1
|
Aslan C, Zolbanin NM, Faraji F, Jafari R. Exosomes for CRISPR-Cas9 Delivery: The Cutting Edge in Genome Editing. Mol Biotechnol 2024; 66:3092-3116. [PMID: 38012525 DOI: 10.1007/s12033-023-00932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023]
Abstract
Gene mutation correction was challenging until the discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas). CRISPR is a new era for genome modification, and this technology has bypassed the limitations of previous methods such as zinc-finger nuclease and transcription activator-like effector nuclease. Currently, this method is becoming the method of choice for gene-editing purposes, especially therapeutic gene editing in diseases such as cardiovascular, neurological, renal, genetic, optical, and stem cell, as well as blood disorders and muscular degeneration. However, finding the optimum delivery system capable of carrying this large complex persists as the main challenge of this technology. Therefore, it would be ideal if the delivery vehicle could direct the introduction of editing functions to specific cells in a multicellular organism. Exosomes are membrane-bound vesicles with high biocompatibility and low immunogenicity; they offer the best and most reliable way to fill the CRISPR/Cas9 system delivery gap. This review presents the current evidence on the molecular mechanisms and challenges of CRISPR/Cas9-mediated genome modification. Also, the role of CRISPR/Cas9 in the development of treatment and diagnosis of numerous disorders, from malignancies to viral infections, has been discussed. Lastly, the focus is on new advances in exosome-delivery technologies that may play a role in CRISPR/Cas9 delivery for future clinical settings.
Collapse
Affiliation(s)
- Cynthia Aslan
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Hazrat-e Rasool General Hospital, Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Floor 3, Building No. 3, Niyayesh St, Sattar Khan St, Tehran, 1445613131, Iran.
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Clinical Research Institute, Urmia University of Medical Sciences, Shafa St., Ershad Blvd., P.O. Box: 1138, Urmia, 57147, Iran.
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Tang C, Hu W. Biomarkers and diagnostic significance of non-coding RNAs in extracellular vesicles of pathologic pregnancy. J Assist Reprod Genet 2024; 41:2569-2584. [PMID: 39316328 PMCID: PMC11534934 DOI: 10.1007/s10815-024-03268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Intercellular communication is an important mechanism for the development and maintenance of normal biological processes in all organs, including the female reproductive system. Extracellular vesicles, as important carriers of intercellular communication, contain a variety of biologically active molecules, such as mRNAs, miRNAs, lncRNAs, and circRNAs, which are involved in cell-to-cell exchanges as well as in many physiological and pathological processes in the body. Compared with biomarkers found in tissues or body fluids, extracellular vesicles show better stability due to the presence of their envelope membrane which prevents the degradation of the RNA message in their vesicles. Therefore, the genomic and proteomic information contained in extracellular vesicles can serve as important markers and potential therapeutic targets for female reproductive system-related diseases or placental function. Moreover, changes in the expression of non-coding RNAs (mainly miRNAs, lncRNAs, and circRNAs) in maternal extracellular vesicles can accurately and promptly reflect the progress of female reproductive system diseases. The aim of this review is to collect information on different types of non-coding RNAs with key molecular carriers in female pathologic pregnancies (preeclampsia and recurrent spontaneous abortion), so as to explore the relevant molecular mechanisms in female pathologic pregnancies and provide a theoretical basis for clinical research on the pathogenesis and therapeutic approaches of reproductive system diseases. The current state of the art of exosome isolation and extraction is also summarized.
Collapse
Affiliation(s)
- Cen Tang
- Obstetrics Department, Kunming Medical University Second Affiliated Hospital, Kunming, 650101, Yunnan, China
| | - Wanqin Hu
- Obstetrics Department, Kunming Medical University Second Affiliated Hospital, Kunming, 650101, Yunnan, China.
| |
Collapse
|
3
|
Hassaan NA, Mansour HA. Exosomal therapy is a luxury area for regenerative medicine. Tissue Cell 2024; 91:102570. [PMID: 39383641 DOI: 10.1016/j.tice.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Stem cell-based therapies have made significant advancements in tissue regeneration and medical engineering. However, there are limitations to cell transplantation therapy, such as immune rejection and limited cell viability. These limitations greatly impede the translation of stem cell-based tissue regeneration into clinical practice. In recent years, exosomes, which are packaged vesicles released from cells, have shown promising progress. Specifically, exosomes derived from stem cells have demonstrated remarkable therapeutic benefits. Exosomes are nanoscale extracellular vesicles that act as paracrine mediators. They transfer functional cargos, such as miRNA and mRNA molecules, peptides, proteins, cytokines, and lipids, from MSCs to recipient cells. By participating in intercellular communication events, exosomes contribute to the healing of injured or diseased tissues and organs. Studies have shown that the therapeutic effects of MSCs in various experimental paradigms can be solely attributed to their exosomes. Consequently, MSC-derived exosomes can be modified and utilized to develop a unique cell-free therapeutic approach for treating multiple diseases, including neurological, immunological, heart, and other diseases. This review is divided into several categories, including the current understanding of exosome biogenesis, isolation techniques, and their application as therapeutic tools.
