1
|
Santos AD, Oliveira AS, Carvalho MTB, Barreto AS, Quintans JDSS, Quintans Júnior LJ, Barreto RDSS. H. pectinata (L.) Poit - Traditional uses, phytochemistry and biological-pharmacological activities in preclinical studies: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118478. [PMID: 38909822 DOI: 10.1016/j.jep.2024.118478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE H. pectinata (L.) Poit, popularly known as "sambacaitá" or "canudinho", is a plant endemic to north-eastern Brazil. Its aerial parts, leaves and flowers have traditionally been used to treat gastrointestinal disorders, rhinopharyngitis, nasal congestion, bacterial and fungal infections, fever, colic, inflammation, and pain. AIM OF THE STUDY The aim of this review was to provide information on the botanical characteristics, ethnomedicinal uses, phytochemistry and biological-pharmacological activities of H. pectinata. MATERIALS AND METHODS This systematic review followed the Cochrane Handbook Collaboration and the PRISMA guidelines. The review question was what are the biological-pharmacological activities of H. pectinata presented in non-clinical studies. The search for articles was conducted in the Medline (via PubMed), Embase, Web of Science, Scopus, Virtual Health Library, SciELO, Google Scholar and the Brazilian Digital Library of Theses and Dissertations databases. Two reviewers independently selected the studies that met the inclusion criteria, extracted the data, and assessed the risk of bias of the included studies. RESULTS 39 articles were included in this review, of which 19 reported in vitro experiments, 16 in vivo studies and 4 in vivo and in vitro experiments. H. pectinata is a plant widely used in folk medicine in north-eastern Brazil for the treatment of various ailments, such as respiratory diseases, gastrointestinal disorders, bacterial and fungal infections, and general inflammation. Supporting its popular use, several in vitro and in vivo pharmacological investigations of the essential oil and extract of H. pectinata have demonstrated their anti-inflammatory, antinociceptive, antioxidant, antidepressant, anticancer, hepatoregenerative, healing, and antimicrobial activities. H. pectinata has been reported to contain 75 bioactive constituents, comprising 9 flavonoids, 54 terpenes, and 12 other compounds. CONCLUSION H. pectinata is a plant commonly used in traditional medicine. Phytochemically, it contains several bioactive constituents, including terpenes and flavonoids, and has been shown to have antinociceptive, anti-inflammatory, antimicrobial and antitumour activity, as well as hepatorregenerative and healing effects, and low toxicity.
Collapse
Affiliation(s)
- Adenilson Dos Santos
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Alan Santos Oliveira
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | | | - André Sales Barreto
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Jullyana de Souza Siqueira Quintans
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Lucindo José Quintans Júnior
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Rosana de Souza Siqueira Barreto
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil.
| |
Collapse
|
2
|
Pereira WF, Everson da Silva L, do Amaral W, Andrade Rebelo R, Quefi B, Wlisses da Silva A, Silva Marinho E, Borges Leal ALA, Mesquita Cajazeiras FF, Amâncio Ferreira MK, Bezerra Maciel J, Ribeiro Liberato H, Guedes JM, Silva Alencar de Menezes JE, Teixeira AMR, Silva Dos Santosa H. Essential Oils from the Genus Piper Promote Antinociception by Modulating TRP Channels and Anti-Inflammatory Effects in Adult Zebrafish. Chem Biodivers 2024; 21:e202301807. [PMID: 38284478 DOI: 10.1002/cbdv.202301807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
The Piper genus, known for its pharmacological potential, comprises 2,263 species primarily found in tropical regions. Despite recent advancements in pain therapies, the demand for more effective and well-tolerated analgesics and anti-inflammatories, particularly for chronic pain, remains. This study assessed the effects of essential oils from Piper caldense, Piper mosenii, and Piper mikanianum on nociceptive behavior induced by formalin and capsaicin, as well as their anti-inflammatory impact induced by carrageenan, using adult zebrafish models. Results indicated non-toxic essential oils with antinociceptive properties in both neurogenic and inflammatory phases of formalin-induced nociception through interaction with the TRPA1 receptor. Additionally, P. mosenii essential oil also blocked the nociceptive effect of capsaicin, a TRPV1 receptor agonist. Furthermore, essential oils from P. caldense and P. mikanianum exhibited significant anti-inflammatory effects by reducing carrageenan-induced abdominal edema. These findings highlight the pharmacological potential of Piper's essential oils as antinociceptive and anti-inflammatory agents.
