1
|
Conde MA, Alza NP, Funk MI, Maniscalchi A, Benzi Juncos ON, Berge I, Uranga RM, Salvador GA. α-Synuclein Attenuates Maneb Neurotoxicity through the Modulation of Redox-Sensitive Transcription Factors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5803323. [PMID: 37113744 PMCID: PMC10129426 DOI: 10.1155/2023/5803323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 04/29/2023]
Abstract
The accumulation and aggregation of α-synuclein is a pathognomonic sign of Parkinson's disease (PD). Maneb (MB) exposure has also been reported as one environmental triggering factor of this multifactorial neurodegenerative disease. In our laboratory, we have previously reported that mild overexpression of α-synuclein (200% increase with respect to endogenous neuronal levels) can confer neuroprotection against several insults. Here, we tested the hypothesis that α-synuclein can modulate the neuronal response against MB-induced neurotoxicity. When exposed to MB, cells with endogenous α-synuclein expression displayed increased reactive oxygen species (ROS) associated with diminished glutamate-cysteine ligase catalytic subunit (GCLc) and hemeoxygenase-1 (HO-1) mRNA expressions and upregulation of the nuclear factor erythroid 2-related factor 2 (NRF2) repressor, BTB domain and CNC homolog 1 (BACH1). We found that α-synuclein overexpression (wt α-syn cells) attenuated MB-induced neuronal damage by reducing oxidative stress. Decreased ROS found in MB-treated wt α-syn cells was associated with unaltered GCLc and HO-1 mRNA expressions and decreased BACH1 expression. In addition, the increased SOD2 expression and catalase activity were associated with forkhead box O 3a (FOXO3a) nuclear compartmentalization. Cytoprotective effects observed in wt α-syn cells were also associated with the upregulation of silent information regulator 1 (SIRT1). In control cells, MB-treatment downregulated glutathione peroxidase 4 mRNA levels, which was coincident with increased ROS content, lipid peroxidation, and mitochondrial alterations. These deleterious effects were prevented by ferrostatin-1, an inhibitor of ferroptosis, under conditions of endogenous α-synuclein expression. The overexpression of α-synuclein attenuated MB toxicity by the activation of the same mechanisms as ferrostatin-1. Overall, our findings suggest that mild overexpression of α-synuclein attenuates MB-induced neurotoxicity through the modulation of NRF2 and FOXO3a transcription factors and prevents cell death probably by intervening in mechanisms associated with ferroptosis. Thus, we postulate that early stages of α-synuclein overexpression could be potentially neuroprotective against MB neurotoxicity.
Collapse
Affiliation(s)
- M. A. Conde
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
- Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, Bahía Blanca, Argentina
| | - N. P. Alza
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
- UNS, Departamento de Química, Bahía Blanca, Argentina
| | - M. I. Funk
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
- Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, Bahía Blanca, Argentina
| | - A. Maniscalchi
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
| | - O. N. Benzi Juncos
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
- Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, Bahía Blanca, Argentina
| | - I. Berge
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
- Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, Bahía Blanca, Argentina
| | - R. M. Uranga
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
- Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, Bahía Blanca, Argentina
| | - G. A. Salvador
- National Scientific and Technical Research Council-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Camino La Carrindanga Km 7, B8000FWB Bahía Blanca, Argentina
- Universidad Nacional del Sur (UNS), Departamento de Biología, Bioquímica y Farmacia, Bahía Blanca, Argentina
| |
Collapse
|
2
|
Funk MI, Conde MA, Piwien-Pilipuk G, Uranga RM. Novel antiadipogenic effect of menadione in 3T3-L1 cells. Chem Biol Interact 2021; 343:109491. [PMID: 33945810 DOI: 10.1016/j.cbi.2021.109491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022]
Abstract
Inhibition of adipocyte differentiation can be used as a strategy for preventing adipose tissue expansion and, consequently, for obesity management. Since reactive oxygen species (ROS) have emerged as key modulators of adipogenesis, the effect of menadione (a synthetic form of vitamin K known to induce the increase of intracellular ROS) on 3T3-L1 preadipocyte differentiation was studied. Menadione (15 μM) increased ROS and lipid peroxidation, generating mild oxidative stress without affecting cell viability. Menadione drastically inhibited adipogenesis, accompanied by decreased intracellular lipid accumulation and diminished expression of the lipo/adipogenic markers peroxisome proliferator-activated receptor (PPAR)γ, fatty acid synthase (FAS), CCAAT/enhancer-binding protein (C/EBP) α, fatty acid binding protein (FABP) 4, and perilipin. Menadione treatment also increased lipolysis, as indicated by augmented glycerol release and reinforced by the increased expression of hormone-sensitive lipase (HSL). Additionally, menadione increased the inhibitory phosphorylation of acetyl-CoA-carboxylase (ACC), which results in the inhibition of fatty acid synthesis. As a consequence, triglyceride content was decreased. Menadione also inhibited the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Further, treatment with increased concentration of insulin, a potent physiological activator of the PI3K/Akt pathway, rescued the normal level of expression of PPARγ, the master regulator of adipogenesis, and overcame the restraining effect of menadione on the differentiation capacity of 3T3-L1 preadipocytes. Our study reveals novel antiadipogenic action for menadione, which is, at least in part, mediated by the PI3K/Akt pathway signaling and raises its potential as a therapeutic agent in the treatment or prevention of adiposity.