Collapse
Affiliation(s)
- Nahla A Hassaan
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Hanaa A Mansour
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
4
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
5
|
Ważny Ł, Whiteside TL, Pietrowska M. Oncoviral Infections and Small Extracellular Vesicles. Viruses 2024; 16:1291. [PMID: 39205265 PMCID: PMC11359865 DOI: 10.3390/v16081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEV) are small membrane-bound nanovesicles with a size range below 200 nm that are released by all types of cells. sEV carry a diverse cargo of proteins, lipids, glycans, and nucleic acids that mimic the content of producer cells. sEV mediate intercellular communication and play a key role in a broad variety of physiological and pathological conditions. Recently, numerous reports have emerged examining the role of sEV in viral infections. A significant number of similarities in the sEV biogenesis pathways and the replication cycles of viruses suggest that sEV might influence the course of viral infections in diverse ways. Besides directly modulating virus propagation by transporting the viral cargo (complete virions, proteins, RNA, and DNA), sEV can also modify the host antiviral response and increase the susceptibility of cells to infection. The network of mutual interactions is particularly complex in the case of oncogenic viruses, deserving special consideration because of its significance in cancer progression. This review summarizes the current knowledge of interactions between sEV and oncogenic viruses, focusing on sEV abilities to modulate the carcinogenic properties of oncoviruses.
Collapse
Affiliation(s)
- Łukasz Ważny
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
6
|
Mohammadinasr M, Montazersaheb S, Ayromlou H, Hosseini V, Molavi O, Hejazi MS. Exosome Content-Mediated Signaling Pathways in Multiple Sclerosis. Mol Neurobiol 2024; 61:5404-5417. [PMID: 38191693 DOI: 10.1007/s12035-023-03862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Exosomes are small extracellular vesicles with a complex lipid-bilayer surface and 30-150 nm diameter. These vesicles play a critical role in intercellular signaling networks during physiopathological processes through data trafficking and cell reprogramming. It has been demonstrated that exosomes are involved in a variety of central nervous system (CNS) disorders such as multiple sclerosis (MS). Exosome mediators' cell-to-cell communication is possibly by delivering their contents such as proteins, RNAs (coding and non-coding), DNAs (mitochondrial and genomic), and transposable elements to the target cells. Exosomal microRNAs (miRNAs) differ in their expression patterns in MS disease, thereby providing novel diagnostic and prognostic biomarkers and therapeutic options for better treatment of MS disease. Furthermore, these microvesicles are non-immunogenic and non-toxic therapeutic tools for transferring miRNAs across the blood-brain barrier (BBB). Collectively, exosomes could be used as novel drug delivery devices for the treatment of MS patients. This review summarized research regarding the exosomes from serum, plasma, PBMC, and other cells in MS patients and experimental models. We also provide a critical view of exosome content-mediated signaling pathways in MS, including TNF-α, TGF-β, NF-κB, and Wnt pathways. The use of exosomes as a therapeutic potential in MS has also been discussed.
Collapse
Affiliation(s)
- Mina Mohammadinasr
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hormoz Ayromlou
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Shan Y, Hou B, Wang J, Chen A, Liu S. Exploring the role of exosomal MicroRNAs as potential biomarkers in preeclampsia. Front Immunol 2024; 15:1385950. [PMID: 38566996 PMCID: PMC10985148 DOI: 10.3389/fimmu.2024.1385950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The complex pathogenesis of preeclampsia (PE), a significant contributor to maternal and neonatal mortality globally, is poorly understood despite substantial research. This review explores the involvement of exosomal microRNAs (exomiRs) in PE, focusing on their impact on the protein kinase B (AKT)/hypoxia-inducible factor 1-α (HIF1α)/vascular endothelial growth factor (VEGF) signaling pathway as well as endothelial cell proliferation and migration. Specifically, this article amalgamates existing evidence to reveal the pivotal role of exomiRs in regulating mesenchymal stem cell and trophoblast function, placental angiogenesis, the renin-angiotensin system, and nitric oxide production, which may contribute to PE etiology. This review emphasizes the limited knowledge regarding the role of exomiRs in PE while underscoring the potential of exomiRs as non-invasive biomarkers for PE diagnosis, prediction, and treatment. Further, it provides valuable insights into the mechanisms of PE, highlighting exomiRs as key players with clinical implications, warranting further exploration to enhance the current understanding and the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yuping Shan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bo Hou
- Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingli Wang
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aiping Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiguo Liu
- Department of Medical Genetics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Rademakers DJ, Saffari S, Shin AY, Pulos N. The Role of Exosomes in Upper-Extremity Tissue Regeneration. J Hand Surg Am 2024; 49:170-178. [PMID: 38099878 DOI: 10.1016/j.jhsa.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/07/2023] [Accepted: 11/13/2023] [Indexed: 02/05/2024]
Abstract
Exosomes are cell-free membrane vesicles secreted by a wide variety of cells as secretomes into the extracellular matrix. Alongside facilitating intercellular communication, exosomes carry various bioactive molecules consisting of nucleic acids, proteins, and lipids. Exosome applications have increased in popularity by overcoming the disadvantages of mesenchymal stem cell therapies. Despite this, a better understanding of the underlying mechanisms of action of exosomes is necessary prior to clinical application in upper-extremity tissue regeneration. The purpose of this review is to introduce the concept of exosomes and their possible applications in upper-extremity tissue regeneration, detail the shortcomings of current exosome research, and explore their potential clinical application in the upper extremity.