Collapse
Affiliation(s)
| | - Luiz Everson da Silva
- Postgraduate Program in Sustainable Territorial Development, Federal University of Paraná, Matinhos, PR, Brazil
| | - Wanderlei do Amaral
- Department of Chemical Engineering, Federal University of Parana, Curitiba, Parana, Brazil
| | - Ricardo Andrade Rebelo
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau, SC, Brazil
| | - Blasco Quefi
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau, SC, Brazil
| | - Antonio Wlisses da Silva
- Postgraduate Program in Biotechnology - RENORBIO, State University of Ceará, Fortaleza, CE, Brazil
| | - Emmanuel Silva Marinho
- Postgraduate Program in Natural Sciences, State University of Ceara, Fortaleza, CE, Brazil
| | | | | | | | - Jéssica Bezerra Maciel
- Postgraduate Program in Natural Sciences, State University of Ceara, Fortaleza, CE, Brazil
| | | | - Jesyka Macêdo Guedes
- Postgraduate Program in Natural Sciences, State University of Ceara, Fortaleza, CE, Brazil
| | | | - Alexandre Magno Rodrigues Teixeira
- Postgraduate Program in Biotechnology - RENORBIO, State University of Ceará, Fortaleza, CE, Brazil
- Postgraduate Program in Natural Sciences, State University of Ceara, Fortaleza, CE, Brazil
| | - Helcio Silva Dos Santosa
- Postgraduate Program in Biotechnology - RENORBIO, State University of Ceará, Fortaleza, CE, Brazil
- Postgraduate Program in Natural Sciences, State University of Ceara, Fortaleza, CE, Brazil
- Chemistry Course, State University of Vale do Acaraú, Sobral, CE, Brazil
| |
Collapse
|
3
|
Di Spirito N, Grizzuti N, Lutz-Bueno V, Urciuoli G, Auriemma F, Pasquino R. Pluronic F68 Micelles as Carriers for an Anti-Inflammatory Drug: A Rheological and Scattering Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1544-1554. [PMID: 38166478 PMCID: PMC10795184 DOI: 10.1021/acs.langmuir.3c03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024]
Abstract
Age-long ambition of medical scientists has always been advancement in healthcare and therapeutic medicine. Biomedical research indeed claims paramount importance in nanomedicine and drug delivery, and the development of biocompatible storage structures for delivering drugs stands at the heart of emerging scientific works. The delivery of drugs into the human body is nevertheless a nontrivial and challenging task, and it is often addressed by using amphiphilic compounds as nanosized delivery vehicles. Pluronics belong to a peculiar class of biocompatible and thermosensitive nonionic amphiphilic copolymers, and their self-assemblies are employed as drug delivery excipients because of their unique properties. We herein report on the encapsulation of diclofenac sodium within Pluronic F68 self-assemblies in water, underpinning the impact of the drug on the rheological and microstructural evolution of pluronic-based systems. The self-assembly and thermoresponsive micellization were studied through isothermal steady rheological experiments at different temperatures on samples containing 45 wt % Pluronic F68 and different amounts of diclofenac sodium. The adoption of scattering techniques, small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), allowed for the description of the system features at the nanometer length scale, providing information about the characteristic size of each part of the micellar structures as a function of temperature and drug concentration. Diclofenac sodium is not a good fellow for Pluronic F68. The triblock copolymer aids the encapsulation of the drug, highly improving its water solubility, whereas diclofenac sodium somehow hinders Pluronic self-assembly. By using a simple empirical model and no fitting parameters, the steady viscosity can be predicted, although qualitatively, through the volume fraction of the micelles extracted through scattering techniques and compared to the rheological one. A tunable control of the viscous behavior of such biomedical systems may be achieved through the suitable choice of their composition.
