1
|
Liu X, Zhang J, Liang Y, Chen X, Xu S, Lin S, Dai Y, Chen X, Zhou Y, Bai Y, Chen C. tiRNA-Gly-GCC-002 promotes epithelial-mesenchymal transition and fibrosis in lupus nephritis via FKBP5-mediated activation of Smad. Br J Pharmacol 2024. [PMID: 39419630 DOI: 10.1111/bph.17364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Renal interstitial fibrosis is a frequent pathological manifestation of lupus nephritis (LN). tRNA halves (tiRNAs) are acquired from tRNA-derived small non-coding RNAs (sncRNAs) and are associated with fibrosis. Our previous study indicated enhanced tiRNA-Gly-GCC-002 (tiRNA002) levels in kidneys were positively related to LN-related fibrosis. However, the precise molecular mechanism remains unclear. EXPERIMENTAL APPROACH The mimic and agomiR of tiRNA002 were introduced into tubular epithelial cells (TECs) and MRL/lpr mice by transfection. The levels of gene and protein expressions were quantified using real-time quantitative polymerase chain reaction (RT-qPCR), Western blot and immunofluorescence assays. KEY RESULTS In TECs treated with LN serum, as well as in the kidneys of MRL/lpr mice, high levels of tiRNA002 directly influenced the epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition. Furthermore, tiRNA002 overexpression promoted EMT in TECs and accelerated renal interstitial fibrosis in MRL/lpr mice via Smad signalling. The target gene of tiRNA002, FKBP prolyl isomerase 5 (FKBP5), improved Smad signalling by interacting with phosphorylated Smad2/3. Silencing FKBP5 alleviated LN serum- or tiRNA002-mimic-induced EMT in TECs. In addition, FKBP5 overexpression reversed the tiRNA002 knockdown-mediated reduction of EMT and ECM accumulation. CONCLUSIONS AND IMPLICATIONS These findings indicated that tiRNA002 is markedly increased in LN, which facilitates renal fibrosis by promoting EMT via FKBP5-mediated Smad signalling. Therefore, targeting tiRNA002 may be an innovative approach to treat renal interstitial fibrosis in LN.
Collapse
Affiliation(s)
- Xueting Liu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Ji Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yan Liang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Xuanwen Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Shungang Xu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Sishi Lin
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yuanting Dai
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Xinxin Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yongheng Bai
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Gotte G. Effects of Pathogenic Mutants of the Neuroprotective RNase 5-Angiogenin in Amyotrophic Lateral Sclerosis (ALS). Genes (Basel) 2024; 15:738. [PMID: 38927674 PMCID: PMC11202570 DOI: 10.3390/genes15060738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that affects the motoneurons. More than 40 genes are related with ALS, and amyloidogenic proteins like SOD1 and/or TDP-43 mutants are directly involved in the onset of ALS through the formation of polymorphic fibrillogenic aggregates. However, efficacious therapeutic approaches are still lacking. Notably, heterozygous missense mutations affecting the gene coding for RNase 5, an enzyme also called angiogenin (ANG), were found to favor ALS onset. This is also true for the less-studied but angiogenic RNase 4. This review reports the substrate targets and illustrates the neuroprotective role of native ANG in the neo-vascularization of motoneurons. Then, it discusses the molecular determinants of many pathogenic ANG mutants, which almost always cause loss of function related to ALS, resulting in failures in angiogenesis and motoneuron protection. In addition, ANG mutations are sometimes combined with variants of other factors, thereby potentiating ALS effects. However, the activity of the native ANG enzyme should be finely balanced, and not excessive, to avoid possible harmful effects. Considering the interplay of these angiogenic RNases in many cellular processes, this review aims to stimulate further investigations to better elucidate the consequences of mutations in ANG and/or RNase 4 genes, in order to achieve early diagnosis and, possibly, successful therapies against ALS.
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| |
Collapse
|
3
|
Ha SG, Lee SJV. The role of tRNA-derived small RNAs in aging. BMB Rep 2023; 56:49-55. [PMID: 36646437 PMCID: PMC9978369 DOI: 10.5483/bmbrep.2022-0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 10/15/2023] Open
Abstract
Aging is characterized by a gradual decline in biological functions, leading to the increased probability of diseases and deaths in organisms. Previous studies have identified biological factors that modulate aging and lifespan, including non-coding RNAs (ncRNAs). Here, we review the relationship between aging and tRNA-derived small RNAs (tsRNAs), ncRNAs that are generated from the cleavage of tRNAs. We describe age-dependent changes in tsRNA levels and their functions in age-related diseases, such as cancer and neurodegenerative diseases. We also discuss the association of tsRNAs with aging-regulating processes, including mitochondrial respiration and reduced mRNA translation. We cover recent findings regarding the potential roles of tsRNAs in cellular senescence, a major cause of organismal aging. Overall, our review will provide useful information for understanding the roles of tsRNAs in aging and age-associated diseases. [BMB Reports 2023; 56(2): 49-55].
