1
|
Karimi Tari P, Parsons CG, Collingridge GL, Rammes G. Memantine: Updating a rare success story in pro-cognitive therapeutics. Neuropharmacology 2024; 244:109737. [PMID: 37832633 DOI: 10.1016/j.neuropharm.2023.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The great potential for NMDA receptor modulators as druggable targets in neurodegenerative disorders has been met with limited success. Considered one of the rare exceptions, memantine has consistently demonstrated restorative and prophylactic properties in many AD models. In clinical trials memantine slows the decline in cognitive performance associated with AD. Here, we provide an overview of the basic properties including pharmacological targets, toxicology and cellular effects of memantine. Evidence demonstrating reductions in molecular, physiological and behavioural indices of AD-like impairments associated with memantine treatment are also discussed. This represents both an extension and homage to Dr. Chris Parson's considerable contributions to our fundamental understanding of a success story in the AD treatment landscape.
Collapse
Affiliation(s)
- Parisa Karimi Tari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Chris G Parsons
- Galimedix Therapeutics, Inc., 2704 Calvend Lane, Kensington, 20895, MD, USA
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada; TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine of the Technical University of Munich, School of Medicine, 22, 81675, Munich, Germany.
| |
Collapse
|
2
|
Mansk LMZ, Jaimes LF, Dias TL, Pereira GS. Social recognition memory differences between mouse strains: On the effects of social isolation, adult neurogenesis, and environmental enrichment. Brain Res 2023; 1819:148535. [PMID: 37595660 DOI: 10.1016/j.brainres.2023.148535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Remembering conspecifics is paramount for the establishment and maintenance of groups. Here we asked whether the variability in social behavior caused by different breeding strategies affects social recognition memory (SRM). We tested the hypothesis that the inbred Swiss and the outbred C57BL/6 mice behave differently on SRM. Social memory in C57BL/6 mice endured at least 14 days, while in Swiss mice lasted 24 h but not ten days. We showed previously that an enriched environment enhanced the persistence of SRM in Swiss mice. Here we reproduced this result and added that it also increases the survival of adult-born neurons in the hippocampus. Next, we tested whether prolonged SRM observed in C57BL/6 mice could be changed by diminishing the trial duration or using an interference stimulus after learning. Neither short acquisition time nor interference during consolidation affected it. However, social isolation impaired SRM in C57BL/6 mice, similar to what was previously observed in Swiss mice. Our results demonstrate that SRM expression can vary according to the mouse strain, which shows the importance of considering this variable when choosing the most suitable model to answer specific questions about this memory system. We also demonstrate the suitability of both C57BL/6 and Swiss strains for exploring the impact of environmental conditions and adult neurogenesis on social memory.
Collapse
Affiliation(s)
- Lara M Z Mansk
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thomaz L Dias
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
García-Gómez L, Castillo-Fernández I, Perez-Villalba A. In the pursuit of new social neurons. Neurogenesis and social behavior in mice: A systematic review. Front Cell Dev Biol 2022; 10:1011657. [PMID: 36407114 PMCID: PMC9672322 DOI: 10.3389/fcell.2022.1011657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Social behaviors have become more relevant to our understanding of the human nervous system because relationships with our peers may require and modulate adult neurogenesis. Here, we review the pieces of evidence we have to date for the divergence of social behaviors in mice by modulation of adult neurogenesis or if social behaviors and the social environment can drive a change in neurogenic processes. Social recognition and memory are deeply affected by antimitotic drugs and irradiation, while NSC transgenic mice may run with lower levels of social discrimination. Interestingly, social living conditions can create a big impact on neurogenesis. Social isolation and social defeat reduce the number of new neurons, while social dominance and enrichment of the social environment increase their number. These new “social neurons” trigger functional modifications with amazing transgenerational effects. All of these suggest that we are facing two bidirectional intertwined variables, and the great challenge now is to understand the cellular and genetic mechanisms that allow this relationship to be used therapeutically.