Collapse
Affiliation(s)
| | - Nino Grizzuti
- DICMaPI, Università degli Studi di Napoli Federico II, P. le Tecchio 80, 80125 Napoli, Italy
| | - Viviane Lutz-Bueno
- Laboratory
for Neutron Scattering & Imaging, Paul
Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Gaia Urciuoli
- Dipartimento
di Scienze Chimiche, Università di
Napoli “Federico II”, Complesso Monte S. Angelo, via Cintia, 80126 Napoli, Italy
| | - Finizia Auriemma
- Dipartimento
di Scienze Chimiche, Università di
Napoli “Federico II”, Complesso Monte S. Angelo, via Cintia, 80126 Napoli, Italy
| | - Rossana Pasquino
- DICMaPI, Università degli Studi di Napoli Federico II, P. le Tecchio 80, 80125 Napoli, Italy
| |
Collapse
|
4
|
Di Spirito NA, Grizzuti N, Casalegno M, Castiglione F, Pasquino R. Phase transitions of aqueous solutions of Pluronic F68 in the presence of Diclofenac Sodium. Int J Pharm 2023; 644:123353. [PMID: 37647976 DOI: 10.1016/j.ijpharm.2023.123353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
In recent years, advancements in bioengineering and materials science have witnessed increasing interest in synthetic polymers capable of fulfilling various applications. Owing to their distinctive properties, Pluronics can be used as nano-drug carriers, to deliver poorly water-soluble drugs, and as model systems to study colloidal science by tuning amphiphilic properties. In this work, we investigated the effect of diclofenac sodium on the self-assembly and thermoresponsive crystallization of Pluronic F68 in water solutions, by employing experimental rheology and Nuclear Magnetic Resonance (NMR). We built a complete phase diagram as a function of temperature and concentration for 45 wt% Pluronic F68 with various amounts of diclofenac sodium in water. The morphological transitions were followed as a function of temperature via linear rheology. We extrapolated the transition temperatures - identifying distinct phases - as a function of the drug concentration and proposed an empirical model for their prediction. NMR analysis provided further information on the structural characteristics of the systems, shedding light on the interactions between F68 and diclofenac sodium. Although dealing with a pharmaceutical salt, the study is focused on a colloidal system and its interaction with a binding molecule, that is of general interest for colloidal science.
Collapse
Affiliation(s)
| | - Nino Grizzuti
- DICMaPI, Università degli Studi di Napoli Federico II, P. le Tecchio 80, 80125 Napoli, Italy.
| | - Mosè Casalegno
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano (MI), Italy.
| | - Franca Castiglione
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano (MI), Italy.
| | - Rossana Pasquino
- DICMaPI, Università degli Studi di Napoli Federico II, P. le Tecchio 80, 80125 Napoli, Italy.
| |
Collapse
|
5
|
5-Fluorouracil-Immobilized Hyaluronic Acid Hydrogel Arrays on an Electrospun Bilayer Membrane as a Drug Patch. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120742. [PMID: 36550948 PMCID: PMC9774285 DOI: 10.3390/bioengineering9120742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The hyaluronic acid (HA) hydrogel array was employed for immobilization of 5-fluorouracil (5-FU), and the electrospun bilayer (hydrophilic: polyurethane/pluronic F-127 and hydrophobic: polyurethane) membrane was used to support the HA hydrogel array as a patch. To visualize the drug propagating phenomenon into tissues, we experimentally investigated how FITC-BSA diffused into the tissue by applying hydrogel patches to porcine tissue samples. The diffusive phenomenon basically depends on the FITC-BSA diffusion coefficient in the hydrogel, and the degree of diffusion of FITC-BSA may be affected by the concentration of HA hydrogel, which demonstrates that the high density of HA hydrogel inhibits the diffusive FITC-BSA migration toward the low concentration region. YD-10B cells were employed to investigate the release of 5-FU from the HA array on the bilayer membrane. In the control group, YD-10B cell viability was over 98% after 3 days. However, in the 5-FU-immobilized HA hydrogel array, most of the YD-10B cells were not attached to the bilayer membrane used as a scaffold. These results suggest that 5-FU was locally released and initiated the death of the YD-10B cells. Our results show that 5-FU immobilized on HA arrays significantly reduces YD-10B cell adhesion and proliferation, affecting cells even early in the cell culture. Our results suggest that when 5-FU is immobilized in the HA hydrogel array on the bilayer membrane as a drug patch, it is possible to control the drug concentration, to release it continuously, and that the patch can be applied locally to the targeted tumor site and administer the drug in a time-stable manner. Therefore, the developed bilayer membrane-based HA hydrogel array patch can be considered for sustained release of the drug in biomedical applications.
