some of which have been assessed in clinical trials. Herein, we review the mechanisms of cerebral edema and the research progress of anti-edema therapies for use after ischemic stroke.
Collapse
Affiliation(s)
- Yi Yao
- International Medical Center, Ward of General Practice and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, Chengdu, China
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyang Liao
- International Medical Center, Ward of General Practice and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Yang
- International Medical Center, Ward of General Practice and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Lei
- International Medical Center, Ward of General Practice and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhao Luo
- International Medical Center, Ward of General Practice and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Josiah SS, Meor Azlan NF, Zhang J. Targeting the WNK-SPAK/OSR1 Pathway and Cation-Chloride Cotransporters for the Therapy of Stroke. Int J Mol Sci 2021; 22:1232. [PMID: 33513812 PMCID: PMC7865768 DOI: 10.3390/ijms22031232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/05/2023] Open
Abstract
Stroke is one of the major culprits responsible for morbidity and mortality worldwide, and the currently available pharmacological strategies to combat this global disease are scanty. Cation-chloride cotransporters (CCCs) are expressed in several tissues (including neurons) and extensively contribute to the maintenance of numerous physiological functions including chloride homeostasis. Previous studies have implicated two CCCs, the Na+-K+-Cl- and K+-Cl- cotransporters (NKCCs and KCCs) in stroke episodes along with their upstream regulators, the with-no-lysine kinase (WNKs) family and STE20/SPS1-related proline/alanine rich kinase (SPAK) or oxidative stress response kinase (OSR1) via a signaling pathway. As the WNK-SPAK/OSR1 pathway reciprocally regulates NKCC and KCC, a growing body of evidence implicates over-activation and altered expression of NKCC1 in stroke pathology whilst stimulation of KCC3 during and even after a stroke event is neuroprotective. Both inhibition of NKCC1 and activation of KCC3 exert neuroprotection through reduction in intracellular chloride levels and thus could be a novel therapeutic strategy. Hence, this review summarizes the current understanding of functional regulations of the CCCs implicated in stroke with particular focus on NKCC1, KCC3, and WNK-SPAK/OSR1 signaling and discusses the current and potential pharmacological treatments for stroke.
Collapse
Affiliation(s)
| | | | - Jinwei Zhang
- Hatherly Laboratories, Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PS, UK; (S.S.J.); (N.F.M.A.)
| |
Collapse
|
14
|
Tao D, Liu F, Sun X, Qu H, Zhao S, Zhou Z, Xiao T, Zhao C, Zhao M. Bumetanide: A review of its neuroplasticity and behavioral effects after stroke. Restor Neurol Neurosci 2020; 37:397-407. [PMID: 31306143 DOI: 10.3233/rnn-190926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stroke often leads to neuronal injury and neurological functional deficits. Whilst spontaneous neurogenesis and axon regeneration are induced by ischemic stroke, effective pharmacological treatments are also essential for the improvement of neuroplasticity and functional recovery after stroke. However, no pharmacological therapy has been demonstrated to be able to effectively improve the functional recovery after stroke. Bumetanide is a specific Na+-K+-Cl- co-transporter inhibitor which can maintain chloride homeostasis in neurons. Therefore, many studies have focused on this drug's effect in stroke recovery in recent years. Here, we first review the function of Na+-K+-Cl- co-transporter in neurons, then how bumetanide's role in reducing brain damage, promoting neuroplasticity, leading to functional recovery after stroke, is elucidated. Finally, we discuss current limitations of bumetanide's efficiency and their potential solutions. These results may provide new avenues for further exploring mechanisms of post-stroke functional recovery as well as promising therapeutic targets for functional disability rehabilitation after ischemic stroke.
Collapse
Affiliation(s)
- Dongxia Tao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Fangxi Liu
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoyu Sun
- Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Huiling Qu
- Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Shanshan Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Zhike Zhou
- Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Ting Xiao
- Dermatology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Mei Zhao
- Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Zusman BE, Kochanek PM, Jha RM. Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy. Curr Treat Options Neurol 2020; 22:9. [PMID: 34177248 PMCID: PMC8223756 DOI: 10.1007/s11940-020-0614-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets. RECENT FINDINGS Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1. SUMMARY This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.