Collapse
Affiliation(s)
- Seokjun G. Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
4
|
Ha SG, Lee SJV. The role of tRNA-derived small RNAs in aging. BMB Rep 2023; 56:49-55. [PMID: 36646437 PMCID: PMC9978369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 01/18/2023] Open
Abstract
Aging is characterized by a gradual decline in biological functions, leading to the increased probability of diseases and deaths in organisms. Previous studies have identified biological factors that modulate aging and lifespan, including non-coding RNAs (ncRNAs). Here, we review the relationship between aging and tRNA-derived small RNAs (tsRNAs), ncRNAs that are generated from the cleavage of tRNAs. We describe age-dependent changes in tsRNA levels and their functions in age-related diseases, such as cancer and neurodegenerative diseases. We also discuss the association of tsRNAs with aging-regulating processes, including mitochondrial respiration and reduced mRNA translation. We cover recent findings regarding the potential roles of tsRNAs in cellular senescence, a major cause of organismal aging. Overall, our review will provide useful information for understanding the roles of tsRNAs in aging and age-associated diseases. [BMB Reports 2023; 56(2): 49-55].
Collapse
Affiliation(s)
- Seokjun G. Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
5
|
Xu D, Qiao D, Lei Y, Zhang C, Bu Y, Zhang Y. Transfer RNA-derived small RNAs (tsRNAs): Versatile regulators in cancer. Cancer Lett 2022; 546:215842. [PMID: 35964819 DOI: 10.1016/j.canlet.2022.215842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
tRNA-derived small RNAs (tsRNAs) represent a novel class of regulatory small non-coding RNAs (sncRNAs), produced by the specific cleavage of transfer RNAs (tRNAs). In recent years, pilot studies one after the other have uncovered the critical roles of tsRNAs in various fundamental biological processes as well as in the development of human diseases including cancer. Based on the newly updated hallmarks of cancer, we provide a comprehensive review regarding the dysregulation, functional implications and complicated molecular mechanisms of tsRNAs in cancer. In addition, the potential technical challenges and future prospects in the fields of tsRNA research are discussed in this review.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Deqian Qiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Tian H, Hu Z, Wang C. The Therapeutic Potential of tRNA-derived Small RNAs in Neurodegenerative Disorders. Aging Dis 2022; 13:389-401. [PMID: 35371602 PMCID: PMC8947841 DOI: 10.14336/ad.2021.0903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 11/01/2022] Open
Abstract
Gene expressions and functions at various levels, namely post-transcriptional, transcriptional, and epigenetic, can be regulated by transfer RNA (tRNA)-derived small RNAs (tsRNAs), which are as well-established as tRNA fragments or tRFs. This regulation occurs when tsRNAs are created through the special endonuclease-mediated cleavage of mature or precursor tRNAs. However, tsRNAs are newly discovered entities, and molecular functions associated with tsRNAs are still not clearly understood. There is increasingly robust evidence suggesting that specific tsRNAs perform fundamental tasks in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders. Indeed, the patterns of tsRNA expression are uncertain and could be altered in patients suffering from Parkinson's disease, pontocerebellar hypoplasia, amyotrophic lateral sclerosis, Alzheimer's disease, and other neurodegenerative disorders. In the present article, a review is conducted of recent domestic and international progress in research on the potential cellular and molecular mechanisms of tsRNA biogenesis. We also describe endogenous tsRNAs during neuronal development and neurodegenerative disorders, thereby providing theoretical support and guidance for further revealing the therapeutic potential of tsRNAs in neurodegenerative disorders.
Collapse
Affiliation(s)
- Haihua Tian
- 1Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, China.,2Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,3Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, China.,4Department of Laboratory Medicine, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Zhenyu Hu
- 5Department of Child Psychiatry, Ningbo Kanning Hospital, Ningbo, Zhejiang, China
| | - Chuang Wang
- 1Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, China.,2Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,3Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Weng C, Dong H, Bai R, Sheng J, Chen G, Ding K, Lin W, Chen J, Xu Z. Angiogenin promotes angiogenesis via the endonucleolytic decay of miR-141 in colorectal cancer. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:1010-1022. [PMID: 35228896 PMCID: PMC8844805 DOI: 10.1016/j.omtn.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022]
Abstract
Mature microRNA (miRNA) decay is a key step in miRNA turnover and gene expression regulation. Angiogenin (ANG), the first human tumor-derived angiogenic protein and also a member of the RNase A superfamily, can promote tumor growth and metastasis by regulating rRNA biogenesis and tiRNA production. However, its effect on miRNA has not been explored. In this study, we find that ANG exclusively downregulates mature miR-141 in human umbilical endothelial cells (HUVECs) via its ribonuclease activity and preferably cleaves single-stranded miR-141 at the A5/C6, U7/G8, and U14/A15 sites via endonucleolytic digestion. By downregulating miR-141, ANG promotes HUVECs proliferation, migration, tube formation, and angiogenesis both in vitro and in vivo. Conversely, downregulated ANG inhibits ANG-mediated miR-141 decay, thus decreasing the angiogenesis process of HUVECs. We also find an inverse correlation between ANG and miR-141 expression in colorectal cancer (CRC) tissues. Our study indicates that ANG regulates CRC progression by disrupting miR-141 and its regulation on angiogenesis-related target genes, not only revealing a new mechanism of ANG action but also newly identifying miR-141 as a substrate of ANG. This study suggests that targeting ANG nuclease activity might be valuable in treating angiogenesis-related diseases through coordinately regulating the metabolism of rRNA, tiRNA, and miRNA.
