1
|
Lei K, Wu R, Wang J, Lei X, Zhou E, Fan R, Gong L. Sirtuins as Potential Targets for Neuroprotection: Mechanisms of Early Brain Injury Induced by Subarachnoid Hemorrhage. Transl Stroke Res 2024; 15:1017-1034. [PMID: 37779164 PMCID: PMC11522081 DOI: 10.1007/s12975-023-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a prevalent cerebrovascular disease with significant global mortality and morbidity rates. Despite advancements in pharmacological and surgical approaches, the quality of life for SAH survivors has not shown substantial improvement. Traditionally, vasospasm has been considered a primary contributor to death and disability following SAH, but anti-vasospastic therapies have not demonstrated significant benefits for SAH patients' prognosis. Emerging studies suggest that early brain injury (EBI) may play a crucial role in influencing SAH prognosis. Sirtuins (SIRTs), a group of NAD + -dependent deacylases comprising seven mammalian family members (SIRT1 to SIRT7), have been found to be involved in neural tissue development, plasticity, and aging. They also exhibit vital functions in various central nervous system (CNS) processes, including cognition, pain perception, mood, behavior, sleep, and circadian rhythms. Extensive research has uncovered the multifaceted roles of SIRTs in CNS disorders, offering insights into potential markers for pathological processes and promising therapeutic targets (such as SIRT1 activators and SIRT2 inhibitors). In this article, we provide an overview of recent research progress on the application of SIRTs in subarachnoid hemorrhage and explore their underlying mechanisms of action.
Collapse
Affiliation(s)
- Kunqian Lei
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Rui Wu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Jin Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Xianze Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Erxiong Zhou
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Ruiming Fan
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| | - Lei Gong
- Department of Pharmacy, Institute of Medical Biotechnology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| |
Collapse
|
2
|
Zachariassen M, Thomsen MM, Hillig T, Trier-Petersen P, Jensen AV, Friis-Hansen LJ, Brandt CT. Tenascin-C in patients with central nervous system infections. J Neuroimmunol 2024; 392:578373. [PMID: 38776710 DOI: 10.1016/j.jneuroim.2024.578373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The extracellular matrix protein tenascin-C has been discovered to be an important regulator of the response to tissue injury and repair in cerebrovascular diseases. This study investigated if tenascin-C is released in response to infections in the central nervous system (CNS). METHODS Tenascin-C concentration in the cerebrospinal fluid (CSF) was measured in patients, (>18 years) with and without CNS infections, admitted to a department of infectious diseases in Denmark. CSF tenascin-C was measured on the Meso-scale platform. RESULTS 174 patients were included of which 140 were diagnosed with a CNS infection and 34 where this was ruled out (control group). Median CSF tenascin-C levels were significantly higher among patients with bacterial meningitis (147 pg/mL), viral meningitis (33 mg/mL), viral encephalitis (39 pg/mL) and Lyme neuroborreliosis (45 pg/mL) when compared to controls (21 pg/mL). Correlations between tenascin-C and CSF markers of inflammation and age were only moderate. CONCLUSION Levels of CSF tenascin-C are higher among patients with bacterial and viral neuroinfections, already on admission, but exhibit only a modest correlation with baseline indices of neuroinflammation. CSF tenascin-C is highest among patients with bacterial meningitis compared to the other CNS infections. Patients with unfavorable outcomes presented with higher median CSF tenascin-C than their counterparts.
Collapse
Affiliation(s)
- Morten Zachariassen
- Department of Infectious Diseases, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark.
| | - Martin Munthe Thomsen
- Department of Pulmonary and Infectious Diseases, Nordsjællands Hospital, University Hospital Copenhagen, Hillerød, Denmark
| | - Thore Hillig
- Department of Clinical Biochemistry, Nordsjællands Hospital, University Hospital Copenhagen, Hillerød, Denmark
| | - Pelle Trier-Petersen
- Department of Infectious Diseases, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark; Department of Pulmonary and Infectious Diseases, Nordsjællands Hospital, University Hospital Copenhagen, Hillerød, Denmark
| | - Andreas Vestergaard Jensen
- Department of Infectious Diseases, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark; Department of Pulmonary and Infectious Diseases, Nordsjællands Hospital, University Hospital Copenhagen, Hillerød, Denmark
| | - Lennart Jan Friis-Hansen
- Department of Clinical Microbiology, University Hospital Rigshospitalet, University of Copenhagen, Denmark
| | - Christian Thomas Brandt
- Department of Infectious Diseases, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Region, Copenhagen, Denmark
| |
Collapse
|
3
|
Abedsaeidi M, Hojjati F, Tavassoli A, Sahebkar A. Biology of Tenascin C and its Role in Physiology and Pathology. Curr Med Chem 2024; 31:2706-2731. [PMID: 37021423 DOI: 10.2174/0929867330666230404124229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 04/07/2023]
Abstract
Tenascin-C (TNC) is a multimodular extracellular matrix (ECM) protein hexameric with several molecular forms (180-250 kDa) produced by alternative splicing at the pre-mRNA level and protein modifications. The molecular phylogeny indicates that the amino acid sequence of TNC is a well-conserved protein among vertebrates. TNC has binding partners, including fibronectin, collagen, fibrillin-2, periostin, proteoglycans, and pathogens. Various transcription factors and intracellular regulators tightly regulate TNC expression. TNC plays an essential role in cell proliferation and migration. Unlike embryonic tissues, TNC protein is distributed over a few tissues in adults. However, higher TNC expression is observed in inflammation, wound healing, cancer, and other pathological conditions. It is widely expressed in a variety of human malignancies and is recognized as a pivotal factor in cancer progression and metastasis. Moreover, TNC increases both pro-and anti-inflammatory signaling pathways. It has been identified as an essential factor in tissue injuries such as damaged skeletal muscle, heart disease, and kidney fibrosis. This multimodular hexameric glycoprotein modulates both innate and adaptive immune responses regulating the expression of numerous cytokines. Moreover, TNC is an important regulatory molecule that affects the onset and progression of neuronal disorders through many signaling pathways. We provide a comprehensive overview of the structural and expression properties of TNC and its potential functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Malihehsadat Abedsaeidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzaneh Hojjati
- Division of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Suzuki Y, Oinaka H, Nakajima H, Nampei M, Kawakita F, Miura Y, Yasuda R, Toma N, Suzuki H. Plasma Fibulin-5 Levels as an Independent Predictor of a Poor Outcome after an Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2022; 23:ijms232315184. [PMID: 36499510 PMCID: PMC9740042 DOI: 10.3390/ijms232315184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a poor-outcome disease with a delayed neurological exacerbation. Fibulin-5 (FBLN5) is one of matricellular proteins, some of which have been involved in SAH pathologies. However, no study has investigated FBLN5's roles in SAH. This study was aimed at examining the relationships between serially measured plasma FBLN5 levels and neurovascular events or outcomes in 204 consecutive aneurysmal SAH patients, including 77 patients (37.7%) with poor outcomes (90-day modified Rankin Scale 3-6). Plasma FBLN5 levels were not related to angiographic vasospasm, delayed cerebral ischemia, and delayed cerebral infarction, but elevated levels were associated with severe admission clinical grades, any neurological exacerbation and poor outcomes. Receiver-operating characteristic curves indicated that the most reasonable cut-off values of plasma FBLN5, in order to differentiate 90-day poor from good outcomes, were obtained from analyses at days 4-6 for all patients (487.2 ng/mL; specificity, 61.4%; and sensitivity, 62.3%) and from analyses at days 7-9 for only non-severe patient (476.8 ng/mL; specificity, 66.0%; and sensitivity, 77.8%). Multivariate analyses revealed that the plasma FBLN5 levels were independent determinants of the 90-day poor outcomes in both all patients' and non-severe patients' analyses. These findings suggest that the delayed elevation of plasma FBLN5 is related to poor outcomes, and that FBLN5 may be a new molecular target to reveal a post-SAH pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hidenori Suzuki
- Correspondence: ; Tel.: +81-59-232-1111; Fax: +81-59-231-5212
| | | |
Collapse
|
5
|
Tong L, Gao S, Li W, Yang J, Wang P, Li W. TRPM2 mediates CaMKⅡ-Beclin-1 signaling in early cortical injury after induced subarachnoid hemorrhage in mice. J Chem Neuroanat 2022; 125:102144. [PMID: 35988814 DOI: 10.1016/j.jchemneu.2022.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Though early brain injury (EBI) is the primary cause of poor outcomes among patients with subarachnoid hemorrhage (SAH), its exact molecular mechanisms remain unclear. Improved the understanding of how transient receptor potential melastatin-related 2 (TRPM2) is involved in SAH-induced EBI will help develop novel interventions. METHODS Wild type (WT) male C57BL/6J mice were subjected to SAH for 12 h, 24 h or 48 h, after which neurological scores and pathological changes in the hippocampus (CA3, DG, and CA1) and temporal base cortex were observed. Expressions of TRPM2, Ca2+/calmodulin (CaM)-dependent protein kinase Ⅱ (CaMKⅡ), and Beclin-1 in hippocampus (CA3, DG, and CA1) and temporal base cortex were compared across post-SAH timepoints. TRPM2-deficient (TRPM2-/-) male C57BL/6 J mice and a CaMKⅡ inhibitor (KN-93) were used to analyze the effects oTRPM2 on the CaMKⅡ-Beclin-1 signaling post SAH. RESULTS Neurological and temporal base cortex deterioration were more severe with increased time post-SAH induction, whereas hippocampal damage was not observed. Post-SAH, TRPM2-CaMKⅡ-Beclin-1 cascade was activated in the temporal base cortex, but not the hippocampus. Using TRPM2-/- mice and KN-93 administration, SAH-induced EBI was improved, and CaMKⅡ and Beclin-1 expressions in the temporal base cortex were significantly decreased compared with WT mice. TRPM2-/- mice also showed better neurological improvement compared with KN-93 treated mice. CONCLUSION TRPM2 mediates CaMKⅡ-Beclin-1 signaling that aggravates SAH-induced EBI in the temporal base cortex. TRPM2 may be an alternative therapy target in EBI after SAH. DATA AVAILABILITY The datasets generated and/or analysed during the current study are available from the corresponding author.