Collapse
|
6
|
Jaquilin P J R, Oluwafemi OS, Thomas S, Oyedeji AO. Recent advances in drug delivery nanocarriers incorporated in temperature-sensitive Pluronic F-127–A critical review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Liu S, Wang T, Li S, Wang X. Application Status of Sacrificial Biomaterials in 3D Bioprinting. Polymers (Basel) 2022; 14:2182. [PMID: 35683853 PMCID: PMC9182955 DOI: 10.3390/polym14112182] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Additive manufacturing, also known as three-dimensional (3D) printing, relates to several rapid prototyping (RP) technologies, and has shown great potential in the manufacture of organoids and even complex bioartificial organs. A major challenge for 3D bioprinting complex org unit ans is the competitive requirements with respect to structural biomimeticability, material integrability, and functional manufacturability. Over the past several years, 3D bioprinting based on sacrificial templates has shown its unique advantages in building hierarchical vascular networks in complex organs. Sacrificial biomaterials as supporting structures have been used widely in the construction of tubular tissues. The advent of suspension printing has enabled the precise printing of some soft biomaterials (e.g., collagen and fibrinogen), which were previously considered unprintable singly with cells. In addition, the introduction of sacrificial biomaterials can improve the porosity of biomaterials, making the printed structures more favorable for cell proliferation, migration and connection. In this review, we mainly consider the latest developments and applications of 3D bioprinting based on the strategy of sacrificial biomaterials, discuss the basic principles of sacrificial templates, and look forward to the broad prospects of this approach for complex organ engineering or manufacturing.
Collapse
Affiliation(s)
- Siyu Liu
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Tianlin Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Shenglong Li
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliat Care Pharmacother 2021; 35:175-214. [PMID: 34157247 DOI: 10.1080/15360288.2021.1925386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pain remains a global health challenge affecting approximately 1.5 billion people worldwide. Pain has been an implicit variable in the equation of human life for many centuries considering different types and the magnitude of pain. Therefore, developing an efficacious drug delivery system for pain management remains an open challenge for researchers in the field of medicine. Lack of therapeutic efficacy still persists, despite high throughput studies in the field of pain management. Research scientists have been exploiting different alternatives to curb the adverse side effects of pain medications or attempting a more substantial approach to minimize the prevalence of pain. Various drug delivery systems have been developed such as nanoparticles, microparticles to curb adverse side effects of pain medications or minimize the prevalence of pain. This literature review firstly provides a brief introduction of pain as a sensation and its pharmacological interventions. Second, it highlights the most recent studies in the pharmaceutical field for pain management and serves as a strong base for future developments. Herein, we have classified drug delivery systems based on their sizes such as nano, micro, and macro systems, and for each of the reviewed systems, design, formulation strategies, and drug release performance has been discussed.