Collapse
|
8
|
Hu Y, Cai A, Xu J, Feng W, Wu A, Liu R, Cai W, Chen L, Wang F. An emerging role of the 5' termini of mature tRNAs in human diseases: Current situation and prospects. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166314. [PMID: 34863896 DOI: 10.1016/j.bbadis.2021.166314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
The fundamental biological roles of a class of small noncoding RNAs (sncRNAs), derived from mature tRNAs or pre-tRNAs, in human diseases have received increasing attention in recent years. These ncRNAs are called tRNA-derived fragments (tRFs) or tRNA-derived small RNAs (tsRNAs). tRFs mainly include tRF-1, tRF-5, tRF-3 and tRNA halves (tiRNAs or tRHs), which are produced by enzyme-specific cleavage of tRNAs. Here, we classify tRF-5 and 5' tiRNAs into the same category: 5'-tRFs and review the biological functions and regulatory mechanisms of 5'-tRFs in cancer and other diseases (metabolic diseases, neurodegenerative diseases, pathological stress injury and virus infection) to provide a new theoretical basis for the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yuhao Hu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Aiting Cai
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Jing Xu
- Department of Laboratory Medicine, School of public health, Nantong University, Jiangsu, China
| | - Wei Feng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Anqi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Ruoyu Liu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Weihua Cai
- Department of Hepatology Laboratory, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, China
| | - Lin Chen
- Department of Hepatology Laboratory, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, China.
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China.
| |
Collapse
|
9
|
Tao EW, Wang HL, Cheng WY, Liu QQ, Chen YX, Gao QY. A specific tRNA half, 5'tiRNA-His-GTG, responds to hypoxia via the HIF1α/ANG axis and promotes colorectal cancer progression by regulating LATS2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:67. [PMID: 33588913 PMCID: PMC7885485 DOI: 10.1186/s13046-021-01836-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Background Currently, tRNA-derived small RNAs (tsRNAs) are recognized as a novel and potential type of non-coding RNAs (ncRNAs), which participate in various cellular processes and play an essential role in cancer progression. However, tsRNAs involvement in colorectal cancer (CRC) progression remains unclear. Methods Sequencing analyses were performed to explore the tsRNAs with differential expression in CRC. Gain- and loss-of functions of 5’tiRNA-His-GTG were performed in CRC cells and xenograft tumor to discover its role in the progression of CRC. Hypoxia culture and hypoxia inducible factor 1 subunit alpha (HIF1α) inhibitors were performed to uncover the biogenesis of 5’tiRNA-His-GTG. The regulation of 5’tiRNA-His-GTG for large tumor suppressor kinase 2 (LATS2) were identified by luciferase reporter assay, western blot, and rescue experiments. Results Here, our study uncovered the profile of tsRNAs in human CRC tissues and confirmed a specific tRNA half, 5’tiRNA-His-GTG, is upregulated in CRC tissues. Then, in vitro and in vivo experiments revealed the oncogenic role of 5’tiRNA-His-GTG in CRC and found that targeting 5’tiRNA-His-GTG can induce cell apoptosis. Mechanistically, the generation of 5’tiRNA-His-GTG seems to be a responsive process of tumor hypoxic microenvironment, and it is regulated via the HIF1α/angiogenin (ANG) axis. Remarkably, LATS2 was found to be an important and major target of 5’tiRNA-His-GTG, which renders 5’tiRNA-His-GTG to “turn off” hippo signaling pathway and finally promotes the expression of pro-proliferation and anti-apoptosis related genes. Conclusions In summary, the findings revealed a specific 5’tiRNA-His-GTG-engaged pathway in CRC progression and provided clues to design a novel therapeutic target in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01836-7.