Collapse
Affiliation(s)
- Lin Tong
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China.
| | - Su Gao
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| | - Wei Li
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| | - Junli Yang
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| | - Ping Wang
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| | - Weiwei Li
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, 264000, China
| |
Collapse
|
6
|
Fu Z, Zhu G, Luo C, Chen Z, Dou Z, Chen Y, Zhong C, Su S, Liu F. Matricellular protein tenascin C: Implications in glioma progression, gliomagenesis, and treatment. Front Oncol 2022; 12:971462. [PMID: 36033448 PMCID: PMC9413079 DOI: 10.3389/fonc.2022.971462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Matricellular proteins are nonstructural extracellular matrix components that are expressed at low levels in normal adult tissues and are upregulated during development or under pathological conditions. Tenascin C (TNC), a matricellular protein, is a hexameric and multimodular glycoprotein with different molecular forms that is produced by alternative splicing and post-translational modifications. Malignant gliomas are the most common and aggressive primary brain cancer of the central nervous system. Despite continued advances in multimodal therapy, the prognosis of gliomas remains poor. The main reasons for such poor outcomes are the heterogeneity and adaptability caused by the tumor microenvironment and glioma stem cells. It has been shown that TNC is present in the glioma microenvironment and glioma stem cell niches, and that it promotes malignant properties, such as neovascularization, proliferation, invasiveness, and immunomodulation. TNC is abundantly expressed in neural stem cell niches and plays a role in neurogenesis. Notably, there is increasing evidence showing that neural stem cells in the subventricular zone may be the cells of origin of gliomas. Here, we review the evidence regarding the role of TNC in glioma progression, propose a potential association between TNC and gliomagenesis, and summarize its clinical applications. Collectively, TNC is an appealing focus for advancing our understanding of gliomas.
Collapse
Affiliation(s)
- Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zihang Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangqi Dou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zhong
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Su
- Department of Neurosurgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Fuyi Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Fuyi Liu,
| |
Collapse
|
7
|
Dzyubenko E, Manrique-Castano D, Pillath-Eilers M, Vasileiadou P, Reinhard J, Faissner A, Hermann DM. Tenascin-C restricts reactive astrogliosis in the ischemic brain. Matrix Biol 2022; 110:1-15. [DOI: 10.1016/j.matbio.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
8
|
Li L, Fu X, Qiu H, Shi P. Effects of cilostazol treatment for patients with aneurysmal subarachnoid hemorrhage: A meta-analysis of 14 studies. J Clin Neurosci 2022; 99:190-203. [PMID: 35286971 DOI: 10.1016/j.jocn.2021.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To perform an updated meta-analysis to comprehensively assess the efficacy and safety of cilostazol in preventing aneurysmal subarachnoid hemorrhage (SAH)-related secondary complications. METHODS Electronic databases of PubMed, the Cochrane library, CNKI and Wanfang were searched on August 2021. Pooled odds ratio (OR) and standardized mean difference (SMD) were calculated for dichotomous and continuous outcomes, respectively. RESULTS A total of 14 studies [comprising 18,726 aneurysmal SAH patients (6654 in the cilostazol group and 12,072 in the control group)] performed in Japan or China were included. Compared with the control group, cilostazol treatment significantly reduced the median cerebral artery (SMD = -0.49; p < 0.001), improved the therapeutic efficacy (OR = 2.37; p = 0.009), decreased the incidence of symptomatic vasospasm/delayed cerebral ischemia (OR = 0.42; p < 0.001), severe angiographic vasospasm (OR = 0.54; p < 0.001), new cerebral infarction (OR = 0.33; p < 0.001), poor outcomes (OR = 0.86; p = 0.001), mortality (OR = 0.62; p < 0.001) and increased the incidence of no or mild angiographic vasospasm (OR = 1.94; p = 0.004), but did not induce more adverse events (OR = 1.08; p = 0.871). The mechanism of cilostazol treatment was to inhibit the production of tenascin-C (SMD = -1.46; p < 0.001). These results were hardly changed by subgroup analysis. CONCLUSION This meta-analysis indicates cilostazol may be an effective and safe drug for aneurysmal SAH patients. However, further trials involving other world populations are required to demonstrate the generalization of treatment effects of cilostazol.
Collapse
Affiliation(s)
- Lian Li
- Emergency Department, Hongqiao Branch, Huashan Hospital Affiliated to Fudan University, Shanghai 200052, China
| | - Xiaofeng Fu
- Emergency Department, Hongqiao Branch, Huashan Hospital Affiliated to Fudan University, Shanghai 200052, China
| | - Huiming Qiu
- 80w Ward, Pudong Branch, Huashan Hospital Affiliated to Fudan University, Shanghai 200120, China.
| | - Peihong Shi
- Emergency Department, Hongqiao Branch, Huashan Hospital Affiliated to Fudan University, Shanghai 200052, China
| |
Collapse
|
9
|
Chelluboina B, Chokkalla AK, Mehta SL, Morris-Blanco KC, Bathula S, Sankar S, Park JS, Vemuganti R. Tenascin-C induction exacerbates post-stroke brain damage. J Cereb Blood Flow Metab 2022; 42:253-263. [PMID: 34689646 PMCID: PMC9122520 DOI: 10.1177/0271678x211056392] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of tenascin-C (TNC) in ischemic stroke pathology is not known despite its prognostic association with cerebrovascular diseases. Here, we investigated the effect of TNC knockdown on post-stroke brain damage and its putative mechanism of action in adult mice of both sexes. Male and female C57BL/6 mice were subjected to transient middle cerebral artery occlusion and injected (i.v.) with either TNC siRNA or a negative (non-targeting) siRNA at 5 min after reperfusion. Motor function (beam walk and rotarod tests) was assessed between days 1 and 14 of reperfusion. Infarct volume (T2-MRI), BBB damage (T1-MRI with contrast), and inflammatory markers were measured at 3 days of reperfusion. The TNC siRNA treated cohort showed significantly curtailed post-stroke TNC protein expression, motor dysfunction, infarction, BBB damage, and inflammation compared to the sex-matched negative siRNA treated cohort. These results demonstrate that the induction of TNC during the acute period after stroke might be a mediator of post-ischemic inflammation and secondary brain damage independent of sex.