Collapse
Affiliation(s)
- Melania Iara Funk
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional Del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina. Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina
| | - Melisa Ailén Conde
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional Del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina. Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina
| | | | - Romina María Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional Del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina. Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina.
| |
Collapse
|
3
|
Desale SE, Chinnathambi S. Phosphoinositides signaling modulates microglial actin remodeling and phagocytosis in Alzheimer's disease. Cell Commun Signal 2021; 19:28. [PMID: 33627135 PMCID: PMC7905611 DOI: 10.1186/s12964-021-00715-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease is one of the neurodegenerative diseases, characterized by the accumulation of abnormal protein deposits, which disrupts signal transduction in neurons and other glia cells. The pathological protein in neurodegenerative diseases, Tau and amyloid-β contribute to the disrupted microglial signaling pathways, actin cytoskeleton, and cellular receptor expression. The important secondary messenger lipids i.e., phosphatidylinositols are largely affected by protein deposits of amyloid-β in Alzheimer's disease. Phosphatidylinositols are the product of different phosphatidylinositol kinases and the state of phosphorylation at D3, D4, and D5 positions of inositol ring. Phosphatidylinositol 3,4,5-triphosphate (PI 3, 4, 5-P3) involves in phagocytic cup formation, cell polarization, whereas Phosphatidylinositol 4,5-bisphosphate (PI 4, 5-P2)-mediates the process of phagosomes formation and further its fusion with early endosome.. The necessary activation of actin-binding proteins such as Rac, WAVE complex, and ARP2/3 complex for the actin polymerization in the process of phagocytosis, migration is regulated and maintained by PI 3, 4, 5-P3 and PI 4, 5-P2. The ratio and types of fatty acid intake can influence the intracellular secondary lipid messengers along with the cellular content of phaphatidylcholine and phosphatidylethanolamine. The Amyloid-β deposits and extracellular Tau seeds disrupt phosphatidylinositides level and actin cytoskeletal network that hamper microglial-signaling pathways in AD. We hypothesize that being a lipid species intracellular levels of phosphatidylinositol would be regulated by dietary fatty acids. Further we are interested to understand phosphoinositide-based signaling cascades in phagocytosis and actin remodeling. Video Abstract.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
| |
Collapse
|
4
|
Neutral lipids as early biomarkers of cellular fate: the case of α-synuclein overexpression. Cell Death Dis 2021; 12:52. [PMID: 33414430 PMCID: PMC7791139 DOI: 10.1038/s41419-020-03254-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
α-synuclein (α-syn) accumulation and aggregation is a common pathological factor found in synucleinopathies, a group of neurodegenerative disorders that includes Parkinson´s disease (PD). It has been proposed that lipid dyshomeostasis is responsible for the occurrence of PD-related processes, however, the precise role of lipids in the onset and progression of neurodegenerative disorders remains unclear. Our aim was to investigate the effect of α-syn overexpression on neutral lipid metabolism and how this impacts on neuronal fate. We found lipid droplet (LD) accumulation in cells overexpressing α-syn to be associated with a rise in triacylglycerol (TAG) and cholesteryl ester (CE) levels. α-syn overexpression promoted diacylglycerol acyltransferase 2 upregulation and acyl-CoA synthetase activation, triggering TAG buildup, that was accompanied by an increase in diacylglycerol acylation. Moreover, the CE increment was associated with higher activity of acyl-CoA:cholesterol acyltransferase. Interestingly, α-syn overexpression increased cholesterol lysosomal accumulation. We observed that sterol regulatory element-binding protein (SREBP)-1 and SREBP-2 were differentially regulated by α-syn overexpression. The latter gave rise to a reduction in SREBP-1 nuclear translocation and consequently in fatty acid synthase expression, whereas it produced an increase in SREBP-2 nuclear localization. Surprisingly, and despite increased cholesterol levels, SREBP-2 downstream genes related to cholesterolgenesis were not upregulated as expected. Notably, phospholipid (PL) levels were diminished in cells overexpressing α-syn. This decrease was related to the activation of phospholipase A2 (PLA2) with a concomitant imbalance of the PL deacylation-acylation cycle. Fatty acids released from PLs by iPLA2 and cPLA2 action were esterified into TAGs, thus promoting a biological response to α-syn overexpression with uncompromised cell viability. When the described steady-state was disturbed under conditions favoring higher levels of α-syn, the response was an enhanced LD accumulation, this imbalance ultimately leading to neuronal death.