Collapse
Affiliation(s)
- En-Wei Tao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Hao-Lian Wang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Wing Yin Cheng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Qian-Qian Liu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Qin-Yan Gao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, 145 Middle Shandong Road, 200001, Shanghai, China.
| |
Collapse
|
10
|
Zong T, Yang Y, Zhao H, Li L, Liu M, Fu X, Tang G, Zhou H, Aung LHH, Li P, Wang J, Wang Z, Yu T. tsRNAs: Novel small molecules from cell function and regulatory mechanism to therapeutic targets. Cell Prolif 2021; 54:e12977. [PMID: 33507586 PMCID: PMC7941233 DOI: 10.1111/cpr.12977] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
tsRNAs are small fragments of RNAs with specific lengths that are generated by particular ribonucleases, such as dicer and angiogenin (ANG), clipping on the rings of transfer RNAs (tRNAs) in specific cells and tissues under specific conditions. Depending on where the splicing site is, tsRNAs can be segmented into two main types, tRNA‐derived stress‐induced RNAs (tiRNAs) and tRNA‐derived fragments (tRFs). Many studies have shown that tsRNAs are functional molecules, not the random degradative products of tRNAs. Notably, due to their regulatory mechanism in regulating mRNA stability, transcription, ribosomal RNA (rRNA) synthesis and RNA reverse transcription, tsRNAs are significantly involved in the cell function, such as cell proliferation, migration, cycle and apoptosis, as well as the occurrence and development of a variety of diseases. In addition, tsRNAs may represent a new generation of clinical biomarkers or therapeutic targets because of their stable structures, high conservation and widely distribution, particularly in the peripheral tissues, bodily fluids and exosomes. In this review, we describe the generation, function and mechanism of tsRNAs and illustrate the current research progress of tsRNAs in various diseases, highlight their potentials as biomarkers and therapeutic targets in clinical application. Although our understanding of tsRNAs is still in infancy, the application prospects shown in this field deserve further exploration.
Collapse
Affiliation(s)
- Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Li
- Department of Vascular surgery, Qingdao Hiser Medical Center, Qingdao, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guozhang Tang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Zhou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianxun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Zhang ZY, Zhang CH, Yang JJ, Xu PP, Yi PJ, Hu ML, Peng WJ. Genome-wide analysis of hippocampal transfer RNA-derived small RNAs identifies new potential therapeutic targets of Bushen Tiansui formula against Alzheimer's disease. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 19:135-143. [PMID: 33334712 DOI: 10.1016/j.joim.2020.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Bushen Tiansui formula (BSTSF), a traditional Chinese medicine prescription, has been widely used to treat Alzheimer's disease (AD). However, the mechanisms underlying its effects remain largely unknown. In this study, a rat AD model was used to study the effects of BSTSF on cognitive performance and expression of transfer RNA-derived small RNAs (tsRNAs) in the hippocampus, to determine whether treatment of AD with BSTSF could regulate the expression of tsRNAs, a novel small non-coding RNA. METHODS To generate a validated AD model, oligomeric amyloid-β1-42 (Aβ1-42) was injected intracerebroventricularly into rats. The Morris water maze (MWM) test was used to evaluate rat cognitive performance, and tsRNA-sequencing was conducted to examine tsRNA expression in the rat hippocampus. Potential targets were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatic analyses were conducted to investigate the biological function of candidate tsRNAs. RESULTS The learning and memory deficits of Aβ1-42-induced AD rats, assessed by MWM tests, were clearly ameliorated by BSTSF treatment. A total of 387 tsRNAs were detected in the rat hippocampus. Among them, 13 were significantly dysregulated in AD rats compared with sham control rats, while 57 were markedly altered by BSTSF treatment, relative to untreated AD rats (fold change ≥ 2 and P < 0.05). Moreover, six BSTSF treatment-related tsRNAs were identified and validated by qRT-PCR. Bioinformatic analyses indicated that the six treatment-related tsRNAs had potential therapeutic roles, via multiple signaling pathways and Gene Ontology biological functions, including cyclic adenosine monophosphate and retrograde endocannabinoid signaling. CONCLUSION This study identified a previously uncharacterized mechanism underlying the effects of BSTSF in alleviating the learning and memory deficits in Aβ1-42-induced AD rats, demonstrating that tsRNAs are potential therapeutic targets of BSTSF in the treatment of AD.
Collapse
Affiliation(s)
- Zhe-Yu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Chun-Hu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Jing-Jing Yang
- Department of Integrated Traditional Chinese & Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Pan-Pan Xu
- Department of Integrated Traditional Chinese & Western Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Peng-Ji Yi
- Department of Integrated Traditional Chinese & Western Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Mu-Li Hu
- Department of Scientific Research, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Wei-Jun Peng
- Department of Integrated Traditional Chinese & Western Medicine, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
12
|
Wang BG, Yan LR, Xu Q, Zhong XP. The role of Transfer RNA-Derived Small RNAs (tsRNAs) in Digestive System Tumors. J Cancer 2020; 11:7237-7245. [PMID: 33193887 PMCID: PMC7646161 DOI: 10.7150/jca.46055] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/30/2020] [Indexed: 12/29/2022] Open
Abstract
Transfer RNA-derived small RNA(tsRNA) is a type of non-coding tRNA undergoing cleavage by specific nucleases such as Dicer. TsRNAs comprise of tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs). Based on the splicing site within the tRNA, tRFs can be classified into tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF. TiRNAs can be classified into 5′-tiRNA and 3′-tiRNA. Both tRFs and tiRNAs have important roles in carcinogenesis, especially cancer of digestive system. TRFs and tiRNAs can promote cell proliferation and cell cycle progression by regulating the expression of oncogenes, combining with RNA binding proteins such as Y-box binding protein 1 (YBX1) to prevent transcription. Despite many reviews on the basic biological function of tRFs and tiRNAs, few have described their correlation with tumors especially gastrointestinal tumor. This review focused on the relationship of tRFs and tiRNAs with the biological behavior, clinicopathological characteristics, diagnosis, treatment and prognosis of digestive system tumors, and would provide novel insights for the early detection and treatment of digestive system tumors.