Collapse
|
4
|
Atypical perineuronal nets in the CA2 region interfere with social memory in a mouse model of social dysfunction. Mol Psychiatry 2022; 27:3520-3531. [PMID: 34183768 PMCID: PMC8712624 DOI: 10.1038/s41380-021-01174-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Social memory dysfunction is an especially devastating symptom of many neuropsychiatric disorders, which makes understanding the cellular and molecular processes that contribute to such abnormalities important. Evidence suggests that the hippocampus, particularly the CA2 region, plays an important role in social memory. We sought to identify potential mechanisms of social memory dysfunction in the hippocampus by investigating features of neurons, glia, and the extracellular matrix (ECM) of BTBR mice, an inbred mouse strain with deficient social memory. The CA2 is known to receive inputs from dentate gyrus adult-born granule cells (abGCs), neurons known to participate in social memory, so we examined this cell population and found fewer abGCs, as well as fewer axons from abGCs in the CA2 of BTBR mice compared to controls. We also found that BTBR mice had fewer pyramidal cell dendritic spines, in addition to fewer microglia and astrocytes, in the CA2 compared to controls. Along with diminished neuronal and glial elements, we found atypical perineuronal nets (PNNs), specialized ECM structures that regulate plasticity, in the CA2 of BTBR mice. By diminishing PNNs in the CA2 of BTBR mice to control levels, we observed a partial restoration of social memory. Our findings suggest that the CA2 region of BTBR mice exhibits multiple cellular and extracellular abnormalities and identify atypical PNNs as one mechanism producing social memory dysfunction, although the contribution of reduced abGC afferents, pyramidal cell dendritic spine, and glial cell numbers remains unexplored.
Collapse
|
5
|
Waters RC, Worth HM, Vasquez B, Gould E. Inhibition of adult neurogenesis reduces avoidance behavior in male, but not female, mice subjected to early life adversity. Neurobiol Stress 2022; 17:100436. [PMID: 35146080 PMCID: PMC8819473 DOI: 10.1016/j.ynstr.2022.100436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Early life adversity (ELA) increases the risk of developing neuropsychiatric illnesses such as anxiety disorders. However, the mechanisms connecting these negative early life experiences to illness later in life remain unclear. In rodents, plasticity mechanisms, specifically adult neurogenesis in the ventral hippocampus, have been shown to be altered by ELA and important for buffering against detrimental stress-induced outcomes. The current study sought to explore whether adult neurogenesis contributes to ELA-induced changes in avoidance behavior. Using the GFAP-TK transgenic model, which allows for the inhibition of adult neurogenesis, and CD1 littermate controls, we subjected mice to an ELA paradigm of maternal separation and early weaning (MSEW) or control rearing. We found that mice with intact adult neurogenesis showed no behavioral changes in response to MSEW. After reducing adult neurogenesis, however, male mice previously subjected to MSEW had an unexpected decrease in avoidance behavior. This finding was not observed in female mice, suggesting that a sex difference exists in the role of adult-born neurons in buffering against ELA-induced changes in behavior. Taken together with the existing literature on ELA and avoidance behavior, this work suggests that strain differences exist in susceptibility to ELA and that adult-born neurons may play a role in regulating adaptive behavior.
Collapse
|
6
|
Marzano LAS, de Castro FLM, Machado CA, de Barros JLVM, Macedo E Cordeiro T, Simões E Silva AC, Teixeira AL, Silva de Miranda A. Potential Role of Adult Hippocampal Neurogenesis in Traumatic Brain Injury. Curr Med Chem 2021; 29:3392-3419. [PMID: 34561977 DOI: 10.2174/0929867328666210923143713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
Traumatic brain injury (TBI) is a serious cause of disability and death among young and adult individuals, displaying complex pathophysiology including cellular and molecular mechanisms that are not fully elucidated. Many experimental and clinical studies investigated the potential relationship between TBI and the process by which neurons are formed in the brain, known as neurogenesis. Currently, there are no available treatments for TBI's long-term consequences being the search for novel therapeutic targets, a goal of highest scientific and clinical priority. Some studies evaluated the benefits of treatments aimed at improving neurogenesis in TBI. In this scenario, herein, we reviewed current pre-clinical studies that evaluated different approaches to improving neurogenesis after TBI while achieving better cognitive outcomes, which may consist in interesting approaches for future treatments.