Collapse
Affiliation(s)
- Benjamin E. Zusman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Ruchira M. Jha
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Dong BC, Li MX, Wang XY, Cheng X, Wang Y, Xiao T, Jolkkonen J, Zhao CS, Zhao SS. Effects of CXCR7-neutralizing antibody on neurogenesis in the hippocampal dentate gyrus and cognitive function in the chronic phase of cerebral ischemia. Neural Regen Res 2020; 15:1079-1085. [PMID: 31823888 PMCID: PMC7034276 DOI: 10.4103/1673-5374.270416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stromal cell-derived factor-1 and its receptor CXCR4 are essential regulators of the neurogenesis that occurs in the adult hippocampal dentate gyrus. However, the effects of CXCR7, a new atypical receptor of stromal cell-derived factor-1, on hippocampal neurogenesis after a stroke remain largely unknown. Our study is the first to investigate the effect of a CXCR7-neutralizing antibody on neurogenesis in the dentate gyrus and the associated recovery of cognitive function of rats in the chronic stage of cerebral ischemia. The rats were randomly divided into sham, sham + anti-CXCR7, ischemia and ischemia + anti-CXCR7 groups. Endothelin-1 was injected in the ipsilateral motor cortex and striatum to induce focal cerebral ischemia. Sham group rats were injected with saline instead of endothelin-1 via intracranial injection. Both sham and ischemic rats were treated with intraventricular infusions of CXCR7-neutralizing antibodies for 6 days 1 week after surgery. Immunofluorescence staining with doublecortin, a marker for neuronal precursors, was performed to assess the neurogenesis in the dentate gyrus. We found that anti-CXCR7 antibody infusion enhanced the proliferation and dendritic development of doublecortin-labeled cells in the dentate gyrus in both ischemic and sham-operated rats. Spatial learning and memory functions were assessed by Morris water maze tests 30–32 days after ischemia. CXCR7-neutralizing antibody treatment significantly reduced the escape latency of the spatial navigation trial and increased the time spent in the target quadrant of spatial probe trial in animals that received ischemic insult, but not in sham operated rats. These results suggest that CXCR7-neutralizing antibody enhances the neurogenesis in the dentate gyrus and improves the cognitive function after cerebral ischemia in rats. All animal experimental protocols and procedures were approved by the Institutional Animal Care and Use Committee of China Medical University (CMU16089R) on December 8, 2016.
Collapse
Affiliation(s)
- Bing-Chao Dong
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mei-Xuan Li
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiao-Yin Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xi Cheng
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yu Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ting Xiao
- Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, Liaoning Province, China
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Chuan-Sheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shan-Shan Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
17
|
Yang XL, Zeng ML, Shao L, Jiang GT, Cheng JJ, Chen TX, Han S, Yin J, Liu WH, He XH, Peng BW. NFAT5 and HIF-1α Coordinate to Regulate NKCC1 Expression in Hippocampal Neurons After Hypoxia-Ischemia. Front Cell Dev Biol 2019; 7:339. [PMID: 31921851 PMCID: PMC6923656 DOI: 10.3389/fcell.2019.00339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a serious birth complication with severe long-term sequelae such as cerebral palsy, epilepsy and cognitive disabilities. Na+-K+-2Cl– cotransporters 1 (NKCC1) is dramatically upregulated after hypoxia-ischemia (HI), which aggravates brain edema and brain damage. Clinically, an NKCC1-specific inhibitor, bumetanide, is used to treat diseases related to aberrant NKCC1 expression, but the underlying mechanism of aberrant NKCC1 expression has rarely been studied in HIE. In this study, the cooperative effect of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor of activated T cells 5 (NFAT5) on NKCC1 expression was explored in hippocampal neurons under hypoxic conditions. HI increased HIF-1α nuclear localization and transcriptional activity, and pharmacological inhibition of the HIF-1α transcription activity or mutation of hypoxia responsive element (HRE) motifs recovered the hypoxia-induced aberrant expression and promoter activity of NKCC1. In contrast, oxygen–glucose deprivation (OGD)-induced downregulation of NFAT5 expression was reversed by treating with hypertonic saline, which ameliorated aberrant NKCC1 expression. More importantly, knocking down NFAT5 or mutation of the tonicity enhancer element (TonE) stimulated NKCC1 expression and promoter activity under normal physiological conditions. The positive regulation of NKCC1 by HIF-1α and the negative regulation of NKCC1 by NFAT5 may serve to maintain NKCC1 expression levels, which may shed light on the transcription regulation of NKCC1 in hippocampal neurons after hypoxia.
