1
|
Megerson E, Kuehn M, Leifer B, Bell JM, Snyder JL, McGraw HF. Kremen1 regulates the regenerative capacity of support cells and mechanosensory hair cells in the zebrafish lateral line. iScience 2024; 27:108678. [PMID: 38205258 PMCID: PMC10776957 DOI: 10.1016/j.isci.2023.108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Mechanosensory hair cells in the inner ear mediate the sensations of hearing and balance, and in the specialized lateral line sensory system of aquatic vertebrates, the sensation of water movement. In mammals, hair cells lack the ability to regenerate following damage, resulting in sensory deficits. In contrast, non-mammalian vertebrates, such as zebrafish, can renew hair cells throughout their lifespan. Wnt signaling is required for development of inner ear and lateral line hair cells and regulates regeneration. Kremen1 inhibits Wnt signaling and hair cell formation, though its role in regeneration is unknown. We used a zebrafish kremen1 mutant line to show overactive Wnt signaling results in supernumerary support cells and hair cell regeneration without increased proliferation, in contrast with the previously described role of Wnt signaling during hair cell regeneration. This work allows us to understand the biology of mechanosensory hair cells and how regeneration might be promoted following damage.
Collapse
Affiliation(s)
- Ellen Megerson
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Integrated DNA Technologies, Inc, Coralville, IA 52241, USA
| | - Michael Kuehn
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Ben Leifer
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Department of Population Health, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jon M. Bell
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Julia L. Snyder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Hillary F. McGraw
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| |
Collapse
|
2
|
Megerson E, Kuehn M, Leifer B, Bell J, McGraw HF. Kremen1 regulates the regenerative capacity of support cells and mechanosensory hair cells in the zebrafish lateral line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550825. [PMID: 37546780 PMCID: PMC10402150 DOI: 10.1101/2023.07.27.550825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Mechanosensory hair cells in the inner ear mediate the sensations of hearing and balance, and in a specialize lateral line sensory system of aquatic vertebrates, the sensation of water movement. In mammals, hair cells lack the ability of regenerate following damage, resulting in sensory deficits. In contrast, non-mammalian vertebrates, such zebrafish, can renew hair cells throughout the life of the animal. Wnt signaling is required for development of inner ear and lateral line hair cells and regulates regeneration. Kremen1 inhibits Wnt signaling and hair cell formation, though its role in regeneration has not been established. We use a zebrafish kremen1 mutant line, to show that when Wnt signaling is overactivated in the lateral line, excessive regeneration occurs in the absence of increased proliferation, due to an increase in support cells. This contrasts with the previously described role of Wnt signaling during hair cell regeneration. This work will allow us to understand the biology of mechanosensory hair cells, and how regeneration might be promoted following damage.
Collapse
|
3
|
Montalbano G, Olivotto I, Germanà A, Randazzo B. Evaluation of the hair cell regeneration and claudin b and phoenix gene expression during exposure to low concentrations of cadmium and zinc in early developing zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109116. [PMID: 34182097 DOI: 10.1016/j.cbpc.2021.109116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022]
Abstract
Zebrafish possess hair cells on the body surface similar to that of mammals inner hear, in particular in the neuromasts, and due to its ability in regenerating damaged hair cells, is regularly used as a powerful animal model to study in vivo cytotoxicity. Among the factors leading to hair cell disruption, metal ions are of particular concern since they are important environmental pollutants. To date, several studies on zebrafish hair cell regeneration after metal exposure exist, while no data on regeneration during continuous metal exposure are available. In the present study, neuromast hair cell disruption and regeneration were assessed in zebrafish larvae for the first time during zinc (Zn) and cadmium (Cd) continuous exposure and a visual and molecular approach was adopted. Fluorescent vital dye DASPEI was used to assess hair cell regeneration and the gene expression of claudin b (cldnb) and phoenix (pho), was analyzed. Metallotionein-2 (mt2) gene expression was used as standard molecular marker of metal toxicity and confirmed the higher toxicity of Cd compared to Zn. In addition, Cd caused a delay in hair cell regeneration compared to Zn. Molecular analysis showed cldnb gene expression increased in relation to the metal concentrations used, confirming the involvement of this gene in hair cell regeneration. On the contrary, a dramatic decrease of pho gene expression was observed in Cd exposed groups, suggesting a negative impact of Cd on pho expression, thus negatively interfering with hair cell regeneration in zebrafish larvae exposed to this metal.
Collapse
Affiliation(s)
| | - Ike Olivotto
- Polytechnic University of Marche, Department of Life and Environmental Sciences, Ancona, Italy
| | - Antonino Germanà
- Messina Study University, Department of Veterinary Sciences, Messina, Italy
| | - Basilio Randazzo
- Polytechnic University of Marche, Department of Life and Environmental Sciences, Ancona, Italy.
| |
Collapse
|
4
|
Gao J, Fan L, Zhao L, Su Y. The interaction of Notch and Wnt signaling pathways in vertebrate regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:11. [PMID: 33791915 PMCID: PMC8012441 DOI: 10.1186/s13619-020-00072-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Regeneration is an evolutionarily conserved process in animal kingdoms, however, the regenerative capacities differ from species and organ/tissues. Mammals possess very limited regenerative potential to replace damaged organs, whereas non-mammalian species usually have impressive abilities to regenerate organs. The regeneration process requires proper spatiotemporal regulation from key signaling pathways. The canonical Notch and Wnt signaling pathways, two fundamental signals guiding animal development, have been demonstrated to play significant roles in the regeneration of vertebrates. In recent years, increasing evidence has implicated the cross-talking between Notch and Wnt signals during organ regeneration. In this review, we summarize the roles of Notch signaling and Wnt signaling during several representative organ regenerative events, emphasizing the functions and molecular bases of their interplay in these processes, shedding light on utilizing these two signaling pathways to enhance regeneration in mammals and design legitimate therapeutic strategies.