Collapse
Affiliation(s)
- Daan J Rademakers
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, The Netherlands
| | - Sara Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, The Netherlands
| | - Alexander Y Shin
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Pulos
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Zheng L, Gong H, Zhang J, Guo L, Zhai Z, Xia S, Hu Z, Chang J, Jiang Y, Huang X, Ge J, Zhang B, Yan M. Strategies to improve the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicle (MSC-EV): a promising cell-free therapy for liver disease. Front Bioeng Biotechnol 2023; 11:1322514. [PMID: 38155924 PMCID: PMC10753838 DOI: 10.3389/fbioe.2023.1322514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Liver disease has emerged as a significant worldwide health challenge due to its diverse causative factors and therapeutic complexities. The majority of liver diseases ultimately progress to end-stage liver disease and liver transplantation remains the only effective therapy with the limitations of donor organ shortage, lifelong immunosuppressants and expensive treatment costs. Numerous pre-clinical studies have revealed that extracellular vesicles released by mesenchymal stem cells (MSC-EV) exhibited considerable potential in treating liver diseases. Although natural MSC-EV has many potential advantages, some characteristics of MSC-EV, such as heterogeneity, uneven therapeutic effect, and rapid clearance in vivo constrain its clinical translation. In recent years, researchers have explored plenty of ways to improve the therapeutic efficacy and rotation rate of MSC-EV in the treatment of liver disease. In this review, we summarized current strategies to enhance the therapeutic potency of MSC-EV, mainly including optimization culture conditions in MSC or modifications of MSC-EV, aiming to facilitate the development and clinical application of MSC-EV in treating liver disease.
Collapse
Affiliation(s)
- Lijuan Zheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Jing Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Linna Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Zhuofan Zhai
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Zhiyu Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Jing Chang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yizhu Jiang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinran Huang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingyi Ge
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| |
Collapse
|
10
|
Saffari S, Rademakers DJ, Pulos N, Shin AY. Dose-response analysis after administration of a human platelet-derived exosome product on neurite outgrowth in vitro. Biotechnol Bioeng 2023; 120:3191-3199. [PMID: 37539665 DOI: 10.1002/bit.28520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Modulating the nerve's local microenvironment using exosomes is proposed to enhance nerve regeneration. This study aimed to determine the optimal dose of purified exosome product (PEP) required to exert maximal neurite extension. An in vitro dorsal root ganglion (DRG) neurite outgrowth assay was used to evaluate the effect of treatment with (i) 5% PEP, (ii) 10% PEP, (iii) 15% PEP, or (iv) 20% PEP on neurite extension (N = 9/group), compared to untreated controls. After 72 h, neurite extension was measured to quantify nerve regeneration. Live cell imaging was used to visualize neurite outgrowth during incubation. Treatment with 5% PEP resulted in the longest neurite extension and was superior to the untreated DRG (p = 0.003). Treatment with 10% PEP, 15% PEP, and 20% PEP was found to be comparable to controls (p = 0.12, p = 0.06, and p = 0.41, respectively) and each other. Live cell imaging suggested that PEP migrated towards the DRG neural regeneration site, compared to the persistent homogenous distribution of PEP in culture media alone. 5% PEP was found to be the optimal concentration for nerve regeneration based on this in vitro dose-response analysis.
Collapse
Affiliation(s)
- Sara Saffari
- Department of Orthopedic Surgery, Division of Hand and Microvascular Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Plastic Surgery, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Daan J Rademakers
- Department of Orthopedic Surgery, Division of Hand and Microvascular Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Plastic Surgery, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Nicholas Pulos
- Department of Orthopedic Surgery, Division of Hand and Microvascular Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Division of Hand and Microvascular Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
van de Wakker SI, Meijers FM, Sluijter JPG, Vader P. Extracellular Vesicle Heterogeneity and Its Impact for Regenerative Medicine Applications. Pharmacol Rev 2023; 75:1043-1061. [PMID: 37280097 DOI: 10.1124/pharmrev.123.000841] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-enclosed particles that are involved in physiologic and pathologic processes. EVs are increasingly being studied for therapeutic applications in the field of regenerative medicine. Therapeutic application of stem cell-derived EVs has shown great potential to stimulate tissue repair. However, the exact mechanisms through which they induce this effect have not been fully clarified. This may to a large extent be attributed to a lack of knowledge on EV heterogeneity. Recent studies suggest that EVs represent a heterogeneous population of vesicles with distinct functions. The heterogeneity of EVs can be attributed to differences in their biogenesis, and as such, they can be classified into distinct populations that can then be further subcategorized into various subpopulations. A better understanding of EV heterogeneity is crucial for elucidating their mechanisms of action in tissue regeneration. This review provides an overview of the latest insights on EV heterogeneity related to tissue repair, including the different characteristics that contribute to such heterogeneity and the functional differences among EV subtypes. It also sheds light on the challenges that hinder clinical translation of EVs. Additionally, innovative EV isolation techniques for studying EV heterogeneity are discussed. Improved knowledge of active EV subtypes would promote the development of tailored EV therapies and aid researchers in the translation of EV-based therapeutics to the clinic. SIGNIFICANCE STATEMENT: Within this review we discuss the differences in regenerative properties of extracellular vesicle (EV) subpopulations and implications of EV heterogeneity for development of EV-based therapeutics. We aim to provide new insights into which aspects are leading to heterogeneity in EV preparations and stress the importance of EV heterogeneity studies for clinical applications.