Collapse
Affiliation(s)
- Xing-Liang Yang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lin Shao
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Guang-Tong Jiang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jing-Jing Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Song S, Luo L, Sun B, Sun D. Roles of glial ion transporters in brain diseases. Glia 2019; 68:472-494. [PMID: 31418931 DOI: 10.1002/glia.23699] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Glial ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions of the central nervous system (CNS). In response to acute or chronic brain injuries, these ion transporters can be activated and differentially regulate glial functions, which has subsequent impact on brain injury or tissue repair and functional recovery. In this review, we summarized the current knowledge about major glial ion transporters, including Na+ /H+ exchangers (NHE), Na+ /Ca2+ exchangers (NCX), Na+ -K+ -Cl- cotransporters (NKCC), and Na+ -HCO3 - cotransporters (NBC). In acute neurological diseases, such as ischemic stroke and traumatic brain injury (TBI), these ion transporters are rapidly activated and play significant roles in regulation of the intra- and extracellular pH, Na+ , K+ , and Ca2+ homeostasis, synaptic plasticity, and myelin formation. However, overstimulation of these ion transporters can contribute to glial apoptosis, demyelination, inflammation, and excitotoxicity. In chronic brain diseases, such as glioma, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), glial ion transporters are involved in the glioma Warburg effect, glial activation, neuroinflammation, and neuronal damages. These findings suggest that glial ion transporters are involved in tissue structural and functional restoration, or brain injury and neurological disease development and progression. A better understanding of these ion transporters in acute and chronic neurological diseases will provide insights for their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lanxin Luo
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China.,Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, Dois Portos, Portugal
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Kharod SC, Kang SK, Kadam SD. Off-Label Use of Bumetanide for Brain Disorders: An Overview. Front Neurosci 2019; 13:310. [PMID: 31068771 PMCID: PMC6491514 DOI: 10.3389/fnins.2019.00310] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/19/2019] [Indexed: 01/17/2023] Open
Abstract
Bumetanide (BTN or BUM) is a FDA-approved potent loop diuretic (LD) that acts by antagonizing sodium-potassium-chloride (Na-K-Cl) cotransporters, NKCC1 (SLc12a2) and NKCC2. While NKCC1 is expressed both in the CNS and in systemic organs, NKCC2 is kidney-specific. The off-label use of BTN to modulate neuronal transmembrane Cl− gradients by blocking NKCC1 in the CNS has now been tested as an anti-seizure agent and as an intervention for neurological disorders in pre-clinical studies with varying results. BTN safety and efficacy for its off-label use has also been tested in several clinical trials for neonates, children, adolescents, and adults. It failed to meet efficacy criteria for hypoxic-ischemic encephalopathy (HIE) neonatal seizures. In contrast, positive outcomes in temporal lobe epilepsy (TLE), autism, and schizophrenia trials have been attributed to BTN in studies evaluating its off-label use. NKCC1 is an electroneutral neuronal Cl− importer and the dominance of NKCC1 function has been proposed as the common pathology for HIE seizures, TLE, autism, and schizophrenia. Therefore, the use of BTN to antagonize neuronal NKCC1 with the goal to lower internal Cl− levels and promote GABAergic mediated hyperpolarization has been proposed. In this review, we summarize the data and results for pre-clinical and clinical studies that have tested off-label BTN interventions and report variable outcomes. We also compare the data underlying the developmental expression profile of NKCC1 and KCC2, highlight the limitations of BTN’s brain-availability and consider its actions on non-neuronal cells.