Collapse
Affiliation(s)
- Lucas Alexandre Santos Marzano
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | | | - Caroline Amaral Machado
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil
| | | | - Thiago Macedo E Cordeiro
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, United States
| | - Aline Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
7
|
Lunardi P, Mansk LMZ, Jaimes LF, Pereira GS. On the novel mechanisms for social memory and the emerging role of neurogenesis. Brain Res Bull 2021; 171:56-66. [PMID: 33753208 DOI: 10.1016/j.brainresbull.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023]
Abstract
Social memory (SM) is a key element in social cognition and it encompasses the neural representation of conspecifics, an essential information to guide behavior in a social context. Here we evaluate classical and cutting-edge studies on neurobiology of SM, using as a guiding principle behavioral tasks performed in adult rodents. Our review highlights the relevance of the hippocampus, especially the CA2 region, as a neural substrate for SM and suggest that neural ensembles in the olfactory bulb may also encode SM traces. Compared to other hippocampus-dependent memories, much remains to be done to describe the neurobiological foundations of SM. Nonetheless, we argue that special attention should be paid to neurogenesis. Finally, we pinpoint the remaining open question on whether the hippocampal adult neurogenesis acts through pattern separation to permit the discrimination of highly similar stimuli during behavior.
Collapse
Affiliation(s)
- Paula Lunardi
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lara M Z Mansk
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Adult-Born Neurons in the Hippocampus Are Essential for Social Memory Maintenance. eNeuro 2020; 7:ENEURO.0182-20.2020. [PMID: 33060182 PMCID: PMC7768285 DOI: 10.1523/eneuro.0182-20.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/18/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
Throughout adulthood, the dentate gyrus continues to produce new granule cells, which integrate into the hippocampal circuitry. New neurons have been linked to several known functions of the hippocampus, including learning and memory, anxiety and stress regulation, and social behavior. We explored whether transgenic reduction of adult-born neurons in mice would impair social memory and the formation of social dominance hierarchies. We used a conditional transgenic mouse strain [thymidine kinase (TK) mice] that selectively reduces adult neurogenesis by treatment with the antiviral drug valganciclovir (VGCV). TK mice treated with VGCV were unable to recognize conspecifics as familiar 24 h after initial exposure. We then explored whether reducing new neurons completely impaired their ability to acquire or retrieve a social memory and found that TK mice treated with VGCV were able to perform at control levels when the time between exposure (acquisition) and reexposure (retrieval) was brief. We next explored whether adult-born neurons are involved in dominance hierarchy formation by analyzing their home cage behavior as well as their performance in the tube test, a social hierarchy test, and did not find any consistent alterations in behavior between control and TK mice treated with VGCV. These data suggest that adult neurogenesis is essential for social memory maintenance, but not for acquisition nor retrieval over a short time frame, with no effect on social dominance hierarchy. Future work is needed to explore whether the influence of new neurons on social memory is mediated through connections with the CA2, an area involved in social recognition.