Collapse
Affiliation(s)
- Simonides Immanuel van de Wakker
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Fleur Michelle Meijers
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Joost Petrus Gerardus Sluijter
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Pieter Vader
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| |
Collapse
|
12
|
Luo S, Chen J, Xu F, Chen H, Li Y, Li W. Dendritic Cell-Derived Exosomes in Cancer Immunotherapy. Pharmaceutics 2023; 15:2070. [PMID: 37631284 PMCID: PMC10457773 DOI: 10.3390/pharmaceutics15082070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Exosomes are nanoscale vesicles released by diverse types of cells for complex intercellular communication. Numerous studies have shown that exosomes can regulate the body's immune response to tumor cells and interfere with the tumor microenvironment (TME). In clinical trials on dendritic cell (DC)-based antitumor vaccines, no satisfactory results have been achieved. However, recent studies suggested that DC-derived exosomes (DEXs) may be superior to DC-based antitumor vaccines in avoiding tumor cell-mediated immunosuppression. DEXs contain multiple DC-derived surface markers that capture tumor-associated antigens (TAAs) and promote immune cell-dependent tumor rejection. These findings indicate the necessity of the further development and improvement of DEX-based cell-free vaccines to complement chemotherapy, radiotherapy, and other immunotherapies. In this review, we highlighted the recent progress of DEXs in cancer immunotherapy, particularly by concentrating on landmark studies and the biological characterization of DEXs, and we summarized their important role in the tumor immune microenvironment (TIME) and clinical application in targeted cancer immunotherapy. This review could enhance comprehension of advances in cancer immunotherapy and contribute to the elucidation of how DEXs regulate the TIME, thereby providing a reference for utilizing DEX-based vaccines in clinical practice.
Collapse
Affiliation(s)
- Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Jing Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Fang Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Huan Chen
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China;
| | - Yiru Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| |
Collapse
|
13
|
Fang X, Lan H, Jin K, Qian J. Pancreatic cancer and exosomes: role in progression, diagnosis, monitoring, and treatment. Front Oncol 2023; 13:1149551. [PMID: 37287924 PMCID: PMC10242099 DOI: 10.3389/fonc.2023.1149551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most dangerous diseases that threaten human life, and investigating the details affecting its progression or regression is particularly important. Exosomes are one of the derivatives produced from different cells, including tumor cells and other cells such as Tregs, M2 macrophages, and MDSCs, and can help tumor growth. These exosomes perform their actions by affecting the cells in the tumor microenvironment, such as pancreatic stellate cells (PSCs) that produce extracellular matrix (ECM) components and immune cells that are responsible for killing tumor cells. It has also been shown that pancreatic cancer cell (PCC)-derived exosomes at different stages carry molecules. Checking the presence of these molecules in the blood and other body fluids can help us in the early stage diagnosis and monitoring of PC. However, immune system cell-derived exosomes (IEXs) and mesenchymal stem cell (MSC)-derived exosomes can contribute to PC treatment. Immune cells produce exosomes as part of the mechanisms involved in the immune surveillance and tumor cell-killing phenomenon. Exosomes can be modified in such a way that their antitumor properties are enhanced. One of these methods is drug loading in exosomes, which can significantly increase the effectiveness of chemotherapy drugs. In general, exosomes form a complex intercellular communication network that plays a role in developing, progressing, diagnosing, monitoring, and treating pancreatic cancer.
Collapse
Affiliation(s)
- Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
14
|
Lim WQ, Michelle Luk KH, Lee KY, Nurul N, Loh SJ, Yeow ZX, Wong QX, Daniel Looi QH, Chong PP, How CW, Hamzah S, Foo JB. Small Extracellular Vesicles' miRNAs: Biomarkers and Therapeutics for Neurodegenerative Diseases. Pharmaceutics 2023; 15:pharmaceutics15041216. [PMID: 37111701 PMCID: PMC10143523 DOI: 10.3390/pharmaceutics15041216] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative diseases are critical in the healthcare system as patients suffer from progressive diseases despite currently available drug management. Indeed, the growing ageing population will burden the country's healthcare system and the caretakers. Thus, there is a need for new management that could stop or reverse the progression of neurodegenerative diseases. Stem cells possess a remarkable regenerative potential that has long been investigated to resolve these issues. Some breakthroughs have been achieved thus far to replace the damaged brain cells; however, the procedure's invasiveness has prompted scientists to investigate using stem-cell small extracellular vesicles (sEVs) as a non-invasive cell-free therapy to address the limitations of cell therapy. With the advancement of technology to understand the molecular changes of neurodegenerative diseases, efforts have been made to enrich stem cells' sEVs with miRNAs to increase the therapeutic efficacy of the sEVs. In this article, the pathophysiology of various neurodegenerative diseases is highlighted. The role of miRNAs from sEVs as biomarkers and treatments is also discussed. Lastly, the applications and delivery of stem cells and their miRNA-enriched sEVs for treating neurodegenerative diseases are emphasised and reviewed.