Collapse
Affiliation(s)
- Shivani C Kharod
- Neuroscience Laboratory, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Seok Kyu Kang
- Neuroscience Laboratory, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Shilpa D Kadam
- Neuroscience Laboratory, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States.,Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Lozano DC, Choe TE, Cepurna WO, Morrison JC, Johnson EC. Early Optic Nerve Head Glial Proliferation and Jak-Stat Pathway Activation in Chronic Experimental Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:921-932. [PMID: 30835784 PMCID: PMC6402265 DOI: 10.1167/iovs.18-25700] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
PURPOSE We previously reported increased expression of cell proliferation and Jak-Stat pathway-related genes in chronic experimental glaucoma model optic nerve heads (ONH) with early, mild injury. Here, we confirm these observations by localizing, identifying, and quantifying ONH cellular proliferation and Jak-Stat pathway activation in this model. METHODS Chronic intraocular pressure (IOP) elevation was achieved via outflow pathway sclerosis. After 5 weeks, ONH longitudinal sections were immunolabeled with proliferation and cell-type markers to determine nuclear densities in the anterior (unmyelinated) and transition (partially myelinated) ONH. Nuclear pStat3 labeling was used to detect Jak-Stat pathway activation. Nuclear density differences between control ONH (uninjected) and ONH with either early or advanced injury (determined by optic nerve injury grading) were identified by ANOVA. RESULTS Advanced injury ONH had twice the nuclear density (P < 0.0001) of controls and significantly greater astrocyte density in anterior (P = 0.0001) and transition (P = 0.006) ONH regions. An increased optic nerve injury grade positively correlated with increased microglia/macrophage density in anterior and transition ONH (P < 0.0001, both). Oligodendroglial density was unaffected. In glaucoma model ONH, 80% of anterior and 66% of transition region proliferating cells were astrocytes. Nuclear pStat3 labeling significantly increased in early injury anterior ONH, and 95% colocalized with astrocytes. CONCLUSIONS Astrocytes account for the majority of proliferating cells, contributing to a doubled nuclear density in advanced injury ONH. Jak-Stat pathway activation is apparent in the early injury glaucoma model ONH. These data confirm dramatic astrocyte cell proliferation and early Jak-Stat pathway activation in ONH injured by elevated IOP.
Collapse
Affiliation(s)
- Diana C. Lozano
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Tiffany E. Choe
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - William O. Cepurna
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - John C. Morrison
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Elaine C. Johnson
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
21
|
Wilkinson CM, Fedor BA, Aziz JR, Nadeau CA, Brar PS, Clark JJA, Colbourne F. Failure of bumetanide to improve outcome after intracerebral hemorrhage in rat. PLoS One 2019; 14:e0210660. [PMID: 30629699 PMCID: PMC6328169 DOI: 10.1371/journal.pone.0210660] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/28/2018] [Indexed: 11/19/2022] Open
Abstract
After intracerebral hemorrhage (ICH), brain edema commonly occurs and can cause death. Along with edema, there are significant alterations in the concentrations of key ions such as sodium, potassium, and chloride, which are essential to brain function. NKCC1, a cation-chloride cotransporter, is upregulated after brain damage, such as traumatic injury and ischemic stroke. NKCC1 brings sodium and chloride into the cell, possibly worsening ion dyshomeostasis. Bumetanide, a specific NKCC1 antagonist, blocks the transport of chloride into cells, and thus should attenuate the increases in chloride, which should lessen brain edema and improve neuronal functioning post-ICH, as with other injuries. We used the collagenase model of ICH to test whether bumetanide treatment for three days (vs. vehicle) would improve outcome. We gave bumetanide beginning at two hours or seven days post-ICH and measured behavioural outcome, edema, and brain ion content after treatment. There was some evidence for a minor reduction in edema after early dosing, but this did not improve behaviour or lessen injury. Contrary to our hypothesis, bumetanide did not normalize ion concentrations after late dosing. Bumetanide did not improve behavioural outcome or affect lesion volume. After ICH, bumetanide is safe to use in rats but does not improve functional outcome in the majority of animals.