Collapse
|
9
|
Fibromyalgia: Pathogenesis, Mechanisms, Diagnosis and Treatment Options Update. Int J Mol Sci 2021; 22:ijms22083891. [PMID: 33918736 PMCID: PMC8068842 DOI: 10.3390/ijms22083891] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Fibromyalgia is a syndrome characterized by chronic and widespread musculoskeletal pain, often accompanied by other symptoms, such as fatigue, intestinal disorders and alterations in sleep and mood. It is estimated that two to eight percent of the world population is affected by fibromyalgia. From a medical point of view, this pathology still presents inexplicable aspects. It is known that fibromyalgia is caused by a central sensitization phenomenon characterized by the dysfunction of neuro-circuits, which involves the perception, transmission and processing of afferent nociceptive stimuli, with the prevalent manifestation of pain at the level of the locomotor system. In recent years, the pathogenesis of fibromyalgia has also been linked to other factors, such as inflammatory, immune, endocrine, genetic and psychosocial factors. A rheumatologist typically makes a diagnosis of fibromyalgia when the patient describes a history of pain spreading in all quadrants of the body for at least three months and when pain is caused by digital pressure in at least 11 out of 18 allogenic points, called tender points. Fibromyalgia does not involve organic damage, and several diagnostic approaches have been developed in recent years, including the analysis of genetic, epigenetic and serological biomarkers. Symptoms often begin after physical or emotional trauma, but in many cases, there appears to be no obvious trigger. Women are more prone to developing the disease than men. Unfortunately, the conventional medical therapies that target this pathology produce limited benefits. They remain largely pharmacological in nature and tend to treat the symptomatic aspects of various disorders reported by the patient. The statistics, however, highlight the fact that 90% of people with fibromyalgia also turn to complementary medicine to manage their symptoms.
Collapse
|
10
|
An YH, Kim JA, Yim HG, Han WJ, Park YB, Jin Park H, Young Kim M, Jang J, Koh RH, Kim SH, Hwang NS, Ha CW. Meniscus regeneration with injectable Pluronic/PMMA-reinforced fibrin hydrogels in a rabbit segmental meniscectomy model. J Tissue Eng 2021; 12:20417314211050141. [PMID: 34721832 PMCID: PMC8552387 DOI: 10.1177/20417314211050141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023] Open
Abstract
Injectable hydrogel systems are a facile approach to apply to the damaged meniscus in a minimally invasive way. We herein developed a clinically applicable and injectable semi-interpenetrated network (semi-IPN) hydrogel system based on fibrin (Fb), reinforced with Pluronic F127 (F127) and polymethyl methacrylate (PMMA), to improve the intrinsic weak mechanical properties. Through the dual-syringe device system, the hydrogel could form a gel state within about 50 s, and the increment of compressive modulus of Fb hydrogels was achieved by adding F127 from 3.0% (72.0 ± 4.3 kPa) to 10.0% (156.0 ± 9.8 kPa). The shear modulus was enhanced by adding PMMA microbeads (26.0 ± 1.1 kPa), which was higher than Fb (13.5 ± 0.5 kPa) and Fb/F127 (21.7 ± 0.8 kPa). Moreover, the addition of F127 and PMMA also delayed the rate of enzymatic biodegradation of Fb hydrogel. Finally, we confirmed that both Fb/F127 and Fb/F127/PMMA hydrogels showed accelerated tissue repair in the in vivo segmental defect of the rabbit meniscus model. In addition, the histological analysis showed that the quality of the regenerated tissues healed by Fb/F127 was particularly comparable to that of healthy tissue. The biomechanical strength of the regenerated tissues of Fb/F127 (3.50 ± 0.35 MPa) and Fb/F127/PMMA (3.59 ± 0.89 MPa) was much higher than that of Fb (0.82 ± 0.05 MPa) but inferior to that of healthy tissue (6.63 ± 1.12 MPa). These results suggest that the reinforcement of Fb hydrogel using FDA-approved synthetic biomaterials has great potential to be used clinically.