Collapse
Affiliation(s)
- Ben-Gang Wang
- Department 1 of General Surgery, the First Hospital of China Medical University, Shenyang 110001, China
| | - Li-Rong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Xin-Ping Zhong
- Department 1 of General Surgery, the First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
13
|
Chen Y, Shen J. Mucosal immunity and tRNA, tRF, and tiRNA. J Mol Med (Berl) 2020; 99:47-56. [PMID: 33200232 DOI: 10.1007/s00109-020-02008-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Mucosal immunity has crucial roles in human diseases such as respiratory tract infection, inflammatory bowel diseases (IBD), and colorectal cancer (CRC). Recent studies suggest that the mononuclear phagocyte system, cancer cells, bacteria, and viruses induce the mucosal immune reaction by various pathways, and can be major factors in the pathogenesis of these diseases. Transfer RNA (tRNA) and its fragments, including tRNA-derived RNA fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs), have emerged as a hot topic in recent years. They not only are verified as essential for transcription and translation but also play roles in cellular homeostasis and functions, such as cell metastasis, proliferation, and apoptosis. However, the specific relationship between their biological regulation and mucosal immunity remains unclear to date. In the present review, we carry out a comprehensive discussion on the specific roles of tRNA, tRFs, and tiRNAs relevant to mucosal immunity and related diseases.
Collapse
Affiliation(s)
- Yueying Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, 160# Pu Jian Ave, Shanghai, 200127, China
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai, 200127, China
- Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, 160# Pu Jian Ave, Shanghai, 200127, China.
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai, 200127, China.
- Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai, 200127, China.
| |
Collapse
|
14
|
Zakharova M. Modern approaches in gene therapy of motor neuron diseases. Med Res Rev 2020; 41:2634-2655. [PMID: 32638429 DOI: 10.1002/med.21705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Motor neuron disorders are a group of neurodegenerative diseases characterized by muscle weakness, loss of ambulation, respiratory insufficiency, leading to an early death. Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis are the most common and fatal motor neuron diseases. The last 3 years became very successful for novel gene therapy approaches in SMA in infants. Two innovative drugs-nusinersen (Spinraza) and onasemnogene abeparvovec (Zolgensma) have been approved by health authorities. The numerous molecular and genetic overlaps between different neurodegenerative diseases are of great importance in the development of innovative therapeutic strategies, including viral vector therapy and RNA modulating approaches.
Collapse
Affiliation(s)
- Maria Zakharova
- Sixth Neurology Department (Department of Neuroinfectious Diseases), Research Center of Neurology, Moscow, Russia
| |
Collapse
|
15
|
Xie Y, Yao L, Yu X, Ruan Y, Li Z, Guo J. Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct Target Ther 2020; 5:109. [PMID: 32606362 PMCID: PMC7326991 DOI: 10.1038/s41392-020-00217-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
tRNA-derived small RNAs (tsRNAs), including tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), are small regulatory RNAs processed from mature tRNAs or precursor tRNAs. tRFs and tiRNAs play biological roles through a variety of mechanisms by interacting with proteins or mRNA, inhibiting translation, and regulating gene expression, the cell cycle, and chromatin and epigenetic modifications. The establishment and application of research technologies are important in understanding the biological roles of tRFs and tiRNAs. To study the molecular mechanisms of tRFs and tiRNAs, researchers have used a variety of bioinformatics and molecular biology methods, such as microarray analysis, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR); Northern blotting; RNA sequencing (RNA-seq); cross-linking, ligation and sequencing of hybrids (CLASH); and photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP). This paper summarizes the classification, action mechanisms, and roles of tRFs and tiRNAs in human diseases and the related signal transduction pathways, targeted therapies, databases, and research methods associated with them.
Collapse
Affiliation(s)
- Yaoyao Xie
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Lipeng Yao
- Ningbo College of Health Sciences, Ningbo, 315000, Zhejiang, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Yao Ruan
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Zhe Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China.