Collapse
Affiliation(s)
| | - Brittany A. Fedor
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jasmine R. Aziz
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Colby A. Nadeau
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Paul S. Brar
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Julia J. A. Clark
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Zhou Z, Lu J, Liu WW, Manaenko A, Hou X, Mei Q, Huang JL, Tang J, Zhang JH, Yao H, Hu Q. Advances in stroke pharmacology. Pharmacol Ther 2018; 191:23-42. [PMID: 29807056 DOI: 10.1016/j.pharmthera.2018.05.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stroke occurs when a cerebral blood vessel is blocked or ruptured, and it is the major cause of death and adult disability worldwide. Various pharmacological agents have been developed for the treatment of stroke either through interrupting the molecular pathways leading to neuronal death or enhancing neuronal survival and regeneration. Except for rtPA, few of these agents have succeeded in clinical trials. Recently, with the understanding of the pathophysiological process of stroke, there is a resurrection of research on developing neuroprotective agents for stroke treatment, and novel molecular targets for neuroprotection and neurorestoration have been discovered to predict or offer clinical benefits. Here we review the latest major progress of pharmacological studies in stroke, especially in ischemic stroke; summarize emerging potential therapeutic mechanisms; and highlight recent clinical trials. The aim of this review is to provide a panorama of pharmacological interventions for stroke and bridge basic and translational research to guide the clinical management of stroke therapy.
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Jianfei Lu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, the Second Military Medical University, Shanghai 200433, China
| | - Anatol Manaenko
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China
| | - Jun-Long Huang
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China.
| | - Qin Hu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
23
|
Schulte JT, Wierenga CJ, Bruining H. Chloride transporters and GABA polarity in developmental, neurological and psychiatric conditions. Neurosci Biobehav Rev 2018; 90:260-271. [PMID: 29729285 DOI: 10.1016/j.neubiorev.2018.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022]
Abstract
Neuronal chloride regulation is a determinant factor for the dynamic tuning of GABAergic inhibition during and beyond brain development. This regulation is mainly dependent on the two co-transporters K+/Cl- co-transporter KCC2 and Na+/K+/Cl- co-transporter NKCC1, whose activity can decrease or increase neuronal chloride concentrations respectively. Altered expression and/or activity of either of these co-transporters has been associated with a wide variety of brain disorders including developmental disorders, epilepsy, schizophrenia and stroke. Here, we review current knowledge on chloride transporter expression and activity regulation and highlight the intriguing potential for existing and future interventions to support chloride homeostasis across a wide range of mental disorders and neurological conditions.
Collapse
Affiliation(s)
- Joran T Schulte
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center, Heidelberglaan 100, 3508 GA Utrecht The Netherlands
| | - Corette J Wierenga
- Division of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Hilgo Bruining
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center, Heidelberglaan 100, 3508 GA Utrecht The Netherlands.
| |
Collapse
|
24
|
Zhu SZ, Szeto V, Bao MH, Sun HS, Feng ZP. Pharmacological approaches promoting stem cell-based therapy following ischemic stroke insults. Acta Pharmacol Sin 2018; 39:695-712. [PMID: 29671416 DOI: 10.1038/aps.2018.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023] Open
Abstract
Stroke can lead to long-term neurological deficits. Adult neurogenesis, the continuous generation of newborn neurons in distinct regions of the brain throughout life, has been considered as one of the appoaches to restore the neurological function following ischemic stroke. However, ischemia-induced spontaneous neurogenesis is not suffcient, thus cell-based therapy, including infusing exogenous stem cells or stimulating endogenous stem cells to help repair of injured brain, has been studied in numerous animal experiments and some pilot clinical trials. While the effects of cell-based therapy on neurological function during recovery remains unproven in randomized controlled trials, pharmacological agents have been administrated to assist the cell-based therapy. In this review, we summarized the limitations of ischemia-induced neurogenesis and stem-cell transplantation, as well as the potential proneuroregenerative effects of drugs that may enhance efficacy of cell-based therapies. Specifically, we discussed drugs that enhance proliferation, migration, differentiation, survival and function connectivity of newborn neurons, which may restore neurobehavioral function and improve outcomes in stroke patients.