Collapse
Affiliation(s)
- Wei Qing Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kie Hoon Michelle Luk
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kah Yee Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Nasuha Nurul
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Sin Jade Loh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Zhen Xiong Yeow
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Qi Xuan Wong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Qi Hao Daniel Looi
- My CytoHealth Sdn. Bhd., Lab 6, DMC Level 2, Hive 5, Taman Teknologi MRANTI, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Pan Pan Chong
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
15
|
Pan R, He T, Zhang K, Zhu L, Lin J, Chen P, Liu X, Huang H, Zhou D, Li W, Yang S, Ye G. Tumor-Targeting Extracellular Vesicles Loaded with siS100A4 for Suppressing Postoperative Breast Cancer Metastasis. Cell Mol Bioeng 2023; 16:117-125. [PMID: 37096069 PMCID: PMC10121989 DOI: 10.1007/s12195-022-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction S100A4 promotes the establishment of tumor microenvironment for malignant cancer cells, and knockdown of S100A4 can inhibit tumorigenesis. However, there is no efficient way to target S100A4 in metastatic tumor tissues. Here, we investigated the role of siS100A4-loaded iRGD-modified extracellular vesicles (siS100A4-iRGD-EVs) in postoperative breast cancer metastasis. Methods siS100A4-iRGD-EVs nanoparticles were engineered and analyzed using TEM and DLS. siRNA protection, cellular uptake, and cytotoxicity of EV nanoparticles were examined in vitro. Postoperative lung metastasis mouse model was created to investigate the tissue distribution and anti-metastasis roles of nanoparticles in vivo. Results siS100A4-iRGD-EVs protected siRNA from RNase degradation, enhanced the cellular uptake and compatibility in vitro. Strikingly, iRGD-modified EVs significantly increased tumor organotropism and siRNA accumulation in lung PMNs compared to siS100A4-EVs in vivo. Moreover, siS100A4-iRGD-EVs treatment remarkedly attenuated lung metastases from breast cancer and increased survival rate of mice through suppressing S100A4 expression in lung. Conclusions siS100A4-iRGD-EVs nanoparticles show more potent anti-metastasis effect in postoperative breast cancer metastasis mouse model. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00757-5.
Collapse
Affiliation(s)
- Ruiling Pan
- Department of Breast Surgery, The First People’s Hospital of Foshan, No. 81 North Lingnan Avenue, Chancheng, Foshan, 528000 Guangdong China
| | - Tiancheng He
- Department of Breast Surgery, The First People’s Hospital of Foshan, No. 81 North Lingnan Avenue, Chancheng, Foshan, 528000 Guangdong China
| | - Kun Zhang
- Department of Breast Surgery, The First People’s Hospital of Foshan, No. 81 North Lingnan Avenue, Chancheng, Foshan, 528000 Guangdong China
| | - Lewei Zhu
- Department of Breast Surgery, The First People’s Hospital of Foshan, No. 81 North Lingnan Avenue, Chancheng, Foshan, 528000 Guangdong China
| | - Jiawei Lin
- Department of Breast Surgery, The First People’s Hospital of Foshan, No. 81 North Lingnan Avenue, Chancheng, Foshan, 528000 Guangdong China
| | - Peixian Chen
- Department of Breast Surgery, The First People’s Hospital of Foshan, No. 81 North Lingnan Avenue, Chancheng, Foshan, 528000 Guangdong China
| | - Xiangwei Liu
- Department of Breast Surgery, The First People’s Hospital of Foshan, No. 81 North Lingnan Avenue, Chancheng, Foshan, 528000 Guangdong China
| | - Huiqi Huang
- Department of Breast Surgery, The First People’s Hospital of Foshan, No. 81 North Lingnan Avenue, Chancheng, Foshan, 528000 Guangdong China
| | - Dan Zhou
- Department of Breast Surgery, The First People’s Hospital of Foshan, No. 81 North Lingnan Avenue, Chancheng, Foshan, 528000 Guangdong China
| | - Wei Li
- Department of Breast Surgery, The First People’s Hospital of Foshan, No. 81 North Lingnan Avenue, Chancheng, Foshan, 528000 Guangdong China
| | - Shuqing Yang
- Department of Breast Surgery, The First People’s Hospital of Foshan, No. 81 North Lingnan Avenue, Chancheng, Foshan, 528000 Guangdong China
| | - Guolin Ye
- Department of Breast Surgery, The First People’s Hospital of Foshan, No. 81 North Lingnan Avenue, Chancheng, Foshan, 528000 Guangdong China
| |
Collapse
|
16
|
Reiss AB, Ahmed S, Johnson M, Saeedullah U, De Leon J. Exosomes in Cardiovascular Disease: From Mechanism to Therapeutic Target. Metabolites 2023; 13:479. [PMID: 37110138 PMCID: PMC10142472 DOI: 10.3390/metabo13040479] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. In recent decades, clinical research has made significant advances, resulting in improved survival and recovery rates for patients with CVD. Despite this progress, there is substantial residual CVD risk and an unmet need for better treatment. The complex and multifaceted pathophysiological mechanisms underlying the development of CVD pose a challenge for researchers seeking effective therapeutic interventions. Consequently, exosomes have emerged as a new focus for CVD research because their role as intercellular communicators gives them the potential to act as noninvasive diagnostic biomarkers and therapeutic nanocarriers. In the heart and vasculature, cell types such as cardiomyocytes, endothelial cells, vascular smooth muscle, cardiac fibroblasts, inflammatory cells, and resident stem cells are involved in cardiac homeostasis via the release of exosomes. Exosomes encapsulate cell-type specific miRNAs, and this miRNA content fluctuates in response to the pathophysiological setting of the heart, indicating that the pathways affected by these differentially expressed miRNAs may be targets for new treatments. This review discusses a number of miRNAs and the evidence that supports their clinical relevance in CVD. The latest technologies in applying exosomal vesicles as cargo delivery vehicles for gene therapy, tissue regeneration, and cell repair are described.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | | | | | | | | |
Collapse
|
17
|
Joorabloo A, Liu T. Engineering exosome-based biomimetic nanovehicles for wound healing. J Control Release 2023; 356:463-480. [PMID: 36907562 DOI: 10.1016/j.jconrel.2023.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Complexity and difficulties in wound management are pressing concerns that affect patients' quality of life and may result in tissue infection, necrosis, and loss of local and systemic functions. Hence, novel approaches to accelerate wound healing are being actively explored over the last decade. Exosomes as important mediators of intercellular communications are promising natural nanocarriers due to their biocompatibility, low immunogenicity, drug loading and targeting capacities, and innate stability. More importantly, exosomes are developed as a versatile pharmaceutical engineering platform for wound repair. This review provides an overview of the biological and physiological functions of exosomes derived from a variety of biological origins during wound healing phases, strategies for exosomal engineering, and therapeutic applications in skin regeneration.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia.