Collapse
Affiliation(s)
- Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | | | | | - Sneha Sankar
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Jin Soo Park
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.,William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
10
|
Okada T, Suzuki H, Travis ZD, Altay O, Tang J, Zhang JH. SPARC Aggravates Blood-Brain Barrier Disruption via Integrin αV β3/MAPKs/MMP-9 Signaling Pathway after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9739977. [PMID: 34804372 PMCID: PMC8601826 DOI: 10.1155/2021/9739977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023]
Abstract
Blood-brain barrier (BBB) disruption is a common and critical pathology following subarachnoid hemorrhage (SAH). We investigated the BBB disruption property of secreted protein acidic and rich in cysteine (SPARC) after SAH. A total of 197 rats underwent endovascular perforation to induce SAH or sham operation. Small interfering ribonucleic acid (siRNA) for SPARC or scrambled siRNA was administered intracerebroventricularly to rats 48 h before SAH. Anti-SPARC monoclonal antibody (mAb) 236 for functional blocking or normal mouse immunoglobulin G (IgG) was administered intracerebroventricularly 1 h after SAH. Selective integrin αVβ3 inhibitor cyclo(-RGDfK) or phosphate-buffered saline was administered intranasally 1 h before SAH, along with recombinant SPARC treatment. Neurobehavior, SAH severity, brain edema, immunohistochemical staining, and Western blot were evaluated. The expression of SPARC and integrin αVβ3 was upregulated after SAH in the endothelial cells. SPARC siRNA and anti-SPARC mAb 236 prevented neuroimpairments and brain edema through protection of BBB as measured by IgG extravasation 24 and 72 h after SAH. Recombinant SPARC aggravated neuroimpairments and cyclo(-RGDfK) suppressed the harmful neurological effects via inhibition of activated c-Jun N-terminal kinase, p38, and matrix metalloproteinase-9 followed by retention of endothelial junction proteins. SPARC may induce post-SAH BBB disruption via integrin αVβ3 signaling pathway.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Kuwana City Medical Center, 3-11 Kotobuki-cho, Kuwana, Mie 511-0061, Japan
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D. Travis
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
- Department of Earth and Biological Sciences, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| | - Orhan Altay
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
- Department of Anesthesiology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
- Department of Neurosurgery, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| |
Collapse
|
11
|
Influence of nimodipine combined with ulinastatin on neurological function and inflammatory reaction in patients with cerebral vasospasm after subarachnoid hemorrhage. Clin Neurol Neurosurg 2021; 210:106981. [PMID: 34700272 DOI: 10.1016/j.clineuro.2021.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE This study aimed to discuss the influence of nimodipine+ulinastatin on the neurological function and inflammatory reaction in patients with cerebral vasospasm (CVS) after subarachnoid hemorrhage (SAH). METHODS Overall, 90 patients with CVS after SAH who were admitted to our hospital were enrolled in this study and randomly divided into research and control groups (n = 45 for both groups). On the basis of conventional therapy, patients in the control group were injected with ulinastatin and those in the research group were injected with ulinastatin+nimodipine through an intravenous drip for 7 days with the others the same as those of the control group. RESULTS Blood flow velocity in all cerebral arteries was lower in the research group than in the control group after treatment (P < 0.05). Calcitonin gene-related peptide and nitric oxide levels were higher in the research group than in the control group after treatment (P < 0.05). Endothelin levels were lower in the research group than in the control group (P < 0.05). The total effective rate was higher in the research group than in the control group (P < 0.05). Glasgow Coma Scale scores were higher in the research group than in the control group (P < 0.05). CONCLUSION The drug combination of nimodipine and ulinastatin improved blood flow and neurological function in patients with CVS after SAH and enhanced the therapeutic efficacy; the underlying mechanism may be associated with the regulation of vascular endothelial dilatation function and the inhibition of relevant inflammatory factors' expression.
Collapse
|
12
|
Hu X, Zhu Y, Zhou F, Peng C, Hu Z, Chen C. Efficacy of Melatonin in Animal Models of Subarachnoid Hemorrhage: A Systematic Review and Stratified Meta-Analysis. Front Neurol 2021; 12:685731. [PMID: 34539547 PMCID: PMC8446273 DOI: 10.3389/fneur.2021.685731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Subarachnoid hemorrhage (SAH) is a severe disease characterized by sudden headache, loss of consciousness, or focal neurological deficits. Melatonin has been reported as a potential neuroprotective agent of SAH. It provides protective effects through the anti-inflammatory effects or the autophagy pathway. Our systematic review aims to evaluate the efficacy of melatonin administration on experimental SAH animals and offer support for the future clinical trial design of the melatonin treatment following SAH. Methods: The following online databases were searched for experimentally controlled studies of the effect of melatonin on SAH models: PubMed, Web of Knowledge, Embase, and China National Knowledge Infrastructure (all until March 2021). The melatonin effect on the brain water content (BWC) and neurological score (NS) were compared between the treatment and control groups using the standardized mean difference (SMD). Results: Our literature identified 160 possible articles, and most of them were excluded due to duplication (n = 69) and failure to meet the inclusion criteria (n = 56). After screening the remaining 35 articles in detail, we excluded half of them because of no relevant outcome measures (n = 16), no relevant interventions (n = 3), review articles (n = 1), duplicated publications (n = 1), and studies on humans or cells (n = 2). Finally, this systematic review contained 12 studies between 2008 and 2018. All studies were written in English except for one study in Chinese, and all of them showed the effect of melatonin on BWC and NS in SAH models. Conclusion: Our research shows that melatonin can significantly improve the behavior and pathological results of SAH animal models. However, due to the small number of studies included in this meta-analysis, the experimental design and experimental method limitations should be considered when interpreting the results. Significant clinical and animal studies are still required to evaluate whether melatonin can be used in the adjuvant treatment of clinical SAH patients.