Collapse
Affiliation(s)
- Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Jin-A Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyun-Gu Yim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Woo-Jung Han
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong-Beom Park
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jin Park
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Man Young Kim
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jaewon Jang
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Racheal H. Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Su-Hwan Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan, Republic of Korea
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Chul-Won Ha
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Stem Cell & Regenerative Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
12
|
Zarrintaj P, Ramsey JD, Samadi A, Atoufi Z, Yazdi MK, Ganjali MR, Amirabad LM, Zangene E, Farokhi M, Formela K, Saeb MR, Mozafari M, Thomas S. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomater 2020; 110:37-67. [PMID: 32417265 DOI: 10.1016/j.actbio.2020.04.028] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022]
Abstract
Poloxamers, also called Pluronic, belong to a unique class of synthetic tri-block copolymers containing central hydrophobic chains of poly(propylene oxide) sandwiched between two hydrophilic chains of poly(ethylene oxide). Some chemical characteristics of poloxamers such as temperature-dependent self-assembly and thermo-reversible behavior along with biocompatibility and physiochemical properties make poloxamer-based biomaterials promising candidates for biomedical application such as tissue engineering and drug delivery. The microstructure, bioactivity, and mechanical properties of poloxamers can be tailored to mimic the behavior of various types of tissues. Moreover, their amphiphilic nature and the potential to self-assemble into the micelles make them promising drug carriers with the ability to improve the drug availability to make cancer cells more vulnerable to drugs. Poloxamers are also used for the modification of hydrophobic tissue-engineered constructs. This article collects the recent advances in design and application of poloxamer-based biomaterials in tissue engineering, drug/gene delivery, theranostic devices, and bioinks for 3D printing. STATEMENT OF SIGNIFICANCE: Poloxamers, also called Pluronic, belong to a unique class of synthetic tri-block copolymers containing central hydrophobic chains of poly(propylene oxide) sandwiched between two hydrophilic chains of poly(ethylene oxide). The microstructure, bioactivity, and mechanical properties of poloxamers can be tailored to mimic the behavior of various types of tissues. Moreover, their amphiphilic nature and the potential to self-assemble into the micelles make them promising drug carriers with the ability to improve the drug availability to make cancer cells more vulnerable to drugs. However, no reports have systematically reviewed the critical role of poloxamer for biomedical applications. Research on poloxamers is growing today opening new scenarios that expand the potential of these biomaterials from "traditional" treatments to a new era of tissue engineering. To the best of our knowledge, this is the first review article in which such issue is systematically reviewed and critically discussed in the light of the existing literature.
Collapse
Affiliation(s)
- Payam Zarrintaj
- Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Joshua D Ramsey
- Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Ali Samadi
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Zhaleh Atoufi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohsen Khodadadi Yazdi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences, University of Tehran, Tehran, Iran
| | | | - Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran.
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sabu Thomas
- School of Chemical Sciences, M G University, Kottayam 686560, Kerala, India
| |
Collapse
|
13
|
Assis DB, Aragão Neto HDC, da Fonsêca DV, de Andrade HHN, Braga RM, Badr N, Maia MDS, Castro RD, Scotti L, Scotti MT, de Almeida RN. Antinociceptive Activity of Chemical Components of Essential Oils That Involves Docking Studies: A Review. Front Pharmacol 2020; 11:777. [PMID: 32547391 PMCID: PMC7272657 DOI: 10.3389/fphar.2020.00777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Pain is considered an unpleasant sensory and emotional experience, being considered as one of the most important causes of human suffering. Computational chemistry associated with bioinformatics has stood out in the process of developing new drugs, through natural products, to manage this condition. OBJECTIVE To analyze, through literature data, recent molecular coupling studies on the antinociceptive activity of essential oils and monoterpenes. DATA SOURCE Systematic search of the literature considering the years of publications between 2005 and December 2019, in the electronic databases PubMed and Science Direct. ELIGIBILITY CRITERIA Were considered as criteria of 1) Biological activity: non-clinical effects of an OE and/or monoterpenes on antinociceptive activity based on animal models and in silico analysis, 2) studies with plant material: chemically characterized essential oils and/or their constituents isolated, 3) clinical and non-clinical studies with in silico analysis to assess antinociceptive activity, 4) articles published in English. Exclusion criteria were literature review, report or case series, meta-analysis, theses, dissertations, and book chapter. RESULTS Of 16,006 articles, 16 articles fulfilled all the criteria. All selected studies were non-clinical. The most prominent plant families used were Asteraceae, Euphorbiaceae, Verbenaceae, Lamiaceae, and Lauraceae. Among the phytochemicals studied were α-Terpineol, 3-(5-substituted-1,3,4-oxadiazol-2-yl)-N'-[2-oxo-1,2-dihydro-3H-indol-3-ylidene] propane hydrazide, β-cyclodextrin complexed with citronellal, (-)-α-bisabolol, β-cyclodextrin complexed with farnesol, and p-Cymene. The softwares used for docking studies were Molegro Virtual Docker, Sybyl®X, Vlife MDS, AutoDock Vina, Hex Protein Docking, and AutoDock 4.2 in PyRx 0.9. The molecular targets/complexes used were Nitric Oxide Synthase, COX-2, GluR2-S1S2, TRPV1, β-CD complex, CaV1, CaV2.1, CaV2.2, and CaV2.3, 5-HT receptor, delta receptor, kappa receptor, and MU (μ) receptor, alpha adrenergic, opioid, and serotonergic receptors, muscarinic receptors and GABAA opioid and serotonin receptors, 5-HT3 and M2 receptors. Many of the covered studies used molecular coupling to investigate the mechanism of action of various compounds, as well as molecular dynamics to investigate the stability of protein-ligand complexes. CONCLUSIONS The studies revealed that through the advancement of more robust computational techniques that complement the experimental studies, they may allow some notes on the identification of a new candidate molecule for therapeutic use.