| |
Collapse
|
18
|
Sridharan B, Lim HG. Exosomes and ultrasound: The future of theranostic applications. Mater Today Bio 2023; 19:100556. [PMID: 36756211 PMCID: PMC9900624 DOI: 10.1016/j.mtbio.2023.100556] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Biomaterials and pertaining formulations have been very successful in various diagnostic and therapeutic applications because of its ability to overcome pharmacological limitations. Some of them have gained significant focus in the recent decade for their theranostic properties. Exosomes can be grouped as biomaterials, since they consist of various biological micro/macromolecules and possess all the properties of a stable biomaterial with size in nano range. Significant research has gone into isolation and exploitation of exosomes as potential theranostic agent. However, the limitations in terms of yield, efficacy, and target specificity are continuously being addressed. On the other hand, several nano/microformulations are responsive to physical or chemical alterations and were successfully stimulated by tweaking the physical characteristics of the surrounding environment they are in. Some of them are termed as photodynamic, sonodynamic or thermodynamic therapeutic systems. In this regard, ultrasound and acoustic systems were extensively studied for its ability towards altering the properties of the systems to which they were applied on. In this review, we have detailed about the diagnostic and therapeutic applications of exosomes and ultrasound separately, consisting of their conventional applications, drawbacks, and developments for addressing the challenges. The information were categorized into various sections that provide complete overview of the isolation strategies and theranostic applications of exosomes in various diseases. Then the ultrasound-based disease diagnosis and therapy were elaborated, with special interest towards the use of ultrasound in enhancing the efficacy of nanomedicines and nanodrug delivery systems, Finally, we discussed about the ability of ultrasound in enhancing the diagnostic and therapeutic properties of exosomes, which could be the future of theranostics.
Collapse
Affiliation(s)
| | - Hae Gyun Lim
- Corresponding author. Biomedical Ultrasound Lab, Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
19
|
Movahedpour A, Khatami SH, Karami N, Vakili O, Naeli P, Jamali Z, Shabaninejad Z, Tazik K, Behrouj H, Ghasemi H. Exosomal noncoding RNAs in prostate cancer. Clin Chim Acta 2022; 537:127-132. [DOI: 10.1016/j.cca.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/03/2022]
|
20
|
Chauhan S, Behl T, Sehgal A, Singh S, Sharma N, Gupta S, Albratty M, Najmi A, Meraya AM, Alhazmi HA. Understanding the Intricate Role of Exosomes in Pathogenesis of Alzheimer's Disease. Neurotox Res 2022; 40:1758-1773. [PMID: 36564606 DOI: 10.1007/s12640-022-00621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease causes loss of memory and deterioration of mental abilities is utmost predominant neurodegenerative disease accounting 70-80% cases of dementia. The appearance of plaques of amyloid-β and neurofibrillary tangles in the brain post-mortems of Alzheimer's patients established them as key participants in the etiology of Alzheimer's disease. Exosomes exist as extracellular vesicles of nano-size which are present throughout the body. Exosomes are known to spread toxic hyperphosphorylated tau and amyloid-β between the cells and are linked to the loss of neurons by inducing apoptosis. Exosomes have progressed from cell trashcans to multifunctional organelles which are involved in various functions like internalisation and transmission of macromolecules such as lipids, proteins, and nucleic acids. This review covers current findings on relationship of exosomes in biogenesis and angiogenesis of Alzheimer's disease and functions of exosomes in the etiology of AD. Furthermore, the roles of exosomes in development, diagnosis, treatment, and its importance as therapeutic targets and biomarkers for Alzheimer's disease have also been highlighted.
Collapse
Affiliation(s)
- Simran Chauhan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Uttarakhand, Dehradun, 248007, India.
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Sadhar, Ludhiana, Punjab, Gurusar, 141104, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India.
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Jazan Uniersity, Jazan, 45124, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jzan University, Jazan, 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jzan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
21
|
The distinct roles of exosomes in innate immune responses and therapeutic applications in cancer. Eur J Pharmacol 2022; 933:175292. [PMID: 36150532 DOI: 10.1016/j.ejphar.2022.175292] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
The innate immune system is one of the major constituents of the host's defense against invading pathogens and extracellular vesicles (EVs) are involved in regulating its responses. Exosomes, a subclass of EVs, released from eukaryotic cells, contribute to intracellular communication and drive various biological processes by transferring nuclei acids, proteins, lipids, and carbohydrates between cells, protecting cargo from enzymatic degradation and immune recognition and consequent elimination by the immune system. A growing body of evidence has revealed that exosomes produced from host cells, infected cells, tumor cells, and immune cells regulate innate immune signaling and responses and thus play a significant role in the propagation of pathogens. Immune cells can recognize exosomes-bearing components including DNA strands, viral RNAs, and even proteins by various mechanisms such as through Toll-like receptor/NF-κB signaling, inducing cytokine production and reprogramming the innate immune responses, immunosuppression or immunesupportive. There is persuasive preclinical and clinical evidence that exosomes are therapeutic strategies for immunotherapy, cancer vaccine, drug-delivery system, and diagnostic biomarker. However, further scrutiny is essential to validate these findings. In this review, we describe the current facts on the regulation of innate immune responses by exosomes. We also describe the translational application of exosomes as cancer-therapy agents and immunotherapy.