Collapse
Affiliation(s)
- Xiangyu Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuwei Zhu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Fangfang Zhou
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Cuiying Peng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Maruhashi T, Higashi Y. An overview of pharmacotherapy for cerebral vasospasm and delayed cerebral ischemia after subarachnoid hemorrhage. Expert Opin Pharmacother 2021; 22:1601-1614. [PMID: 33823726 DOI: 10.1080/14656566.2021.1912013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Survival from aneurysmal subarachnoid hemorrhage has increased in the past few decades. However, functional outcome after subarachnoid hemorrhage is still suboptimal. Delayed cerebral ischemia (DCI) is one of the major causes of morbidity.Areas covered: Mechanisms underlying vasospasm and DCI after aneurysmal subarachnoid hemorrhage and pharmacological treatment are summarized in this review.Expert opinion: Oral nimodine, an L-type dihydropyridine calcium channel blocker, is the only FDA-approved drug for the prevention and treatment of neurological deficits after aneurysmal subarachnoid hemorrhage. Fasudil, a potent Rho-kinase inhibitor, has also been shown to improve the clinical outcome and has been approved in some countries for use in patients with aneurysmal subarachnoid hemorrhage. Although other drugs, including nicardipine, cilostazol, statins, clazosentan, magnesium and heparin, have been expected to have beneficial effects on DCI, there has been no convincing evidence supporting the routine use of those drugs in patients with aneurysmal subarachnoid hemorrhage in clinical practice. Further elucidation of the mechanisms underlying DCI and the development of effective therapeutic strategies for DCI, including combination therapy, are necessary to further improve the functional outcome and mortality after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
14
|
Okada T, Suzuki H. The Role of Tenascin-C in Tissue Injury and Repair After Stroke. Front Immunol 2021; 11:607587. [PMID: 33552066 PMCID: PMC7859104 DOI: 10.3389/fimmu.2020.607587] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Stroke is still one of the most common causes for mortality and morbidity worldwide. Following acute stroke onset, biochemical and cellular changes induce further brain injury such as neuroinflammation, cell death, and blood-brain barrier disruption. Matricellular proteins are non-structural proteins induced by many stimuli and tissue damage including stroke induction, while its levels are generally low in a normal physiological condition in adult tissues. Currently, a matricellular protein tenascin-C (TNC) is considered to be an important inducer to promote neuroinflammatory cascades and the resultant pathology in stroke. TNC is upregulated in cerebral arteries and brain tissues including astrocytes, neurons, and brain capillary endothelial cells following subarachnoid hemorrhage (SAH). TNC may be involved in blood-brain barrier disruption, neuronal apoptosis, and cerebral vasospasm via the activation of mitogen-activated protein kinases and nuclear factor-kappa B following SAH. In addition, post-SAH TNC levels in cerebrospinal fluid predicted the development of delayed cerebral ischemia and angiographic vasospasm in clinical settings. On the other hand, TNC is reported to promote fibrosis and exert repair effects for an experimental aneurysm via macrophages-induced migration and proliferation of smooth muscle cells. The authors review TNC-induced inflammatory signal cascades and the relationships with other matricellular proteins in stroke-related pathology.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Neurosurgery, Kuwana City Medical Center, Kuwana, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
15
|
Matsumoto KI, Aoki H. The Roles of Tenascins in Cardiovascular, Inflammatory, and Heritable Connective Tissue Diseases. Front Immunol 2020; 11:609752. [PMID: 33335533 PMCID: PMC7736112 DOI: 10.3389/fimmu.2020.609752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Tenascins are a family of multifunctional extracellular matrix (ECM) glycoproteins with time- and tissue specific expression patterns during development, tissue homeostasis, and diseases. There are four family members (tenascin-C, -R, -X, -W) in vertebrates. Among them, tenascin-X (TNX) and tenascin-C (TNC) play important roles in human pathologies. TNX is expressed widely in loose connective tissues. TNX contributes to the stability and maintenance of the collagen network, and its absence causes classical-like Ehlers-Danlos syndrome (clEDS), a heritable connective tissue disorder. In contrast, TNC is specifically and transiently expressed upon pathological conditions such as inflammation, fibrosis, and cancer. There is growing evidence that TNC is involved in inflammatory processes with proinflammatory or anti-inflammatory activity in a context-dependent manner. In this review, we summarize the roles of these two tenascins, TNX and TNC, in cardiovascular and inflammatory diseases and in clEDS, and we discuss the functional consequences of the expression of these tenascins for tissue homeostasis.
Collapse
Affiliation(s)
- Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
| |
Collapse
|
16
|
Suzuki H, Kanamaru H, Kawakita F, Asada R, Fujimoto M, Shiba M. Cerebrovascular pathophysiology of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Histol Histopathol 2020; 36:143-158. [PMID: 32996580 DOI: 10.14670/hh-18-253] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) remains a serious cerebrovascular disease. Even if SAH patients survive the initial insults, delayed cerebral ischemia (DCI) may occur at 4 days or later post-SAH. DCI is characteristics of SAH, and is considered to develop by blood breakdown products and inflammatory reactions, or secondary to early brain injury, acute pathophysiological events that occur in the brain within the first 72 hours of aneurysmal SAH. The pathology underlying DCI may involve large artery vasospasm and/or microcirculatory disturbances by microvasospasm, microthrombosis, dysfunction of venous outflow and compression of microvasculature by vasogenic or cytotoxic tissue edema. Recent clinical evidence has shown that large artery vasospasm is not the only cause of DCI, and that both large artery vasospasm-dependent and -independent cerebral infarction causes poor outcome. Animal studies suggest that mechanisms of vasospasm may differ between large artery and arterioles or capillaries, and that many kinds of cells in the vascular wall and brain parenchyma may be involved in the pathogenesis of microcirculatory disturbances. The impairment of the paravascular and glymphatic systems also may play important roles in the development of DCI. As pathological mediators for DCI, glutamate and several matricellular proteins have been investigated in addition to inflammatory molecules. Glutamate is involved in excitotoxicity contributing to cortical spreading ischemia and epileptic activity-related events. Microvascular dysfunction is an attractive mechanism to explain the cause of poor outcomes independently of large cerebral artery vasospasm, but needs more studies to clarify the pathophysiologies or mechanisms and to develop a novel therapeutic strategy.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
17
|
Immunomodulatory role of the extracellular matrix protein tenascin-C in neuroinflammation. Biochem Soc Trans 2020; 47:1651-1660. [PMID: 31845742 DOI: 10.1042/bst20190081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) consists of a dynamic network of various macromolecules that are synthesized and released by surrounding cells into the intercellular space. Glycoproteins, proteoglycans and fibrillar proteins are main components of the ECM. In addition to general functions such as structure and stability, the ECM controls several cellular signaling pathways. In this context, ECM molecules have a profound influence on intracellular signaling as receptor-, adhesion- and adaptor-proteins. Due to its various functions, the ECM is essential in the healthy organism, but also under pathological conditions. ECM constituents are part of the glial scar, which is formed in several neurodegenerative diseases that are accompanied by the activation and infiltration of glia as well as immune cells. Remodeling of the ECM modulates the release of pro- and anti-inflammatory cytokines affecting the fate of immune, glial and neuronal cells. Tenascin-C is an ECM glycoprotein that is expressed during embryonic central nervous system (CNS) development. In adults it is present at lower levels but reappears under pathological conditions such as in brain tumors, following injury and in neurodegenerative disorders and is highly associated with glial reactivity as well as scar formation. As a key modulator of the immune response during neurodegeneration in the CNS, tenascin-C is highlighted in this mini-review.
Collapse
|
18
|
Okada T, Suzuki H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol 2020; 35:623-636. [PMID: 32026458 DOI: 10.14670/hh-18-208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disorder. Neuroinflammation is a critical cause of brain injury following SAH in both acute and chronic phases. While accumulating evidence has shown that therapies targeting neuroinflammation exerted beneficial effects in experimental SAH, there is little clinical evidence. One of the factors making neuroinflammation complicated is that inflammatory signaling pathways and mediators act as protective or detrimental responses at different phases. In addition, biomarkers to detect neuroinflammation are little known in clinical settings. In this review, first, we discuss how the inflammatory signaling pathways contribute to brain injury and other secondary pathophysiological changes in SAH. Damage-associated molecular patterns arising from mechanical stress, transient global cerebral ischemia, red blood cell breakdown and delayed cerebral ischemia following SAH trigger to activate pattern recognition receptors (PRRs) such as Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and receptors for advanced glycation end products. Most of PRRs activate common downstream signaling transcriptional factor nuclear factor-κΒ and mitogen-activated protein kinases, releasing pro-inflammatory mediators and cytokines. Next, we focus on how pro-inflammatory substances play a role during the course of SAH. Finally, we highlight an important inducer of neuroinflammation, matricellular protein (MCP). MCPs are a component of extracellular matrix and exert beneficial and harmful effects through binding to receptors, other matrix proteins, growth factors, and cytokines. Treatment targeting MCPs is being proved efficacious in pre-clinical models for preventing brain injury including neuroinflammation in SAH. In addition, MCPs may be a candidate of biomarkers predicting brain injury following SAH in clinical settings.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
19
|
Zhao C, Ma J, Wang Z, Li H, Shen H, Li X, Chen G. Mfsd2a Attenuates Blood-Brain Barrier Disruption After Sub-arachnoid Hemorrhage by Inhibiting Caveolae-Mediated Transcellular Transport in Rats. Transl Stroke Res 2020; 11:1012-1027. [PMID: 31907728 DOI: 10.1007/s12975-019-00775-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Blood-brain barrier (BBB) disruption is one of the critical mechanisms of brain injury induced by subarachnoid hemorrhage (SAH). Past studies have often focused on the tight junctions of endothelial cells. However, low transcellular transport levels also play an important role in the normal functioning of the BBB. Major facilitator superfamily domain-containing 2a (Mfsd2a) has been demonstrated to be essential for the maintenance of the normal BBB. Our present study aimed to explore the roles and mechanisms of Mfsd2a in BBB disruption after SAH. In this study, a prechiasmatic cistern single-injection model was used to produce experimental SAH in Sprague-Dawley rats. Specific small-interfering RNA and plasmids were used to downregulate and upregulate the expression of Mfsd2a prior to assessments in our SAH model. Omega-3 fatty acid deficiency diet was used to reduce DHA in rat brain. The expression level of Mfsd2a decreased significantly after SAH and reached its lowest level at 72 h post-SAH, which then gradually recovered. At 72 h after SAH, BBB function was disrupted; upregulation of Mfsd2a reversed this damage, whereas downregulation of Mfsd2a exacerbated this damage. These effects were primarily mediated through transcellular transport, especially for changes in caveolae compared to those of tight junctions. After stopping the supply of omega-3 fatty acids, the effect of Mfsd2a on inhibition of caveolae and protection of the blood-brain barrier was eliminated. Taken together, Mfsd2a inhibits caveolae-based transcellular transport by transporting omega-3 fatty acids to protect the BBB after SAH.