Collapse
|
9
|
Jaimes LF, Mansk LMZ, Almeida-Santos AF, Pereira GS. Maturation of newborn neurons predicts social memory persistence in mice. Neuropharmacology 2020; 171:108102. [PMID: 32302616 DOI: 10.1016/j.neuropharm.2020.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
Memory transience is essential to gain cognitive flexibility. Recently, hippocampal neurogenesis is emerging as one of the mechanisms involved in the balance between persistence and forgetting. Social recognition memory (SRM) has its duration prolonged by neurogenesis. However, it is still to be determined whether boosting neurogenesis in distinct phases of SRM may favor forgetting over persistence. In the present study, we used enriched environment (EE) and memantine (MEM) to increase neurogenesis. SRM was ubiquitously prolonged by both, while EE after the memory acquisition did not favor forgetting. Interestingly, the proportion of newborn neurons with mature morphology in the dorsal hippocampus was higher in animals where persistence prevailed. Finally, one of the main factors for dendritic growth is the formation of cytoskeleton. We found that Latrunculin A, an inhibitor of actin polymerization, blunted the promnesic effect of EE. Altogether, our results indicate that the mechanisms triggered by EE to improve SRM are not limited to increasing the number of newborn neurons.
Collapse
Affiliation(s)
- Laura F Jaimes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas, Gerais, Brazil
| | - Lara M Z Mansk
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas, Gerais, Brazil
| | - Ana F Almeida-Santos
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas, Gerais, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas, Gerais, Brazil.
| |
Collapse
|
10
|
Pro-neurogenic effect of fluoxetine in the olfactory bulb is concomitant to improvements in social memory and depressive-like behavior of socially isolated mice. Transl Psychiatry 2020; 10:33. [PMID: 32066672 PMCID: PMC7026434 DOI: 10.1038/s41398-020-0701-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Although loneliness is a human experience, it can be estimated in laboratory animals deprived from physical contact with conspecifics. Rodents under social isolation (SI) tend to develop emotional distress and cognitive impairment. However, it is still to be determined whether those conditions present a common neural mechanism. Here, we conducted a series of behavioral, morphological, and neurochemical analyses in adult mice that underwent to 1 week of SI. We observed that SI mice display a depressive-like state that can be prevented by enriched environment, and the antidepressants fluoxetine (FLX) and desipramine (DES). Interestingly, chronic administration of FLX, but not DES, was able to counteract the deleterious effect of SI on social memory. We also analyzed cell proliferation, neurogenesis, and astrogenesis after the treatment with antidepressants. Our results showed that the olfactory bulb (OB) was the neurogenic niche with the highest increase in neurogenesis after the treatment with FLX. Considering that after FLX treatment social memory was rescued and depressive-like behavior decreased, we propose neurogenesis in the OB as a possible mechanism to unify the FLX ability to counteract the deleterious effect of SI.
Collapse
|
11
|
Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Rev Neurosci 2019; 30:807-820. [DOI: 10.1515/revneuro-2019-0014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
AbstractThe excitation/inhibition (E/I) balance controls the synaptic inputs to prevent the inappropriate responses of neurons to input strength, and is required to restore the initial pattern of network activity. Various neurotransmitters affect synaptic plasticity within neural networks via the modulation of neuronal E/I balance in the developing and adult brain. Less is known about the role of E/I balance in the control of the development of the neural stem and progenitor cells in the course of neurogenesis and gliogenesis. Recent findings suggest that neural stem and progenitor cells appear to be the target for the action of GABA within the neurogenic or oligovascular niches. The same might be true for the role of neuropeptides (i.e. oxytocin) in neurogenic niches. This review covers current understanding of the role of E/I balance in the regulation of neuroplasticity associated with social behavior in normal brain, and in neurodevelopmental and neurodegenerative diseases. Further studies are required to decipher the GABA-mediated regulation of postnatal neurogenesis and synaptic integration of newly-born neurons as a potential target for the treatment of brain diseases.