Collapse
|
22
|
Luo Y, Li Z, Wang X, Wang J, Duan X, Li R, Peng Y, Ye Q, He Y. Characteristics of culture-condition stimulated exosomes or their loaded hydrogels in comparison with other extracellular vesicles or MSC lysates. Front Bioeng Biotechnol 2022; 10:1016833. [PMID: 36185445 PMCID: PMC9523448 DOI: 10.3389/fbioe.2022.1016833] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, it has become popular to study the use of extracellular vesicles (EVs) secreted by stem cells to repair damaged tissues or lost cells. Various cell types and physiological fluids release EVs, and they play an important role in cell-to-cell communication. Moreover, EVs have been implicated in important processes, such as immune responses, homeostasis maintenance, coagulation, inflammation, cancer progression, angiogenesis, and antigen presentation. Thus, EVs participate in both physiological and pathological progression. The main classes of EVs include exosomes, microvesicles (MVs), and apoptotic bodies (ApoBDs). Exosomes, which carry a mass of signal molecules such as RNA, DNA, proteins, and lipids, are the most important of these EVs subsets. Currently, exosomes are generating substantial interest in the scientific community. Exosomes loaded hydrogels or under different cultural environments exhibit different properties and functions. Therefore, the exosomes obtained from different sources and conditions are worth reviewing. More importantly, no review article has compared the different EVs, such as exosomes, MVs, ApoBDs, and mesenchymal stem cell (MSC) lysates, which are special soluble substances. The differentiation between EVs and MSC lysates is a logical approach. Accordingly, this review provides an update on the latest progress in studying the roles of culture-condition stimulated exosomes or their loaded hydrogels and the differentiation between exosomes, MVs, ApoBDs, and MSC lysates. Published studies were retrieved from the PubMed® database for review.
Collapse
Affiliation(s)
- Yu Luo
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihua Li
- Department of Orthodontics, School and Hospital of Stomatology, Nanchang University, Nanchang, China
| | - Xinxin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Wang
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingxiang Duan
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruohan Li
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Youjian Peng
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Orthodontics, School and Hospital of Stomatology, Nanchang University, Nanchang, China
- *Correspondence: Qingsong Ye, ; Yan He,
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| |
Collapse
|
23
|
Li X, Wei X, Lin J, Ou L. A versatile toolkit for overcoming AAV immunity. Front Immunol 2022; 13:991832. [PMID: 36119036 PMCID: PMC9479010 DOI: 10.3389/fimmu.2022.991832] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) is a promising delivery vehicle for in vivo gene therapy and has been widely used in >200 clinical trials globally. There are already several approved gene therapy products, e.g., Luxturna and Zolgensma, highlighting the remarkable potential of AAV delivery. In the past, AAV has been seen as a relatively non-immunogenic vector associated with low risk of toxicity. However, an increasing number of recent studies indicate that immune responses against AAV and transgene products could be the bottleneck of AAV gene therapy. In clinical studies, pre-existing antibodies against AAV capsids exclude many patients from receiving the treatment as there is high prevalence of antibodies among humans. Moreover, immune response could lead to loss of efficacy over time and severe toxicity, manifested as liver enzyme elevations, kidney injury, and thrombocytopenia, resulting in deaths of non-human primates and patients. Therefore, extensive efforts have been attempted to address these issues, including capsid engineering, plasmapheresis, IgG proteases, CpG depletion, empty capsid decoy, exosome encapsulation, capsid variant switch, induction of regulatory T cells, and immunosuppressants. This review will discuss these methods in detail and highlight important milestones along the way.
Collapse
Affiliation(s)
- Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoli Wei
- Guangzhou Dezheng Biotechnology Co., Ltd., Guangzhou, China
| | - Jinduan Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Ou
- Genemagic Biosciences, Philadelphia, PA, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Li Ou,
| |
Collapse
|
24
|
Lee SY, Lee JW. 3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070939. [PMID: 35888029 PMCID: PMC9317836 DOI: 10.3390/life12070939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Cartilage is a connective tissue that constitutes the structure of the body and consists of chondrocytes that produce considerable collagenous extracellular matrix and plentiful ground substances, such as proteoglycan and elastin fibers. Self-repair is difficult when the cartilage is damaged because of insufficient blood supply, low cellularity, and limited progenitor cell numbers. Therefore, three-dimensional (3D) culture systems, including pellet culture, hanging droplets, liquid overlays, self-injury, and spinner culture, have attracted attention. In particular, 3D spheroid culture strategies can enhance the yield of exosome production of mesenchymal stem cells (MSCs) when compared to two-dimensional culture, and can improve cellular restorative function by enhancing the paracrine effects of MSCs. Exosomes are membrane-bound extracellular vesicles, which are intercellular communication systems that carry RNAs and proteins. Information transfer affects the phenotype of recipient cells. MSC-derived exosomes can facilitate cartilage repair by promoting chondrogenic differentiation and proliferation. In this article, we reviewed recent major advances in the application of 3D culture techniques, cartilage regeneration with stem cells using 3D spheroid culture system, the effect of exosomes on chondrogenic differentiation, and chondrogenic-specific markers related to stem cell derived exosomes. Furthermore, the utilization of MSC-derived exosomes to enhance chondrogenic differentiation for osteoarthritis is discussed. If more mechanistic studies at the molecular level are conducted, MSC-spheroid-derived exosomes will supply a better therapeutic option to improve osteoarthritis.