| |
Collapse
|
16
|
Bai R, Sun D, Chen M, Shi X, Luo L, Yao Z, Liu Y, Ge X, Gao X, Hu GF, Zhou W, Sheng J, Xu Z. Myeloid cells protect intestinal epithelial barrier integrity through the angiogenin/plexin-B2 axis. EMBO J 2020; 39:e103325. [PMID: 32510170 DOI: 10.15252/embj.2019103325] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Communication between myeloid cells and epithelium plays critical role in maintaining intestinal epithelial barrier integrity. Myeloid cells interact with intestinal epithelial cells (IECs) by producing various mediators; however, the molecules mediating their crosstalk remain incompletely understood. Here, we report that deficiency of angiogenin (Ang) in mouse myeloid cells caused impairment of epithelial barrier integrity, leading to high susceptibility to DSS-induced colitis. Mechanistically, myeloid cell-derived angiogenin promoted IEC survival and proliferation through plexin-B2-mediated production of tRNA-derived stress-induced small RNA (tiRNA) and transcription of ribosomal RNA (rRNA), respectively. Moreover, treatment with recombinant angiogenin significantly attenuated the severity of experimental colitis. In human samples, the expression of angiogenin was significantly down-regulated in patients with inflammatory bowel disease (IBD). Collectively, we identified, for the first time to our knowledge, a novel mediator of myeloid cell-IEC crosstalk in maintaining epithelial barrier integrity, suggesting that angiogenin may serve as a new preventive agent and therapeutic target for IBD.
Collapse
Affiliation(s)
- Rongpan Bai
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Desen Sun
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Muxiong Chen
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoliang Shi
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Luo
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengrong Yao
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaxin Liu
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolong Ge
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangwei Gao
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guo-Fu Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Wei Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Abstract
Over the past decades, tRNA was found to be a rich hub of RNA modifications such as 1-methyladenosine and 5-methycytosine modifications and others, holding more than half of all modifications occurring in RNA molecules. Moreover, tRNA was discovered to be a source of various small noncoding RNA species, such as the stress induced angiogenin cleaved tRNA halves (tiRNA) or the miRNA like tRNA derived fragments. tRNA cleavage under stress was fist discovered in bacteria and later was found to be conserved across different species, including mammals. Under cellular stress conditions, tRNA undergoes conformational changes and angiogenin cleaves it into 3' and 5' halves. 5'tiRNA halves were shown to repress protein translations. tRNA cleavage is thought of to be a cytoprotective mechanism by which cells evade apoptosis, however some data hints to the opposite; that tiRNA are cytotoxic or at least related to apoptosis initiation. tRNA cleavage also was shown to be affected by tRNA modifications via different enzymes in the cytosol and mitochondria. In this review, we will highlight the biology of tRNA cleavage, show the evidence of it being cytoprotective or a marker of cell death and shed a light on its role in disease models and human diseases as well as possible future directions in this field of RNA research.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgery; Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery; Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine; Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
18
|
Qin C, Xu PP, Zhang X, Zhang C, Liu CB, Yang DG, Gao F, Yang ML, Du LJ, Li JJ. Pathological significance of tRNA-derived small RNAs in neurological disorders. Neural Regen Res 2020; 15:212-221. [PMID: 31552886 PMCID: PMC6905339 DOI: 10.4103/1673-5374.265560] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a type of RNA that is not translated into proteins. Transfer RNAs (tRNAs), a type of ncRNA, are the second most abundant type of RNA in cells. Recent studies have shown that tRNAs can be cleaved into a heterogeneous population of ncRNAs with lengths of 18–40 nucleotides, known as tRNA-derived small RNAs (tsRNAs). There are two main types of tsRNA, based on their length and the number of cleavage sites that they contain: tRNA-derived fragments and tRNA-derived stress-induced RNAs. These RNA species were first considered to be byproducts of tRNA random cleavage. However, mounting evidence has demonstrated their critical functional roles as regulatory factors in the pathophysiological processes of various diseases, including neurological diseases. However, the underlying mechanisms by which tsRNAs affect specific cellular processes are largely unknown. Therefore, this study comprehensively summarizes the following points: (1) The biogenetics of tsRNA, including their discovery, classification, formation, and the roles of key enzymes. (2) The main biological functions of tsRNA, including its miRNA-like roles in gene expression regulation, protein translation regulation, regulation of various cellular activities, immune mediation, and response to stress. (3) The potential mechanisms of pathophysiological changes in neurological diseases that are regulated by tsRNA, including neurodegeneration and neurotrauma. (4) The identification of the functional diversity of tsRNA may provide valuable information regarding the physiological and pathophysiological mechanisms of neurological disorders, thus providing a new reference for the clinical treatment of neurological diseases. Research into tsRNAs in neurological diseases also has the following challenges: potential function and mechanism studies, how to accurately quantify expression, and the exact relationship between tsRNA and miRNA. These challenges require future research efforts.