Collapse
|
12
|
Almeida-Santos AF, Carvalho VR, Jaimes LF, de Castro CM, Pinto HP, Oliveira TPD, Vieira LB, Moraes MFD, Pereira GS. Social isolation impairs the persistence of social recognition memory by disturbing the glutamatergic tonus and the olfactory bulb-dorsal hippocampus coupling. Sci Rep 2019; 9:473. [PMID: 30679583 PMCID: PMC6345767 DOI: 10.1038/s41598-018-36871-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/23/2018] [Indexed: 11/09/2022] Open
Abstract
The absence of companion may jeopardize mental health in social animals. Here, we tested the hypothesis that social isolation impairs social recognition memory by altering the excitability and the dialog between the olfactory bulb (OB) and the dorsal hippocampus (dHIP). Adult male Swiss mice were kept grouped (GH) or isolated (SI) for 7 days. Social memory (LTM) was evaluated using social recognition test. SI increased glutamate release in the OB, while decreased in the dHIP. Blocking AMPA and NMDA receptors into the OB or activating AMPA into the dHIP rescued LTM in SI mice, suggesting a cause-effect relationship between glutamate levels and LTM impairment. Additionally, during memory retrieval, phase-amplitude coupling between OB and dHIP decreased in SI mice. Our results indicate that SI impaired the glutamatergic signaling and the normal communication between OB and HIP, compromising the persistence of social memory.
Collapse
Affiliation(s)
- Ana F Almeida-Santos
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinícius R Carvalho
- Programa de Pós-graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caio M de Castro
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hyorrana P Pinto
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tadeu P D Oliveira
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciene B Vieira
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Márcio F D Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
13
|
Oliveira VEDM, Neumann ID, de Jong TR. Post-weaning social isolation exacerbates aggression in both sexes and affects the vasopressin and oxytocin system in a sex-specific manner. Neuropharmacology 2019; 156:107504. [PMID: 30664846 DOI: 10.1016/j.neuropharm.2019.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/22/2022]
Abstract
Post-weaning social isolation (PWSI) is known to induce exaggerated and abnormal aggression in male rats. Here we aimed to assess the effects of PWSI on aggressiveness and social behavior in both male and female rats. Furthermore, we evaluated how PWSI affects the central oxytocin (OXT) and vasopressin (AVP) systems in both sexes. Wistar rats were isolated (IS) or group housed (GH) in same-sex groups immediately after weaning. After seven weeks, rats underwent an intruder test to assess aggression. In one group, brains were immediately dissected afterwards for in situ hybridization and receptor autoradiography. The other group underwent additional anxiety-like and social behavior tests. PWSI induced increased (abnormal) aggression and impaired social memory in both sexes. Especially IS females exhibited abnormal aggression towards juveniles. Furthermore, PWSI increased OXT mRNA expression in the paraventricular nucleus of the hypothalamus (PVN) and decreased OXTR binding in the anterior portion of the nucleus accumbens (NAcc), independent of the sex. V1a receptor binding was decreased in the lateral hypothalamus (LH) and dentate gyrus (DG) in IS rats, regardless of sex. However, V1a receptor binding in the anterior portion of the bed nucleus of stria terminalis (BNSTa) was decreased in IS females but increased in IS males. Taken together, our data support PWSI as a reliable model to exacerbate aggression not only in male but also in female rats. In addition, OXT receptors in the NAcca and V1a receptors in the LH, DG, and BNSTa may play a role in the link between PWSI and aggression. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.