Collapse
Affiliation(s)
- Chongshun Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China
| | - Junwei Ma
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
20
|
The Role of Galectin-3 in Subarachnoid Hemorrhage: A Preliminary Study. ACTA NEUROCHIRURGICA. SUPPLEMENT 2020; 127:65-68. [PMID: 31407065 DOI: 10.1007/978-3-030-04615-6_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite advances in diagnosis and treatment of subarachnoid hemorrhage (SAH), combined morbidity and mortality rate in SAH patients accounted for greater than 50%. Many prognostic factors have been reported including delayed cerebral ischemia, cerebral vasospasm-induced infarction, and shunt-dependent hydrocephalus as potentially preventable or treatable causes. Recent experimental studies emphasize that early brain injury, a concept to explain acute pathophysiological events that occur in brain before onset of cerebral vasospasm within the first 72 h of SAH, may be more important than cerebral vasospasm, a classically important determinant of poor outcome, in post-SAH outcome. Galectin-3 is known for one of matricellular proteins and a mediator of inflammation in the central nervous system. Galectin-3 was also reported to contribute to poor outcomes in SAH patients, but the role of galectin-3 after SAH has not been determined. We produced experimental SAH mice, of which the top of the internal carotid artery was perforated by 4-0 monofilament, and evaluated effects of a galectin-3 inhibitor. We assessed neurological scores and brain water content at 24 h. The administration of a galectin-3 inhibitor significantly ameliorated brain edema and neuronal score in experimental SAH mice.
Collapse
|
21
|
Li Y, Wu P, Bihl JC, Shi H. Underlying Mechanisms and Potential Therapeutic Molecular Targets in Blood-Brain Barrier Disruption after Subarachnoid Hemorrhage. Curr Neuropharmacol 2020; 18:1168-1179. [PMID: 31903882 PMCID: PMC7770641 DOI: 10.2174/1570159x18666200106154203] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/04/2020] [Indexed: 01/01/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a subtype of hemorrhagic stroke with significant morbidity and mortality. Aneurysmal bleeding causes elevated intracranial pressure, decreased cerebral blood flow, global cerebral ischemia, brain edema, blood component extravasation, and accumulation of breakdown products. These post-SAH injuries can disrupt the integrity and function of the blood-brain barrier (BBB), and brain tissues are directly exposed to the neurotoxic blood contents and immune cells, which leads to secondary brain injuries including inflammation and oxidative stress, and other cascades. Though the exact mechanisms are not fully clarified, multiple interconnected and/or independent signaling pathways have been reported to be involved in BBB disruption after SAH. In addition, alleviation of BBB disruption through various pathways or chemicals has a neuroprotective effect on SAH. Hence, BBB permeability plays an important role in the pathological course and outcomes of SAH. This review discusses the recent understandings of the underlying mechanisms and potential therapeutic targets in BBB disruption after SAH, emphasizing the dysfunction of tight junctions and endothelial cells in the development of BBB disruption. The emerging molecular targets, including toll-like receptor 4, netrin-1, lipocalin-2, tropomyosin-related kinase receptor B, and receptor tyrosine kinase ErbB4, are also summarized in detail. Finally, we discussed the emerging treatments for BBB disruption after SAH and put forward our perspectives on future research.
Collapse
Affiliation(s)
| | | | - Ji C. Bihl
- Address correspondence to these authors at the Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435, USA; Tel: 011-01-9377755243; Fax: 011-01-9377757221; E-mail: and Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Tel: +86-15545107889; E-mail:
| | - Huaizhang Shi
- Address correspondence to these authors at the Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435, USA; Tel: 011-01-9377755243; Fax: 011-01-9377757221; E-mail: and Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Tel: +86-15545107889; E-mail:
| |
Collapse
|
22
|
Khey KMW, Huard A, Mahmoud SH. Inflammatory Pathways Following Subarachnoid Hemorrhage. Cell Mol Neurobiol 2019; 40:675-693. [PMID: 31808009 DOI: 10.1007/s10571-019-00767-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is an acute cerebrovascular emergency resulting from the rupture of a brain aneurysm. Despite only accounting for 5% of all strokes, SAH imposes a significant health burden on society due to its relatively young age at onset. Those who survive the initial bleed are often afflicted with severe disabilities thought to result from delayed cerebral ischemia (DCI). Consequently, elucidating the underlying mechanistic pathways implicated in DCI development following SAH remains a priority. Neuroinflammation has recently been implicated as a promising new theory for the development of SAH complications. However, despite this interest, clinical trials have failed to provide consistent evidence for the use of anti-inflammatory agents in SAH patients. This may be explained by the complexity of SAH as a plethora of inflammatory pathways have been shown to be activated in the disease. By determining how these pathways may overlap and interact, we hope to better understand the developmental processes of SAH complications and how to prevent them. The goal of this review is to provide insight into the available evidence regarding the molecular pathways involved in the development of inflammation following SAH and how SAH complications may arise as a result of these inflammatory pathways.
Collapse
Affiliation(s)
- Kevin Min Wei Khey
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alec Huard
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sherif Hanafy Mahmoud
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
23
|
Kawakita F, Kanamaru H, Asada R, Suzuki H. Potential roles of matricellular proteins in stroke. Exp Neurol 2019; 322:113057. [DOI: 10.1016/j.expneurol.2019.113057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
|
24
|
Toll-Like Receptor 4 and Tenascin-C Signaling in Cerebral Vasospasm and Brain Injuries After Subarachnoid Hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2019; 127:91-96. [PMID: 31407069 DOI: 10.1007/978-3-030-04615-6_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toll-like receptor 4 (TLR4) is expressed in various cell types in the central nervous system and exerts maximal inflammatory responses among the TLR family members. TLR4 can be activated by many endogenous ligands having damage-associated molecular patterns including heme and fibrinogen at the rupture of a cerebral aneurysm, and therefore its activation is reasonable as an initial step of cascades to brain injuries after aneurysmal subarachnoid hemorrhage (SAH). TLR4 activation induces tenascin-C (TNC), a representative of matricellular proteins that are a class of inducible, nonstructural, secreted, and multifunctional extracellular matrix glycoproteins. TNC is also an endogenous activator and inducer of TLR4, forming positive feedback mechanisms leading to more activation of the signaling transduction. Our studies have demonstrated that TLR4 as well as TNC are involved in inflammatory reactions, blood-brain barrier disruption, neuronal apoptosis, and cerebral vasospasm after experimental SAH. This article reviews recent understanding of TLR4 and TNC in SAH to suggest that the TLR4-TNC signaling may be an important therapeutic target for post-SAH brain injuries.