Collapse
|
5
|
Tapia C, Suares A, De Genaro P, González-Pardo V. In vitro studies revealed a downregulation of Wnt/β-catenin cascade by active vitamin D and TX 527 analog in a Kaposi's sarcoma cellular model. Toxicol In Vitro 2019; 63:104748. [PMID: 31838186 DOI: 10.1016/j.tiv.2019.104748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 01/29/2023]
Abstract
The Kaposi's sarcoma-associated herpesvirus G-protein-coupled receptor (vGPCR) is a key molecule in the pathogenesis of Kaposi's sarcoma. We have previously demonstrated that 1α,25(OH)2D3 or its less calcemic analog TX 527 exerts antiproliferative effects in endothelial cells stable expressing vGPCR. Since it is well documented that vGPCR activates the canonical Wnt/β-catenin signaling pathway, the aim of this study was to evaluate if Wnt/β-catenin cascade is target of 1α,25(OH)2D3 or TX 527 as part of their antineoplastic mechanism. Firstly, Western blot studies showed an increase in β-catenin protein levels in a dose and time dependent manner; and when VDR was knockdown, β-catenin protein levels were significantly decreased. Secondly, β-catenin localization, investigated by immunofluorescence and subcellular fractionation techniques, was found increased in the nucleus and plasma membrane after 1α,25(OH)2D3 treatment. VE-cadherin protein levels were also increased in the plasma membrane fraction. Furthermore, β-catenin interaction with VDR was observed by co-immunoprecipitation and mRNA expression of β-catenin target genes was found decreased. Finally, DKK-1, the extracellular inhibitor of Wnt/β-catenin pathway, showed an initial upregulation of mRNA expression. Altogether, the results obtained by different techniques revealed a downregulation of Wnt/β-catenin cascade after 1α,25(OH)2D3 or TX 527 treatment, showing the foundation for a potential chemotherapeutic agent.
Collapse
Affiliation(s)
- Cinthya Tapia
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Alejandra Suares
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Pablo De Genaro
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Verónica González-Pardo
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
6
|
Iglesias González PA, Conde MA, González-Pardo V, Uranga RM, Salvador GA. In vitro 6-hydroxydopamine-induced neurotoxicity: New insights on NFκB modulation. Toxicol In Vitro 2019; 60:400-411. [DOI: 10.1016/j.tiv.2019.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
|
7
|
Fabiani C, Antollini SS. Alzheimer's Disease as a Membrane Disorder: Spatial Cross-Talk Among Beta-Amyloid Peptides, Nicotinic Acetylcholine Receptors and Lipid Rafts. Front Cell Neurosci 2019; 13:309. [PMID: 31379503 PMCID: PMC6657435 DOI: 10.3389/fncel.2019.00309] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Biological membranes show lateral and transverse asymmetric lipid distribution. Cholesterol (Chol) localizes in both hemilayers, but in the external one it is mostly condensed in lipid-ordered microdomains (raft domains), together with saturated phosphatidyl lipids and sphingolipids (including sphingomyelin and glycosphingolipids). Membrane asymmetries induce special membrane biophysical properties and behave as signals for several physiological and/or pathological processes. Alzheimer’s disease (AD) is associated with a perturbation in different membrane properties. Amyloid-β (Aβ) plaques and neurofibrillary tangles of tau protein together with neuroinflammation and neurodegeneration are the most characteristic cellular changes observed in this disease. The extracellular presence of Aβ peptides forming senile plaques, together with soluble oligomeric species of Aβ, are considered the major cause of the synaptic dysfunction of AD. The association between Aβ peptide and membrane lipids has been extensively studied. It has been postulated that Chol content and Chol distribution condition Aβ production and posterior accumulation in membranes and, hence, cell dysfunction. Several lines of evidence suggest that Aβ partitions in the cell membrane accumulate mostly in raft domains, the site where the cleavage of the precursor AβPP by β- and γ- secretase is also thought to occur. The main consequence of the pathogenesis of AD is the disruption of the cholinergic pathways in the cerebral cortex and in the basal forebrain. In parallel, the nicotinic acetylcholine receptor has been extensively linked to membrane properties. Since its transmembrane domain exhibits extensive contacts with the surrounding lipids, the acetylcholine receptor function is conditioned by its lipid microenvironment. The nicotinic acetylcholine receptor is present in high-density clusters in the cell membrane where it localizes mainly in lipid-ordered domains. Perturbations of sphingomyelin or cholesterol composition alter acetylcholine receptor location. Therefore, Aβ processing, Aβ partitioning, and acetylcholine receptor location and function can be manipulated by changes in membrane lipid biophysics. Understanding these mechanisms should provide insights into new therapeutic strategies for prevention and/or treatment of AD. Here, we discuss the implications of lipid-protein interactions at the cell membrane level in AD.