Collapse
|
25
|
Abstract
Oncotic cell death or oncosis represents a major mechanism of cell death in ischaemic stroke, occurring in many central nervous system (CNS) cell types including neurons, glia and vascular endothelial cells. In stroke, energy depletion causes ionic pump failure and disrupts ionic homeostasis. Imbalance between the influx of Na+ and Cl- ions and the efflux of K+ ions through various channel proteins and transporters creates a transmembrane osmotic gradient, with ensuing movement of water into the cells, resulting in cell swelling and oncosis. Oncosis is a key mediator of cerebral oedema in ischaemic stroke, contributing directly through cytotoxic oedema, and indirectly through vasogenic oedema by causing vascular endothelial cell death and disruption of the blood-brain barrier (BBB). Hence, inhibition of uncontrolled ionic flux represents a novel and powerful strategy in achieving neuroprotection in stroke. In this review, we provide an overview of oncotic cell death in the pathology of stroke. Importantly, we summarised the therapeutically significant pathways of water, Na+, Cl- and K+ movement across cell membranes in the CNS and their respective roles in the pathobiology of stroke.
Collapse
|
26
|
Mu XP, Wang HB, Cheng X, Yang L, Sun XY, Qu HL, Zhao SS, Zhou ZK, Liu TT, Xiao T, Song B, Jolkkonen J, Zhao CS. Inhibition of Nkcc1 promotes axonal growth and motor recovery in ischemic rats. Neuroscience 2017; 365:83-93. [PMID: 28964752 DOI: 10.1016/j.neuroscience.2017.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/03/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022]
Abstract
Bumetanide is a selective inhibitor of the Na+-K+-Cl--co-transporter 1(NKCC1). We studied whether bumetanide could affect axonal growth and behavioral outcome in stroke rats. Adult male Wistar rats were randomly assigned to four groups: sham-operated rats treated with vehicle or bumetanide, and ischemic rats treated with vehicle or bumetanide. Endothelin-1 was used to induce focal cerebral ischemia. Bumetanide administration (i.c.v.) started on postoperative day 7 and continued for 3 weeks. Biotinylated dextran amine (BDA) was injected into the right imotor cortex on postoperative day 14 to trace corticospinal tract (CST) fibers sprouting into the denervated cervical spinal cord. Nogo-A, NKCC1, KCC2 and BDNF in the perilesional cortex and BDA, PSD-95 and vGlut1 in the denervated spinal cord were measured by immunohistochemistry and/or Western blot. Behavioral outcome of rats was assessed by the beam walking and cylinder tests. The total length of CST fibers sprouting into the denervated cervical spinal cord significantly increased after stroke and bumetanide further increased this sprouting. Bumetanide treatment also decreased the expressions of NKCC1 and Nogo-A, increased the expressions of KCC2 and BDNF in the perilesional cortex and enhanced the synaptic plasticity in the denervated cervical spinal cord after cerebral ischemia. The behavioral performance of ischemic rats was significantly improved by bumetanide. In conclusion, bumetanide promoted post-stroke axonal sprouting together accompanied by an improved behavioral outcome possibly through restoring and maintaining neuronal chloride homeostasis and creating a recovery-promoting microenvironment by overcoming the axonal growth inhibition encountered after cerebral ischemia in rats.