Collapse
Affiliation(s)
- Junying Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China.,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Lixia Fan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China.,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Long Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China. .,College of Fisheries, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Ying Su
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, Shandong, China. .,College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
5
|
Costa B, Ferreira S, Póvoa V, Cardoso MJ, Vieira S, Stroom J, Fidalgo P, Rio-Tinto R, Figueiredo N, Parés O, Greco C, Ferreira MG, Fior R. Developments in zebrafish avatars as radiotherapy sensitivity reporters - towards personalized medicine. EBioMedicine 2019; 51:102578. [PMID: 31862441 PMCID: PMC7000345 DOI: 10.1016/j.ebiom.2019.11.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/18/2023] Open
Abstract
Background Whereas the role of neoadjuvant radiotherapy in rectal cancer is well-established, the ability to discriminate between radioresistant and radiosensitive tumors before starting treatment is still a crucial unmet need. Here we aimed to develop an in vivo test to directly challenge living cancer cells to radiotherapy, using zebrafish xenografts. Methods We generated zebrafish xenografts using colorectal cancer cell lines and patient biopsies without in vitro passaging, and developed a fast radiotherapy protocol consisting of a single dose of 25 Gy. As readouts of the impact of radiotherapy we analyzed proliferation, apoptosis, tumor size and DNA damage. Findings By directly comparing isogenic cells that only differ in the KRASG13D allele, we show that it is possible to distinguish radiosensitive from radioresistant tumors in zebrafish xenografts, even in polyclonal tumors, in just 4 days. Most importantly, we performed proof-of-concept experiments using primary rectum biopsies, where clinical response to neoadjuvant chemoradiotherapy correlates with induction of apoptosis in their matching zebrafish Patient-Derived Xenografts-Avatars. Interpretation Our work opens the possibility to predict tumor responses to radiotherapy using the zebrafish Avatar model, sparing valuable therapeutic time and unnecessary toxicity.
Collapse
Affiliation(s)
- Bruna Costa
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Av Brasilia, 1400-038 Lisbon, Portugal
| | - Susana Ferreira
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Av Brasilia, 1400-038 Lisbon, Portugal
| | - Vanda Póvoa
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Av Brasilia, 1400-038 Lisbon, Portugal
| | - Maria João Cardoso
- Radiation Oncology Department, Champalimaud Clinical Centre, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Sandra Vieira
- Radiation Oncology Department, Champalimaud Clinical Centre, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Joep Stroom
- Radiation Oncology Department, Champalimaud Clinical Centre, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Paulo Fidalgo
- Digestive Unit, Champalimaud Clinical Centre, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Ricardo Rio-Tinto
- Digestive Unit, Champalimaud Clinical Centre, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Clinical Centre, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Oriol Parés
- Radiation Oncology Department, Champalimaud Clinical Centre, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Carlo Greco
- Radiation Oncology Department, Champalimaud Clinical Centre, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Miguel Godinho Ferreira
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Av Brasilia, 1400-038 Lisbon, Portugal; Université Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284 INSERM U1081, 06107 Nice, France.
| | - Rita Fior
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Av Brasilia, 1400-038 Lisbon, Portugal.
| |
Collapse
|
6
|
Gaillard D, Shechtman LA, Millar SE, Barlow LA. Fractionated head and neck irradiation impacts taste progenitors, differentiated taste cells, and Wnt/β-catenin signaling in adult mice. Sci Rep 2019; 9:17934. [PMID: 31784592 PMCID: PMC6884601 DOI: 10.1038/s41598-019-54216-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022] Open
Abstract
Head and neck cancer patients receiving conventional repeated, low dose radiotherapy (fractionated IR) suffer from taste dysfunction that can persist for months and often years after treatment. To understand the mechanisms underlying functional taste loss, we established a fractionated IR mouse model to characterize how taste buds are affected. Following fractionated IR, we found as in our previous study using single dose IR, taste progenitor proliferation was reduced and progenitor cell number declined, leading to interruption in the supply of new taste receptor cells to taste buds. However, in contrast to a single dose of IR, we did not encounter increased progenitor cell death in response to fractionated IR. Instead, fractionated IR induced death of cells within taste buds. Overall, taste buds were smaller and fewer following fractionated IR, and contained fewer differentiated cells. In response to fractionated IR, expression of Wnt pathway genes, Ctnnb1, Tcf7, Lef1 and Lgr5 were reduced concomitantly with reduced progenitor proliferation. However, recovery of Wnt signaling post-IR lagged behind proliferative recovery. Overall, our data suggest carefully timed, local activation of Wnt/β-catenin signaling may mitigate radiation injury and/or speed recovery of taste cell renewal following fractionated IR.
Collapse
Affiliation(s)
- Dany Gaillard
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| | - Lauren A Shechtman
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Linda A Barlow
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|