Collapse
Affiliation(s)
- Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
8
|
Lasala M, Fabiani C, Corradi J, Antollini S, Bouzat C. Molecular Modulation of Human α7 Nicotinic Receptor by Amyloid-β Peptides. Front Cell Neurosci 2019; 13:37. [PMID: 30800059 PMCID: PMC6376857 DOI: 10.3389/fncel.2019.00037] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Amyloid β peptide (Aβ) is a key player in the development of Alzheimer's disease (AD). It is the primary component of senile plaques in AD patients and is also found in soluble forms. Cholinergic activity mediated by α7 nicotinic receptors has been shown to be affected by Aβ soluble forms. To shed light into the molecular mechanism of this effect, we explored the direct actions of oligomeric Aβ1-40 and Aβ1-42 on human α7 by fluorescence spectroscopy and single-channel recordings. Fluorescence measurements using the conformational sensitive probe crystal violet (CrV) revealed that in the presence of Aβ α7 undergoes concentration-dependent conformational changes. Exposure of α7 to 100 pM Aβ changes CrV KD towards that of the desensitized state. However, α7 is still reactive to high carbamylcholine (Carb) concentrations. These observations are compatible with the induction of active/desensitized states as well as of a novel conformational state in the presence of both Aβ and Carb. At 100 nM Aβ, α7 adopts a resting-state-like structure which does not respond to Carb, suggesting stabilization of α7 in a blocked state. In real time, we found that Aβ is capable of eliciting α7 channel activity either in the absence or presence of the positive allosteric modulator (PAM) PNU-120596. Activation by Aβ is favored at picomolar or low nanomolar concentrations and is not detected at micromolar concentrations. At high Aβ concentrations, the mean duration of activation episodes elicited by ACh in the presence of PNU-120596 is significantly reduced, an effect compatible with slow open-channel block. We conclude that Aβ directly affects α7 function by acting as an agonist and a negative modulator. Whereas the capability of low concentrations of Aβ to activate α7 could be beneficial, the reduced α7 activity in the presence of higher Aβ concentrations or its long exposure may contribute to the cholinergic signaling deficit and may be involved in the initiation and development of AD.
Collapse
Affiliation(s)
- Matías Lasala
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Silvia Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
9
|
Sánchez Campos S, Alza NP, Salvador GA. Lipid metabolism alterations in the neuronal response to A53T α-synuclein and Fe-induced injury. Arch Biochem Biophys 2018; 655:43-54. [PMID: 30098984 DOI: 10.1016/j.abb.2018.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Pathological α-synuclein (α-syn) overexpression and iron (Fe)-induced oxidative stress (OS) are involved in the death of dopaminergic neurons in Parkinson's disease (PD). We have previously characterized the role of triacylglycerol (TAG) formation in the neuronal response to Fe-induced OS. In this work we characterize the role of the α-syn variant A53T during Fe-induced injury and investigate whether lipid metabolism has implications for neuronal fate. To this end, we used the N27 dopaminergic neuronal cell line either untransfected (UT) or stably transfected with pcDNA3 vector (as a transfection control) or pcDNA-A53T-α-syn (A53T α-syn). The overexpression of A53T α-syn triggered an increase in TAG content mainly due to the activation of Acyl-CoA synthetase. Since fatty acid (FA) β-oxidation and phospholipid content did not change in A53T α-syn cells, the unique consequence of the increase in FA-CoA derivatives was their acylation in TAG moieties. Control cells exposed to Fe-induced injury displayed increased OS markers and TAG content. Intriguingly, Fe exposure in A53T α-syn cells promoted a decrease in OS markers accompanied by α-syn aggregation and elevated TAG content. We report here new evidence of a differential role played by A53T α-syn in neuronal lipid metabolism as related to the neuronal response to OS.