Collapse
Affiliation(s)
- Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Pei-Pei Xu
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chao Zhang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chang-Bin Liu
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ming-Liang Yang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
19
|
Pathogenic Signal Sequence Mutations in Progranulin Disrupt SRP Interactions Required for mRNA Stability. Cell Rep 2019; 23:2844-2851. [PMID: 29874572 PMCID: PMC6097231 DOI: 10.1016/j.celrep.2018.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 03/11/2018] [Accepted: 05/01/2018] [Indexed: 11/21/2022] Open
Abstract
Cells have evolved quality control pathways to prevent the accumulation of improperly localized proteins, which are often toxic. One of these pathways, regulation of aberrant protein production (RAPP), recognizes aberrant secretory proteins during translation and degrades the associated mRNA. Here, we demonstrate endogenous RAPP substrates. Haploinsufficiency of the secretory protein progranulin (GRN) is associated with the neurodegenerative disease frontotemporal lobar degeneration (FTLD). Our results show FTLD-associated GRN mutations W7R and A9D disrupt co-translational interaction with a targeting factor, signal recognition particle (SRP). This triggers RAPP and initiates specific mRNA degradation. Conversely, wild-type GRN and the naturally occurring polymorphism V5L GRN are efficiently expressed and secreted. Thus, RAPP plays a role in the molecular pathology of A9D GRN and W7R GRN. Progranulin mutations, which reduce its secretion, cause the disease FTLD (frontotemporal lobar degeneration). Here, Pinarbasi et al. show that one such mutation, A9D, prevents recruitment of the trafficking factor SRP (signal recognition particle). This triggers a quality control response, which results in degradation of A9D mRNA.
Collapse
|
20
|
Li S, Shi X, Chen M, Xu N, Sun D, Bai R, Chen H, Ding K, Sheng J, Xu Z. Angiogenin promotes colorectal cancer metastasis via tiRNA production. Int J Cancer 2019; 145:1395-1407. [PMID: 30828790 DOI: 10.1002/ijc.32245] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/20/2019] [Accepted: 02/18/2019] [Indexed: 01/11/2023]
Abstract
Metastasis of colorectal cancer (CRC) is the leading cause of CRC-associated mortality. Angiogenin (ANG), a member of the ribonuclease A superfamily, not only activates endothelial cells to induce tumor angiogenesis, but also targets tumor cells to promote cell survival, proliferation and/or migration. However, its clinical significance and underlying mechanism in CRC metastasis are still largely unknown. Here, we reported that ANG was upregulated in CRC tissues and associated with metastasis in CRC patients. We then revealed that ANG enhanced CRC growth and metastasis in both in vitro and in vivo systems. Intriguingly, we characterized a bunch of tRNA-derived stress-induced small RNAs (tiRNAs), produced through ANG cleavage, that was enriched in both CRC tumor tissues and highly metastatic cells, and functioned in ANG-promoted CRC metastasis. Moreover, higher level of a 5'-tiRNA from mature tRNA-Val (5'-tiRNA-Val) was observed in CRC patients and was correlated with tumor metastasis. Taken together, we propose that a novel ANG-tiRNAs-cell migration and invasion regulatory axis promotes CRC metastasis, which might be of potential target for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Siqi Li
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoliang Shi
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Muxiong Chen
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ningqin Xu
- Clinical Medicine Class 2017-03, Karamay College of Xinjiang Medical University, Karamay, China
| | - Desen Sun
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongpan Bai
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Chen
- Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kefeng Ding
- Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Pereira GC, Sanchez L, Schaughency PM, Rubio-Roldán A, Choi JA, Planet E, Batra R, Turelli P, Trono D, Ostrow LW, Ravits J, Kazazian HH, Wheelan SJ, Heras SR, Mayer J, García-Pérez JL, Goodier JL. Properties of LINE-1 proteins and repeat element expression in the context of amyotrophic lateral sclerosis. Mob DNA 2018; 9:35. [PMID: 30564290 PMCID: PMC6295051 DOI: 10.1186/s13100-018-0138-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving loss of motor neurons and having no known cure and uncertain etiology. Several studies have drawn connections between altered retrotransposon expression and ALS. Certain features of the LINE-1 (L1) retrotransposon-encoded ORF1 protein (ORF1p) are analogous to those of neurodegeneration-associated RNA-binding proteins, including formation of cytoplasmic aggregates. In this study we explore these features and consider possible links between L1 expression and ALS. RESULTS We first considered factors that modulate aggregation and subcellular distribution of LINE-1 ORF1p, including nuclear localization. Changes to some ORF1p amino acid residues alter both retrotransposition efficiency and protein aggregation dynamics, and we found that one such polymorphism is present in endogenous L1s abundant in the human genome. We failed, however, to identify CRM1-mediated nuclear export signals in ORF1p nor strict involvement of cell cycle in endogenous ORF1p nuclear localization in human 2102Ep germline teratocarcinoma cells. Some proteins linked with ALS bind and colocalize with L1 ORF1p ribonucleoprotein particles in cytoplasmic RNA granules. Increased expression of several ALS-associated proteins, including TAR DNA Binding Protein (TDP-43), strongly limits cell culture retrotransposition, while some disease-related mutations modify these effects. Using quantitative reverse transcription PCR (RT-qPCR) of ALS tissues and reanalysis of publicly available RNA-Seq datasets, we asked if changes in expression of retrotransposons are associated with ALS. We found minimal altered expression in sporadic ALS tissues but confirmed a previous report of differential expression of many repeat subfamilies in C9orf72 gene-mutated ALS patients. CONCLUSIONS Here we extended understanding of the subcellular localization dynamics of the aggregation-prone LINE-1 ORF1p RNA-binding protein. However, we failed to find compelling evidence for misregulation of LINE-1 retrotransposons in sporadic ALS nor a clear effect of ALS-associated TDP-43 protein on L1 expression. In sum, our study reveals that the interplay of active retrotransposons and the molecular features of ALS are more complex than anticipated. Thus, the potential consequences of altered retrotransposon activity for ALS and other neurodegenerative disorders are worthy of continued investigation.