Collapse
Affiliation(s)
- Davidson Barbosa Assis
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Diogo Vilar da Fonsêca
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Humberto Hugo Nunes de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Renan Marinho Braga
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Nader Badr
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Mayara dos Santos Maia
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Ricardo Dias Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcus Tullius Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
14
|
Carvalho AMS, Heimfarth L, Pereira EWM, Oliveira FS, Menezes IRA, Coutinho HDM, Picot L, Antoniolli AR, Quintans JSS, Quintans-Júnior LJ. Phytol, a Chlorophyll Component, Produces Antihyperalgesic, Anti-inflammatory, and Antiarthritic Effects: Possible NFκB Pathway Involvement and Reduced Levels of the Proinflammatory Cytokines TNF-α and IL-6. JOURNAL OF NATURAL PRODUCTS 2020; 83:1107-1117. [PMID: 32091204 DOI: 10.1021/acs.jnatprod.9b01116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phytol is a diterpene constituent of chlorophyll and has been shown to have several pharmacological properties, particularly in relation to the management of painful inflammatory diseases. Arthritis is one of the most common of these inflammatory diseases, mainly affecting the synovial membrane, cartilage, and bone in joints. Proinflammatory cytokines, such as TNF-α and IL-6, and the NFκB signaling pathway play a pivotal role in arthritis. However, as the mechanisms of action of phytol and its ability to reduce the levels of these cytokines are poorly understood, we decided to investigate its pharmacological effects using a mouse model of complete Freund's adjuvant (CFA)-induced arthritis. Our results showed that phytol was able to inhibit joint swelling and hyperalgesia throughout the whole treatment period. Moreover, phytol reduced myeloperoxidase (MPO) activity and proinflammatory cytokine release in synovial fluid and decreased IL-6 production as well as the COX-2 immunocontent in the spinal cord. It also downregulated the p38MAPK and NFκB signaling pathways. Therefore, our findings demonstrated that phytol can be an innovative antiarthritic agent due to its capacity to attenuate inflammatory reactions in joints and the spinal cord, mainly through the modulation of mediators that are key to the establishment of arthritic pain.