Collapse
|
25
|
Nishikawa H, Liu L, Nakano F, Kawakita F, Kanamaru H, Nakatsuka Y, Okada T, Suzuki H. Modified Citrus Pectin Prevents Blood-Brain Barrier Disruption in Mouse Subarachnoid Hemorrhage by Inhibiting Galectin-3. Stroke 2019; 49:2743-2751. [PMID: 30355205 DOI: 10.1161/strokeaha.118.021757] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background and Purpose- Plasma levels of galectin-3-a matricellular protein-are increased after aneurysmal subarachnoid hemorrhage (SAH), but the functional significance remains undetermined. This study was conducted to evaluate whether modified citrus pectin (MCP; galectin-3 inhibitor) prevents post-SAH early brain injury, focusing on blood-brain barrier disruption. Methods- C57BL/6 male adult mice (n=251) underwent sham or filament perforation SAH modeling, followed by a random intracerebroventricular injection of vehicle or drug at 30 minutes post-modeling. First, vehicle-treated and 0.8, 4, 16, or 32 µg MCP-treated mice were assessed by neuroscore and brain water content at 24 and 48 hours post-modeling. Second, Evans blue extravasation, Western blotting, coimmunoprecipitation and immunostaining were performed in vehicle-treated or 4 µg MCP-treated mice at 24 hours post-modeling. Third, vehicle or R-galectin-3 (recombinant galectin-3) was administered to SAH mice simultaneously with vehicle or MCP, and neuroscore and Evans blue extravasation were evaluated at 24 hours post-modeling. Fourth, vehicle or R-galectin-3 was administered to MCP-treated SAH mice at 24 hours, and neuroscore and IgG immunostaining were evaluated at 48 hours post-SAH. Results- Among tested dosages, 4 µg MCP showed the best neuroprotective effects as to preventing neurological impairments and brain edema at 24 to 48 hours post-SAH. Four micrograms MCP attenuated post-SAH blood-brain barrier disruption and galectin-3 upregulation in brain capillary endothelial cells, associated with inactivation of ERK (extracellular signal-related kinase) 1/2, STAT (signal transducer and activator of transcription)-3, and MMP (matrix metalloproteinase)-9, and the consequent preservation of a tight junction protein ZO-1 (zonula occludens-1). Coimmunoprecipitation assay demonstrated physical interactions between galectin-3 and TLR (Toll-like receptor) 4. R-galectin-3 blocked the neuroprotective effects of MCP. Conclusions- MCP prevents post-SAH blood-brain barrier disruption possibly by inhibiting galectin-3, of which the mechanisms may include binding to TLR4 and activating ERK1/2, STAT-3, and MMP-9. This study suggests galectin-3 to be a novel therapeutic target against post-SAH early brain injury.
Collapse
Affiliation(s)
- Hirofumi Nishikawa
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Lei Liu
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumi Nakano
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideki Kanamaru
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshinari Nakatsuka
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takeshi Okada
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
26
|
Suzuki H. Inflammation: a Good Research Target to Improve Outcomes of Poor-Grade Subarachnoid Hemorrhage. Transl Stroke Res 2019; 10:597-600. [PMID: 31214920 DOI: 10.1007/s12975-019-00713-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
27
|
Kanamaru H, Kawakita F, Nakano F, Miura Y, Shiba M, Yasuda R, Toma N, Suzuki H. Plasma Periostin and Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Neurotherapeutics 2019; 16:480-490. [PMID: 30635868 PMCID: PMC6554464 DOI: 10.1007/s13311-018-00707-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Delayed cerebral ischemia (DCI) is a serious complication of aneurysmal subarachnoid hemorrhage (SAH). Matricellular protein periostin (POSTN) has been found to be upregulated and linked with early brain injury after experimental SAH. The aim of the present study was to investigate the relationship between plasma POSTN levels and various clinical factors including serum levels of C-reactive protein (CRP), an inflammatory marker, in 109 consecutive SAH patients whose POSTN levels were measured at days 1-12 after aneurysmal obliteration. DCI developed in 16 patients associated with higher incidence of angiographic vasospasm, cerebral infarction, and 90-day worse outcomes. POSTN levels peaked at days 4-6 before DCI development. Cerebrospinal fluid (CSF) drainage was associated with reduced POSTN levels, but did not influence CRP levels. There was no correlation between POSTN levels and other treatments or CRP levels. To predict DCI development, receiver-operating characteristic curves indicated that the most reasonable cutoff POSTN levels were obtained at days 1-3 in patients without CSF drainage (80.5 ng/ml; specificity, 77.6%; sensitivity, 85.7%). Multivariate analyses using variables obtained by day 3 revealed that POSTN level was an independent predictor of DCI. POSTN levels over the cutoff value were associated with higher incidence of DCI, but not angiographic vasospasm. This study shows for the first time that CSF drainage may reduce plasma POSTN levels, and that POSTN levels may increase prior to the development of DCI with and without vasospasm irrespective of systemic inflammatory reactions in clinical settings. These findings suggest POSTN as a new therapeutic molecular target against post-SAH DCI.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumi Nakano
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoichi Miura
- Center for Vessels and Heart, Mie University Hospital, Tsu, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryuta Yasuda
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Naoki Toma
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
28
|
Li K, Barras CD, Chandra RV, Kok HK, Maingard JT, Carter NS, Russell JH, Lai L, Brooks M, Asadi H. A Review of the Management of Cerebral Vasospasm After Aneurysmal Subarachnoid Hemorrhage. World Neurosurg 2019; 126:513-527. [PMID: 30898740 DOI: 10.1016/j.wneu.2019.03.083] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Despite decades of research, cerebral vasospasm (CV) continues to account for high morbidity and mortality in patients who survive their initial aneurysmal subarachnoid hemorrhage. OBJECTIVE To define the scope of the problem and review key treatment strategies that have shaped the way CV is managed in the contemporary era. METHODS A literature search was performed of CV management after aneurysmal subarachnoid hemorrhage. RESULTS Recent advances in neuroimaging have led to improved detection of vasospasm, but established treatment guidelines including hemodynamic augmentation and interventional procedures remain highly variable among neurosurgical centers. Experimental research in subarachnoid hemorrhage continues to identify novel targets for therapy. CONCLUSIONS Proactive and preventive strategies such as oral nimodipine and endovascular rescue therapies can reduce the morbidity and mortality associated with CV.
Collapse
Affiliation(s)
- Kenny Li
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia.
| | - Christen D Barras
- University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Ronil V Chandra
- Interventional Neuroradiology Service, Monash Health, Clayton, Victoria, Australia
| | - Hong K Kok
- Interventional Radiology Service, Northern Health, Epping, Victoria, Australia
| | - Julian T Maingard
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia; Interventional Radiology Service, Department of Radiology, Austin Hospital, Heidelberg, Victoria, Australia; Interventional Neuroradiology Service, Department of Radiology, Austin Hospital, Heidelberg, Victoria, Australia
| | - Nicole S Carter
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Jeremy H Russell
- Department of Neurosurgery, Austin Health, Heidelberg, Victoria, Australia
| | - Leon Lai
- Department of Neurosurgery, Monash Health, Clayton, Victoria, Australia
| | - Mark Brooks
- Interventional Radiology Service, Department of Radiology, Austin Hospital, Heidelberg, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Hamed Asadi
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia; Interventional Radiology Service, Department of Radiology, Austin Hospital, Heidelberg, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
29
|
Shiba M, Suzuki H. Lessons from tenascin-C knockout mice and potential clinical application to subarachnoid hemorrhage. Neural Regen Res 2019; 14:262-264. [PMID: 30531008 PMCID: PMC6301182 DOI: 10.4103/1673-5374.244789] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
30
|
Kanamaru H, Suzuki H. Potential therapeutic molecular targets for blood-brain barrier disruption after subarachnoid hemorrhage. Neural Regen Res 2019; 14:1138-1143. [PMID: 30804237 PMCID: PMC6425837 DOI: 10.4103/1673-5374.251190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage remains serious hemorrhagic stroke with high morbidities and mortalities. Aneurysm rupture causes arterial bleeding-induced mechanical brain tissue injuries and elevated intracranial pressure, followed by global cerebral ischemia. Post-subarachnoid hemorrhage ischemia, tissue injuries as well as extravasated blood components and the breakdown products activate microglia, astrocytes and Toll-like receptor 4, and disrupt blood-brain barrier associated with the induction of many inflammatory and other cascades. Once blood-brain barrier is disrupted, brain tissues are directly exposed to harmful blood contents and immune cells, which aggravate brain injuries furthermore. Blood-brain barrier disruption after subarachnoid hemorrhage may be developed by a variety of mechanisms including endothelial cell apoptosis and disruption of tight junction proteins. Many molecules and pathways have been reported to disrupt the blood-brain barrier after subarachnoid hemorrhage, but the exact mechanisms remain unclear. Multiple independent and/or interconnected signaling pathways may be involved in blood-brain barrier disruption after subarachnoid hemorrhage. This review provides recent understandings of the mechanisms and the potential therapeutic targets of blood-brain barrier disruption after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
31
|
Anti-vasospastic Effects of Epidermal Growth Factor Receptor Inhibitors After Subarachnoid Hemorrhage in Mice. Mol Neurobiol 2018; 56:4730-4740. [PMID: 30382533 DOI: 10.1007/s12035-018-1400-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/17/2018] [Indexed: 01/10/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating disease. Cerebral vasospasm is still an important cause of post-SAH poor outcomes, but its mechanisms remain unveiled. Activation of epidermal growth factor receptor (EGFR) is suggested to cause vasoconstriction in vitro, but no report has demonstrated the involvement of EGFR in vasospasm development after SAH in vivo. Cross-talk of EGFR and vascular endothelial growth factor (VEGF) receptor, which may affect post-SAH vasospasm, was also reported in cancer cells, but has not been demonstrated in post-SAH vasospasm. The aim of this study was to investigate whether EGFR as well as EGFR-VEGF receptor cross-talk engage in the development of cerebral vasospasm in a mouse SAH model. C57BL6 mice underwent endovascular perforation SAH or sham modeling. At 30 min post-modeling, mice were randomly administrated vehicle or 2 doses of selective EGFR inhibitors intracerebroventricularly. A higher dose of the inhibitor significantly prevented post-SAH neurological impairments at 72 h and vasospasm at 24 h associated with suppression of post-SAH activation of EGFR and extracellular signal-regulated kinase (ERK) 1/2 in the cerebral artery wall, especially in the smooth muscle cell layers. Anti-EGFR neutralizing antibody also showed similar effects. However, neither expression levels of VEGF nor activation levels of a major receptor of VEGF, VEGF receptor-2, were affected by SAH and two kinds of EGFR inactivation. Thus, this study first showed that EGFR-ERK1/2 pathways may be involved in post-SAH vasospasm development, and that EGFR-VEGF receptor cross-talk may not play a significant role in the development of vasospasm in mice.