Collapse
Affiliation(s)
- X P Mu
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China; Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - H B Wang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - X Cheng
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - L Yang
- Department of Cardiology, The Affiliated Center Hospital, Shenyang Medical College, Shenyang, China
| | - X Y Sun
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - H L Qu
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - S S Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Z K Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - T T Liu
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - T Xiao
- Department of Dermatology, The First Affiliated Hospital, China Medical University, Shenyang, China; Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, China
| | - B Song
- Regenerative Medicine, Cardiff Institute of Tissue Engineering and Repair, School of Dentistry, Cardiff University, Cardiff, UK
| | - J Jolkkonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P. O. Box 1627, 70211 Kuopio, Finland
| | - C S Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
27
|
Wang R, Li J, Duan Y, Tao Z, Zhao H, Luo Y. Effects of Erythropoietin on Gliogenesis during Cerebral Ischemic/Reperfusion Recovery in Adult Mice. Aging Dis 2017; 8:410-419. [PMID: 28840056 PMCID: PMC5524804 DOI: 10.14336/ad.2016.1209] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022] Open
Abstract
Erythropoietin (EPO) promotes oligodendrogenesis and attenuates white matter injury in neonatal rats. However, it is unknown whether this effect extends to adult mice and whether EPO regulate microglia polarization after ischemic stroke. Male adult C57BL/6 mice (25–30g) were subjected to 45 min of middle cerebral artery occlusion (MCAO). EPO (5000 IU/kg) or saline was injected intraperitoneally every other day after reperfusion. Neurological function was evaluated using the rotarod test at 1, 3, 7 and 14 days after MCAO. Brain tissue loss volume was determined by hematoxylin-eosin staining. Immunofluorescence staining and Western blot were also used to assess the severity of white matter injury and phenotypic changes in microglia/macrophages. Bromodeoxyuridine (BrdU) was injected intraperitoneally daily for 1 week to analyze the number of newly proliferating glia cells (oligodendrocytes, microglia, and astrocytes). We found that EPO significantly reduced Brain tissue loss volume, ameliorated white matter injury, and improved neurobehavioral outcomes at 14 days after MCAO (P<0.05). In addition, EPO also increased the number of newly generated oligodendrocytes and attenuated the rapid hypertrophy and hyperplasia of microglia and astrocytes after ischemic stroke (P<0.05). Furthermore, EPO reduced M1 microglia and increased M2 microglia (P<0.05). Taken together, our results suggest that EPO treatment improves white matter integrity after cerebral ischemia, which could be attributed to EPO attenuating gliosis and facilitating the microglial polarization toward the beneficial M2 phenotype to promote oligodendrogenesis.
Collapse
Affiliation(s)
- Rongliang Wang
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,2Beijing Institute for Brain Disorders, Beijing 100053, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Jincheng Li
- 4Department of Neurology, Zibo Central Hospital, Zibo 255036, China
| | - Yunxia Duan
- 2Beijing Institute for Brain Disorders, Beijing 100053, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Zhen Tao
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,2Beijing Institute for Brain Disorders, Beijing 100053, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Haiping Zhao
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,2Beijing Institute for Brain Disorders, Beijing 100053, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Yumin Luo
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,2Beijing Institute for Brain Disorders, Beijing 100053, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| |
Collapse
|
28
|
Martín-Aragón Baudel MAS, Poole AV, Darlison MG. Chloride co-transporters as possible therapeutic targets for stroke. J Neurochem 2016; 140:195-209. [PMID: 27861901 DOI: 10.1111/jnc.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023]
Abstract
Stroke is one of the major causes of death and disability worldwide. The major type of stroke is an ischaemic one, which is caused by a blockage that interrupts blood flow to the brain. There are currently very few pharmacological strategies to reduce the damage and social burden triggered by this pathology. The harm caused by the interruption of blood flow to the brain unfolds in the subsequent hours and days, so it is critical to identify new therapeutic targets that could reduce neuronal death associated with the spread of the damage. Here, we review some of the key molecular mechanisms involved in the progression of neuronal death, focusing on some new and promising studies. In particular, we focus on the potential of the chloride co-transporter (CCC) family of proteins, mediators of the GABAergic response, both during the early and later stages of stroke, to promote neuroprotection and recovery. Different studies of CCCs during the chronic and recovery phases post-stroke reveal the importance of timing when considering CCCs as potential neuroprotective and/or neuromodulator targets. The molecular regulatory mechanisms of the two main neuronal CCCs, NKCC1 and KCC2, are further discussed as an indirect approach for promoting neuroprotection and neurorehabilitation following an ischaemic insult. Finally, we mention the likely importance of combining different strategies in order to achieve more effective therapies.
Collapse
Affiliation(s)
| | - Amy V Poole
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| | - Mark G Darlison
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| |
Collapse
|