Collapse
Affiliation(s)
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Germany
| | - Trynke R de Jong
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Germany; Lifelines Biobank Noord-Nederland B.V. Groningen, Netherlands
| |
Collapse
|
14
|
Pereira-Caixeta AR, Guarnieri LO, Medeiros DC, Mendes EMAM, Ladeira LCD, Pereira MT, Moraes MFD, Pereira GS. Inhibiting constitutive neurogenesis compromises long-term social recognition memory. Neurobiol Learn Mem 2018; 155:92-103. [PMID: 29964163 DOI: 10.1016/j.nlm.2018.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/20/2018] [Accepted: 06/27/2018] [Indexed: 01/14/2023]
Abstract
Although the functional role for newborn neurons in neural circuits is still matter of investigation, there is no doubt that neurogenesis modulates learning and memory in rodents. In general, boosting neurogenesis before learning, using genetic-target tools or drugs, improves hippocampus-dependent memories. However, inhibiting neurogenesis may yield contradictory results depending on the type of memory evaluated. Here we tested the hypothesis that inhibiting constitutive neurogenesis would compromise social recognition memory (SRM). Male Swiss mice were submitted to three distinct procedures to inhibit neurogenesis: (1) intra-cerebral infusion of Cystosine-β-D-Arabinofuranoside (AraC); (2) intra-peritoneal injection of temozolomide (TMZ) and (3) cranial gamma irradiation. All three methods decreased cell proliferation and neurogenesis in the dentate gyrus of the dorsal (dDG) and ventral hippocampus (vDG), and the olfactory bulb (OB). However, the percentage inhibition diverged between methods and brain regions. Ara-C, TMZ and gamma irradiation impaired SRM, though only gamma irradiation did not cause side effects on weight gain, locomotor activity and anxiety. Finally, we examined the contribution of cell proliferation in vDG, dDG and OB to SRM. The percent of inhibition in the dDG correlates with SRM, independently of the method utilized. This correlation was observed for granular cell layer of OB and vDG, only when the inhibition was induced by gamma irradiation. Animal's performance was restrained by the inhibition of dDG cell proliferation, suggesting that cell proliferation in the dDG has a greater contribution to SRM. Altogether, our results demonstrate that SRM, similarly to other hippocampus-dependent memories, has its formation impaired by reducing constitutive neurogenesis.
Collapse
Affiliation(s)
- Ana Raquel Pereira-Caixeta
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo O Guarnieri
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel C Medeiros
- Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo M A M Mendes
- Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz C D Ladeira
- Laboratório de Irradiação Gama, Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear, Brazil
| | - Márcio T Pereira
- Laboratório de Irradiação Gama, Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear, Brazil
| | - Márcio F D Moraes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
15
|
Nawaz A, Batool Z, Shazad S, Rafiq S, Afzal A, Haider S. Physical enrichment enhances memory function by regulating stress hormone and brain acetylcholinesterase activity in rats exposed to restraint stress. Life Sci 2018; 207:42-49. [PMID: 29852186 DOI: 10.1016/j.lfs.2018.05.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 01/11/2023]
Abstract
To study the effects of stress on mental health activity is of great importance in neuropsychological studies as it may affect the lifelong performance related to brain and overall health and wellbeing of an individual. It is observed very often that exposure to stress during early life can alter the brain function which may reflect as cognitive disability. Impairment of memory is associated with increased oxidative stress which is due to enhanced production of free radicals that may lead to lipid peroxidation and disintegration of cell structure and functions. Exposure to enriched environment has shown to enhance spatial learning and memory, although the underlying mechanism covering the regulation of antioxidant capacity is limited. Here we investigated short and long term memory using Morris water maze before and after giving restraint stress procedure in rats exposed to social and physically enriched environment. Levels of malondialdehyde (MDA), activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and acetylcholinesterase (AChE) in brain tissue were estimated. Plasma corticosterone was also determined after decapitation. Results demonstrated that rats pre-exposed to physical along with social enrichment showed improved short and long term memory as compared to control group. However, restraint stress exerted differential effects in socially and physically enriched groups. Reduced lipid peroxidation and decreased activity of SOD, GPx and AChE were observed in physically enriched rats subjected to stress as compared to stressed rats kept in social environment. Levels of corticosterone were also found to be significantly reduced in rats kept in physically enriched environment. This study shows the beneficial effects of environmental enrichment on learning and spatial memory by reducing oxidative stress via reducing lipid peroxidation and regulation of antioxidant enzymes in rats.
Collapse
Affiliation(s)
- Amber Nawaz
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan; Department of Biomedical Engineering, Sir Syed University of Engineering and Technology, Karachi 75300, Pakistan
| | - Zehra Batool
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sidrah Shazad
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Sahar Rafiq
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Asia Afzal
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | - Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|