Collapse
Affiliation(s)
- Sofía Sánchez Campos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Natalia P Alza
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Química (UNS), Bahía Blanca, Argentina
| | - Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina.
| |
Collapse
|
10
|
Unraveling the Burden of Iron in Neurodegeneration: Intersections with Amyloid Beta Peptide Pathology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2850341. [PMID: 29581821 PMCID: PMC5831758 DOI: 10.1155/2018/2850341] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/17/2017] [Indexed: 12/14/2022]
Abstract
Iron overload is a hallmark of many neurodegenerative processes such as Alzheimer's, Parkinson's, and Huntington's diseases. Unbound iron accumulated as a consequence of brain aging is highly reactive with water and oxygen and produces reactive oxygen species (ROS) or free radicals. ROS are toxic compounds able to damage cell membranes, DNA, and mitochondria. Which are the mechanisms involved in neuronal iron homeostasis and in neuronal response to iron-induced oxidative stress constitutes a cutting-edge topic in metalloneurobiology. Increasing our knowledge about the underlying mechanisms that operate in iron accumulation and their consequences would shed light on the comprehension of the molecular events that participate in the pathophysiology of the abovementioned neurodegenerative diseases. In this review, current evidences about iron accumulation in the brain, the signaling mechanisms triggered by metal overload, as well as the interaction between amyloid β (Aβ) and iron, will be summarized.
Collapse
|
11
|
Liu W, Zhuo P, Li L, Jin H, Lin B, Zhang Y, Liang S, Wu J, Huang J, Wang Z, Lin R, Chen L, Tao J. Activation of brain glucose metabolism ameliorating cognitive impairment in APP/PS1 transgenic mice by electroacupuncture. Free Radic Biol Med 2017; 112:174-190. [PMID: 28756309 DOI: 10.1016/j.freeradbiomed.2017.07.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023]
Abstract
An essential feature of Alzheimer's disease (AD) is implicated in brain energy metabolic impairment that is considered underlying pathogenesis of cognitive impairment. Therefore, therapeutic interventions to allay cognitive deficits that target energy metabolism may be an efficacy strategy in AD. In this study, we found that electroacupuncture (EA) at the DU20 acupoint obviously increased glucose metabolism in specific brain regions such as cortex, hippocampus, cingulate gyrus, basal forebrain septum, brain stem, and cerebellum in APP/PS1 transgenic mice by animal 18F-Fluoro-2-deoxy-D-Glucose (18F-FDG)/positron emission tomography (PET) imaging, accompanied by cognitive improvements in the spatial reference learning and memory and memory flexibility and novel object recognition performances. Further evidence shown energy metabolism occurred in neurons or non-neuronal cells of the cortex and hippocampus in terms of the co-location of GLUT3/NeuN and GLUT1/GFAP. Simultaneously, metabolic homeostatic factors were critical for glucose metabolism, including phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and AKT serine/threonine kinase. Furthermore, EA-induced phosphorylated AMPK and AKT inhibited the phosphorylation level of the mammalian target of rapamycin (mTOR) to decrease the accumulation of amyloid-beta (Aβ) in the cortex and hippocampus. These findings are concluded that EA is a potential therapeutic target for delaying memory decline and Aβ deposition of AD. The AMPK and AKT are implicated in the EA-induced cortical and hippocampal energy metabolism, which served as a contributor to improving cognitive function and Aβ deposition in a transgenic mouse model of AD.
Collapse
Affiliation(s)
- Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Peiyuan Zhuo
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350122, China
| | - Long Li
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350122, China
| | - Hao Jin
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350122, China
| | - Bingbing Lin
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350122, China
| | - Yingzheng Zhang
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350122, China
| | - Shengxiang Liang
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wu
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350122, China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Zhifu Wang
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350122, China
| | - Ruhui Lin
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350122, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|