Collapse
Affiliation(s)
| | | | | | | | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará 63100-000, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará 63100-000, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042 La Rochelle, France
| | | | | | | |
Collapse
|
15
|
Scotti L, Scotti MT. Medicinal Chemistry Studies Applied to Protein Targets. Curr Protein Pept Sci 2019; 20:1132-1134. [PMID: 31858900 DOI: 10.2174/138920372012191114113702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Luciana Scotti
- Teaching and Research Management - University Hospital, Joao Pessoa-PB, Brazil.,Cheminformatics Laboratory- Postgraduate Program in Natural Products and Synthetic Bioactive Federal University of Paraiba Campus I, 58051-900, Joao Pessoa-PB, Brazil
| | - Marcus T Scotti
- Cheminformatics Laboratory- Postgraduate Program in Natural Products and Synthetic Bioactive Federal University of Paraiba Campus I, 58051-900, Joao Pessoa-PB, Brazil
| |
Collapse
|
16
|
Eplingiella fruticosa (Lamiaceae) essential oil complexed with β-cyclodextrin improves its anti-hyperalgesic effect in a chronic widespread non-inflammatory muscle pain animal model. Food Chem Toxicol 2019; 135:110940. [PMID: 31693914 DOI: 10.1016/j.fct.2019.110940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Eplingiella fruticosa (Lamiaceae), formally known as Hyptis fruticosa, is an important aromatic medicinal herb used in folk medicine in northeastern Brazil. We aimed to evaluate the anti-hyperalgesic effect of essential oil obtained from E. fruticosa (HypEO) complexed with βCD (HypEO-βCD) in a chronic widespread non-inflammatory muscle pain animal model (a mice fibromyalgia-like model, FM). The HypEO was extracted by hydro distillation and its chemical composition was determined by GC-MS/FID. Moreover, Fos protein expression in the spinal cord was assessed by immunofluorescence. (E)-caryophyllene, bicyclogermacrene, 1,8-cineole, α-pinene, β-pinene and 21 other compounds were identified in the HypEO. The treatment with HypEO-βCD produced a longer-lasting anti-hyperalgesic effect compared to HypEO, without alterations in motor coordination or myorelaxant effects. Moreover, HypEO and HypEO-βCD produced a significant anti-hyperalgesic effect over 7 consecutive treatment days. Immunofluorescence assay demonstrated a decrease in Fos protein expression in the spinal cord (p < 0.001). We demonstrated that the anti-hyperalgesic effect produced by HypEO was improved after complexation with β-CD and this seems to be related to the central pain-inhibitory pathway, suggesting the possible use of E. fruticosa for chronic pain management.
Collapse
|
17
|
Gouveia DN, Guimarães AG, Santos WBDR, Quintans-Júnior LJ. Natural products as a perspective for cancer pain management: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152766. [PMID: 31005719 DOI: 10.1016/j.phymed.2018.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer is the leading cause of death in the world and one of the main symptoms affecting these individuals is chronic pain, which must be evaluated and treated in its various components. Several drugs are currently used, but beyond the high cost, they have harmful side effects to patients or are transitorily effective. Ergo, there is a need to look for new options for cancer pain relief. Natural products (NPs) present themselves as strong candidates for the development of new drugs for the treatment of chronic pain, such as cancer pain. PURPOSE This systematic review aimed to summarize current knowledge about the analgesic profile of NPs in cancer pain. METHODS The search included PubMed, Scopus and Web of Science (from inception to June 2018) sought to summarize the articles studying new proposals with NPs for the management of oncological pain. Two independent reviewers extracted data on study characteristics, methods and outcomes. RESULTS After an extensive survey, 21 articles were selected, which described the analgesic potential of 15 natural compounds to relieve cancer pain. After analyzing the data, it can be suggested that these NPs, which have targets in central and peripheral mechanisms, are interesting candidates for the treatment of cancer pain for addressing different pharmacological mechanisms (even innovative), but ensuring the safety of these compounds is still a challenge. Likewise, the cannabinoids compounds leave the front as the most promising compounds for direct applicability due to the clinical studies that have already been developed and the background already established about these effects on chronic pain. CONCLUSION Regarding these findings, it can be concluded that the variability of possible biological sites of action is strategic for new perspectives in the development of therapeutic proposals different from those available in the current market.
Collapse
Affiliation(s)
- Daniele Nascimento Gouveia
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| | - Adriana Gibara Guimarães
- Departamento de Educação em Saúde, Universidade Federal de Sergipe, Av. Governador Marcelo Déda, 13, Lagarto, Sergipe, Brazil.
| | - Wagner Barbosa da Rocha Santos
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| | - Lucindo José Quintans-Júnior
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| |
Collapse
|
18
|
Siqueira-Lima PS, Passos FR, Lucchese AM, Menezes IR, Coutinho HD, Lima AA, Zengin G, Quintans JS, Quintans-Júnior LJ. Central nervous system and analgesic profiles of Lippia genus. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2018.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|