Collapse
Affiliation(s)
- Gavin C. Pereira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Laura Sanchez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Paul M. Schaughency
- Oncology Center-Cancer Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Alejandro Rubio-Roldán
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Jungbin A. Choi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Evarist Planet
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ranjan Batra
- Department of Neurosciences, School of Medicine, University of California at San Diego, San Diego, California USA
| | - Priscilla Turelli
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyle W. Ostrow
- Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, San Diego, California USA
| | - Haig H. Kazazian
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Sarah J. Wheelan
- Oncology Center-Cancer Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Sara R. Heras
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jens Mayer
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg/Saar, Germany
| | - Jose Luis García-Pérez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - John L. Goodier
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
22
|
Li S, Xu Z, Sheng J. tRNA-Derived Small RNA: A Novel Regulatory Small Non-Coding RNA. Genes (Basel) 2018; 9:E246. [PMID: 29748504 PMCID: PMC5977186 DOI: 10.3390/genes9050246] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/06/2018] [Accepted: 05/06/2018] [Indexed: 01/15/2023] Open
Abstract
Deep analysis of next-generation sequencing data unveils numerous small non-coding RNAs with distinct functions. Recently, fragments derived from tRNA, named as tRNA-derived small RNA (tsRNA), have attracted broad attention. There are mainly two types of tsRNAs, including tRNA-derived stress-induced RNA (tiRNA) and tRNA-derived fragment (tRF), which differ in the cleavage position of the precursor or mature tRNA transcript. Emerging evidence has shown that tsRNAs are not merely tRNA degradation debris but have been recognized to play regulatory roles in many specific physiological and pathological processes. In this review, we summarize the biogeneses of various tsRNAs, present the emerging concepts regarding functions and mechanisms of action of tsRNAs, highlight the potential application of tsRNAs in human diseases, and put forward the current problems and future research directions.
Collapse
Affiliation(s)
- Siqi Li
- Institute of Environmental Health, School of Public Health, Zhejiang University, Hangzhou 310058, China.
| | - Zhengping Xu
- Institute of Environmental Health, School of Public Health, Zhejiang University, Hangzhou 310058, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China.
- Program in Molecular and Cellular Biology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Jinghao Sheng
- Institute of Environmental Health, School of Public Health, Zhejiang University, Hangzhou 310058, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China.
- Program in Molecular and Cellular Biology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Elkordy A, Mishima E, Niizuma K, Akiyama Y, Fujimura M, Tominaga T, Abe T. Stress-induced tRNA cleavage and tiRNA generation in rat neuronal PC12 cells. J Neurochem 2018; 146:560-569. [PMID: 29431851 DOI: 10.1111/jnc.14321] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/04/2018] [Accepted: 02/01/2018] [Indexed: 02/04/2023]
Abstract
Transfer RNA (tRNA) plays a role in stress response programs involved in various pathological conditions including neurological diseases. Under cell stress conditions, intracellular tRNA is cleaved by a specific ribonuclease, angiogenin, generating tRNA-derived fragments or tRNA-derived stress-induced RNA (tiRNA). Generated tiRNA contributes to the cell stress response and has potential cell protective effects. However, tiRNA generation under stress conditions in neuronal cells has not been fully elucidated. To examine angiogenin-mediated tiRNA generation in neuronal cells, we used the rat neuronal cell line, PC12, in combination with analysis of SYBR staining and immuno-northern blotting using anti-1-methyladenosine antibody, which specifically and sensitively detects tiRNA. Oxidative stress induced by arsenite and hydrogen peroxide caused tRNA cleavage and tiRNA generation in PC12 cells. We also demonstrated that oxygen-glucose deprivation, which is an in vitro model of ischemic-reperfusion injury, induced tRNA cleavage and tiRNA generation. In these stress conditions, the amount of generated tiRNA was associated with the degree of morphological cell damage. Time course analysis indicated that generation of tiRNA was prior to severe cell damage and cell death. Angiogenin over-expression did not influence the amount of tiRNA in normal culture conditions; however, it significantly increased tiRNA generation induced by cell stress conditions. Our findings show that angiogenin-mediated tiRNA generation can be induced in neuronal cells by different cell stressors, including ischemia-reperfusion. Additionally, detection of tiRNA could be used as a potential cell damage marker in neuronal cells. Cover Image for this issue: doi: 10.1111/jnc.14191.
Collapse
Affiliation(s)
- Alaa Elkordy
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neuropsychiatry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eikan Mishima
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasutoshi Akiyama
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Miki Fujimura
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Abe
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan.,Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|