Collapse
|
32
|
Suzuki H, Fujimoto M, Kawakita F, Liu L, Nakatsuka Y, Nakano F, Nishikawa H, Okada T, Kanamaru H, Imanaka-Yoshida K, Yoshida T, Shiba M. Tenascin-C in brain injuries and edema after subarachnoid hemorrhage: Findings from basic and clinical studies. J Neurosci Res 2018; 98:42-56. [PMID: 30242870 DOI: 10.1002/jnr.24330] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/11/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
Subarachnoid hemorrhage (SAH) by a rupture of cerebral aneurysms remains the most devastating cerebrovascular disease. Early brain injury (EBI) is increasingly recognized to be the primary determinant for poor outcomes, and also considered to cause delayed cerebral ischemia (DCI) after SAH. Both clinical and experimental literatures emphasize the impact of global cerebral edema in EBI as negative prognostic and direct pathological factors. The nature of the global cerebral edema is a mixture of cytotoxic and vasogenic edema, both of which may be caused by post-SAH induction of tenascin-C (TNC) that is an inducible, non-structural, secreted and multifunctional matricellular protein. Experimental SAH induces TNC in brain parenchyma in rats and mice. TNC knockout suppressed EBI in terms of brain edema, blood-brain barrier disruption, neuronal apoptosis and neuroinflammation, associated with the inhibition of post-SAH activation of mitogen-activated protein kinases and nuclear factor-kappa B in mice. In a clinical setting, more severe SAH increases more TNC in cerebrospinal fluid and peripheral blood, which could be a surrogate marker of EBI and predict DCI development and outcomes. In addition, cilostazol, a selective inhibitor of phosphodiesterase type III that is a clinically available anti-platelet agent and is known to suppress TNC induction, dose-dependently inhibited delayed cerebral infarction and improved outcomes in a pilot clinical study. Thus, further studies may facilitate application of TNC as biomarkers for non-invasive diagnosis or assessment of EBI and DCI, and lead to development of a molecular target drug against TNC, contributing to the improvement of post-SAH outcomes.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Lei Liu
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshinari Nakatsuka
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumi Nakano
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kyoko Imanaka-Yoshida
- Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Toshimichi Yoshida
- Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
33
|
Suzuki H, Nakatsuka Y, Yasuda R, Shiba M, Miura Y, Terashima M, Suzuki Y, Hakozaki K, Goto F, Toma N. Dose-Dependent Inhibitory Effects of Cilostazol on Delayed Cerebral Infarction After Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2018; 10:381-388. [PMID: 30033486 DOI: 10.1007/s12975-018-0650-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/24/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
Cilostazol is a selective inhibitor of phosphodiesterase type III that downregulates tenascin-C (TNC), a matricellular protein, which may cause delayed cerebral infarction after aneurysmal subarachnoid hemorrhage (SAH). The authors increased the dosage and evaluated the dose-dependent effects of cilostazol on delayed cerebral infarction and outcomes in SAH patients. This was a retrospective cohort study in a single center. One hundred fifty-six consecutive SAH patients including 67 patients of admission World Federation of Neurological Surgeons grades IV-V who underwent aneurysmal obliteration within 48 h post-SAH from 2007 to 2017 were analyzed. Cilostazol (0 to 300 mg/day) was administered from 1-day post-clipping or post-coiling to day 14 or later. Cilostazol treatment dose-dependently decreased delayed cerebral infarction and tended to improve outcomes, although cilostazol did not affect other outcome measures including angiographic vasospasm. On multivariate analyses, 300 mg/day (100 mg three times) cilostazol independently decreased delayed cerebral infarction and improved 3-month outcomes, but other regimens including 200 mg/day (100 mg twice) cilostazol were not independent prognostic factors. Propensity score-matched analyses showed that the 300 mg/day cilostazol cohort had lower plasma TNC levels and a lower incidence of delayed cerebral infarction associated with better outcomes compared with the non-cilostazol cohort. The 300 mg/day cilostazol may improve post-SAH outcomes by reducing plasma TNC levels and delayed cerebral infarction, but not vasospasm. Further studies are warranted to investigate if 300 mg/day cilostazol is more beneficial to post-SAH outcomes than a usual dose of 200 mg/day cilostazol that was demonstrated to be effective in randomized controlled trials.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Yoshinari Nakatsuka
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryuta Yasuda
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masato Shiba
- Center for Vessels and Heart, Mie University Hospital, Tsu, Japan
| | - Yoichi Miura
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Mio Terashima
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yume Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Koichi Hakozaki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fuki Goto
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Naoki Toma
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
34
|
Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage. Mol Neurobiol 2018; 56:1992-2006. [DOI: 10.1007/s12035-018-1213-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/27/2018] [Indexed: 01/15/2023]
|
35
|
Marzeda AM, Midwood KS. Internal Affairs: Tenascin-C as a Clinically Relevant, Endogenous Driver of Innate Immunity. J Histochem Cytochem 2018; 66:289-304. [PMID: 29385356 PMCID: PMC5958381 DOI: 10.1369/0022155418757443] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
To protect against danger, the innate immune system must promptly and accurately sense alarm signals, and mount an appropriate response to restore homeostasis. One endogenous trigger of immunity is tenascin-C, a large hexameric protein of the extracellular matrix. Upregulated upon tissue injury and cellular stress, tenascin-C is expressed during inflammation and tissue remodeling, where it influences cellular behavior by interacting with a multitude of molecular targets, including other matrix components, cell surface proteins, and growth factors. Here, we discuss how these interactions confer upon tenascin-C distinct immunomodulatory capabilities that make this matrix molecule necessary for efficient tissue repair. We also highlight in vivo studies that provide insight into the consequences of misregulated tenascin-C expression on inflammation and fibrosis during a wide range of inflammatory diseases. Finally, we examine how its unique expression pattern and inflammatory actions make tenascin-C a viable target for clinical exploitation in both diagnostic and therapeutic arenas.
Collapse
Affiliation(s)
- Anna M Marzeda
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Deficiency of Tenascin-C Alleviates Neuronal Apoptosis and Neuroinflammation After Experimental Subarachnoid Hemorrhage in Mice. Mol Neurobiol 2018; 55:8346-8354. [PMID: 29546590 DOI: 10.1007/s12035-018-1006-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/07/2018] [Indexed: 12/21/2022]
Abstract
Tenascin-C (TNC), a matricellular protein, is upregulated in brain parenchyma after experimental subarachnoid hemorrhage (SAH). Recent studies emphasize that early brain injury (EBI) should be overcome to improve post-SAH outcomes. The aim of this study was to investigate effects of TNC knockout (TNKO) on neuronal apoptosis and neuroinflammation, both of which are important constituents of EBI after SAH. C57BL/6 wild-type (WT) mice or TNKO mice underwent sham or filament perforation SAH modeling. Twenty-five WT mice and 25 TNKO mice were randomly divided into sham+WT (n = 10), sham+TNKO (n = 8), SAH+WT (n = 15), and SAH+TNKO (n = 17) groups. Beam balance test, neurological score, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining, immunostaining of Toll-like receptor 4 (TLR4), and Western blotting were performed to evaluate neurobehavioral impairments, neuronal apoptosis, and neuroinflammation at 24 h post-SAH. Deficiency of TNC significantly alleviated post-SAH neurobehavioral impairments and neuronal apoptosis. The protective effects of TNKO on neurons were associated with the inhibition of a caspase-dependent apoptotic pathway, which was at least partly mediated by TLR4/nuclear factor-κB/interleukin-1β and interleukin-6 signaling cascades. This study first provided the direct evidence that TNC causes post-SAH neuronal apoptosis and neuroinflammation, potentially leading to the development of a new molecular targeted therapy against EBI.
Collapse
|
37
|
Suzuki H, Nishikawa H, Kawakita F. Matricellular proteins as possible biomarkers for early brain injury after aneurysmal subarachnoid hemorrhage. Neural Regen Res 2018; 13:1175-1178. [PMID: 30028318 PMCID: PMC6065232 DOI: 10.4103/1673-5374.235022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage remains devastating, and the most important determinant of poor outcome is early brain injury (EBI). In clinical settings, as a surrogate marker of EBI, loss of consciousness at ictus, poor initial clinical grades, and some radiographic findings are used, but these markers are somewhat subjective. Thus, it is imperative to find biomarkers of EBI that have beneficial prognostic and therapeutic implications. In our opinion, an ideal biomarker is a molecule that is implicated in the pathogenesis of both EBI and subsequently developing delayed cerebral ischemia (DCI), being a therapeutic target, and can be measured easily in the peripheral blood in an acute stage. A good candidate of such a biomarker is a matricellular protein, which is a secreted, inducible and multifunctional extracellular matrix protein. There are many kinds of matricellular proteins reported, but only tenascin-C, osteopontin, galectin-3 and periostin are reported relevant to EBI and DCI. Reliable biomarkers of EBI may stratify aneurysmal subarachnoid hemorrhage patients into categories of risk to develop DCI, and allow objective monitoring of the response to treatment for EBI and earlier diagnosis of DCI. This review emphasizes that further investigation of matricellular proteins as an avenue for biomarker discovery is warranted.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
38
|
Nishikawa H, Nakatsuka Y, Shiba M, Kawakita F, Fujimoto M, Suzuki H. Increased Plasma Galectin-3 Preceding the Development of Delayed Cerebral Infarction and Eventual Poor Outcome in Non-Severe Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2017; 9:110-119. [PMID: 28831694 DOI: 10.1007/s12975-017-0564-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/17/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022]
Abstract
A matricellular protein galectin-3 is involved in tissue injury and inflammation, but the role of galectin-3 remains unclear in aneurysmal subarachnoid hemorrhage (SAH). The purpose of this study was to assess whether acute-stage galectin-3 levels were associated with the subsequent development of neurovascular events and outcome after SAH. This study included 83 consecutive patients diagnosed with aneurysmal SAH of resuscitated World Federation of Neurological Surgeons (WFNS) grades 1-3. Plasma galectin-3 levels were once measured on days 1-3 (the day after clipping or coiling). Fifteen patients had poor outcomes, which were associated with increasing age, female, pre-onset morbidity, worse WFNS grade, modified Fisher computed tomography scale, acute hydrocephalus, and higher galectin-3 levels compared with good outcomes. Multivariate analyses revealed that plasma galectin-3 was an independent determinant for poor outcome (odds ratio, 3.08; 95% confidence interval, 1.58-6.00; p = 0.001). Among post-SAH neurovascular events occurring on day 4 and thereafter, delayed cerebral ischemia and infarction, but not angiographic vasospasm and shunt-dependent hydrocephalus, showed significantly higher plasma galectin-3 levels on days 1-3. The receiver operating characteristic curve indicated that plasma galectin-3 with a cutoff value of 3.30 or 3.48 ng/ml predicted delayed cerebral infarction development or poor outcome (specificity, 62.5%, 70.6%; sensitivity, 90.9%, 73.3%, respectively). The findings suggest that plasma galectin-3 levels on days 1-3 would be a useful biomarker for predicting subsequent development of delayed cerebral infarction and eventual poor outcome and provide a new candidate, which may mediate between post-SAH early brain injury or inflammation and delayed cerebral infarction without vasospasm.
Collapse
Affiliation(s)
- Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Yoshinari Nakatsuka
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Saiseikai Matsusaka General Hospital, Matsusaka, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Saiseikai Matsusaka General Hospital, Matsusaka, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
39
|
Zhao YY, Lou L, Yang KC, Wang HB, Xu Y, Lu G, He HY. Correlation of tenascin-C concentrations in serum with outcome of traumatic brain injury in humans. Clin Chim Acta 2017; 472:46-50. [PMID: 28732652 DOI: 10.1016/j.cca.2017.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Tenascin-C, a matricellular protein, is involved in brain injury. However, change of tenascin-C concentrations in peripheral blood remains unknown after traumatic brain injury (TBI). METHODS Serum tenascin-C concentrations were measured in 100 healthy controls, 108 severe TBI patients, 79 moderate TBI patients and 32 mild TBI patients. RESULTS Serum tenascin-C concentrations of patients were significantly higher than those of controls. Tenascin-C concentrations negatively correlated with Glasgow Coma Scale (GCS) scores in all patients (r=-0.658, P<0.001). In severe TBI patients, tenascin-C in serum significantly discriminated patients at risk of 6-month mortality (area under curve, 0.821; 95% confidence interval, 0.735-0.888) and poor outcome (Glasgow Outcome Scale score of 1-3) (area under curve, 0.833; 95% confidence interval, 0.749-0.898) and emerged as an independent predictor for 6-month mortality (odds ratio, 1.114; 95% confidence interval, 1.008-1.233; P=0.005), overall survival (hazard ratio, 1.085; 95% confidence interval, 1.010-1.166; P=0.003) and unfavorable outcome (odds ratio, 1.049; 95% confidence interval, 1.014-1.076; P=0.001). By receiver-operating characteristic analysis, serum tenascin-C concentrations had similar prognostic value compared with GCS scores. CONCLUSIONS Enhanced serum tenascin-C concentrations are closely related to trauma severity and clinical outcomes, substantializing tenascin-C as a potential prognostic biomarker after TBI.
Collapse
Affiliation(s)
- Yuan-Yuan Zhao
- Department of Neurosurgery, Zhaohui Hospital District, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang Province, China
| | - Lin Lou
- Department of Neurosurgery, Zhaohui Hospital District, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang Province, China
| | - Kai-Chuang Yang
- Department of Neurosurgery, Zhaohui Hospital District, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang Province, China
| | - Hai-Bo Wang
- Department of Neurosurgery, Zhaohui Hospital District, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang Province, China
| | - Yan Xu
- Department of Neurosurgery, Zhaohui Hospital District, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang Province, China
| | - Gang Lu
- Department of Neurosurgery, Zhaohui Hospital District, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang Province, China
| | - Hai-Yan He
- The sixth Zone, Wangjiang Mountain Hospital District, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 642 Zhuantang Shuangliu, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
40
|
Nishikawa H, Suzuki H. Implications of periostin in the development of subarachnoid hemorrhage-induced brain injuries. Neural Regen Res 2017; 12:1982-1984. [PMID: 29323034 PMCID: PMC5784343 DOI: 10.4103/1673-5374.221150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|