Collapse
Affiliation(s)
- Seung Yeon Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea;
| | - Jin Woo Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea;
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea
- Correspondence: ; Tel.: +82-32-899-6516; Fax: +82-32-899-6039
| |
Collapse
|
25
|
Khodamoradi K, Golan R, Dullea A, Ramasamy R. Exosomes as Potential Biomarkers for Erectile Dysfunction, Varicocele, and Testicular Injury. Sex Med Rev 2021; 10:311-322. [PMID: 34838504 DOI: 10.1016/j.sxmr.2021.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Optimal male reproductive health is dependent upon critical mediators of cell-cell communication: exosomes or extracellular vesicles. These vesicles are nano-sized particles released into a variety of bodily fluids, such as blood and semen. Exosomes are highly stable and can carry genetic and other molecules, including DNA, RNA, and proteins, which provide information about their origin cells. OBJECTIVE To identify exosomes as potential biomarkers or therapeutic mediators in male sexual and reproductive disorders like erectile dysfunction (ED), varicocele, and testicular injury. METHODS A PubMed search was performed to highlight all articles available relating to exosomes and extracellular vesicles in the pathogenesis of different male sexual and reproductive disorders, and their importance in clinical use as both diagnostic markers and potential therapeutic mediators. RESULTS Various male reproductive system disorders, such as ED, varicocele, and testicular injury, are linked to increased or decreased levels of exosomes. Exosomes have a higher number of molecules such as DNA, RNA, and proteins, which can give a more precise and comprehensive result when compared to other biomarkers. Exosomes can be considered as plausible diagnostic biomarkers for male sexual and reproductive diseases, with considerable advantages over other diagnostic procedures such as invasive tissue biopsy. Exosomes can carry cargo such certain drugs and therapeutic molecules making them a promising therapeutic approach. Several studies have begun to test treating various male sexual reproductive disorders with exosomes. CONCLUSION Exosomes deliver many components that can regulate gene expression and target signaling pathways. Understanding how extracellular vesicles can be utilized as biomarkers in diagnosing men, particularly those with idiopathic erectile dysfunction, will not only aid in diagnosis but also help with making therapeutic targets. Khodamoradi K, Golan R, Dullea A, et al. Exosomes as Potential Biomarkers for Erectile Dysfunction, Varicocele, and Testicular Injury. Sex Med Rev 2021;XX:XXX-XXX.
Collapse
Affiliation(s)
- Kajal Khodamoradi
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roei Golan
- Departement of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Alexandra Dullea
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
26
|
da Costa VR, Araldi RP, Vigerelli H, D’Ámelio F, Mendes TB, Gonzaga V, Policíquio B, Colozza-Gama GA, Valverde CW, Kerkis I. Exosomes in the Tumor Microenvironment: From Biology to Clinical Applications. Cells 2021; 10:2617. [PMID: 34685596 PMCID: PMC8533895 DOI: 10.3390/cells10102617] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the most important health problems and the second leading cause of death worldwide. Despite the advances in oncology, cancer heterogeneity remains challenging to therapeutics. This is because the exosome-mediated crosstalk between cancer and non-cancer cells within the tumor microenvironment (TME) contributes to the acquisition of all hallmarks of cancer and leads to the formation of cancer stem cells (CSCs), which exhibit resistance to a range of anticancer drugs. Thus, this review aims to summarize the role of TME-derived exosomes in cancer biology and explore the clinical potential of mesenchymal stem-cell-derived exosomes as a cancer treatment, discussing future prospects of cell-free therapy for cancer treatment and challenges to be overcome.
Collapse
Affiliation(s)
- Vitor Rodrigues da Costa
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
| | - Rodrigo Pinheiro Araldi
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Hugo Vigerelli
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
| | - Fernanda D’Ámelio
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
| | - Thais Biude Mendes
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Vivian Gonzaga
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Bruna Policíquio
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Gabriel Avelar Colozza-Gama
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | | | - Irina Kerkis
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| |
Collapse
|
27
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Exosomes Engineering and Their Roles as Therapy Delivery Tools, Therapeutic Targets, and Biomarkers. Int J Mol Sci 2021; 22:9543. [PMID: 34502452 PMCID: PMC8431173 DOI: 10.3390/ijms22179543] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are becoming increasingly important therapeutic biomaterials for use in a variety of therapeutic applications due to their unique characteristics, especially due to the ineffectiveness and cytotoxicity of some existing therapies and synthetic therapeutic nanocarriers. They are highly promising as carriers of drugs, genes, and other therapeutic agents that can be incorporated into their interior or onto their surface through various modification techniques to improve their targeting abilities. In addition, they are biocompatible, safe, and stable. The review focuses on different types of exosomes and methods of their preparation, including the incorporation of different kinds of cargo, especially for drug delivery purposes. In particular, their importance and effectiveness as delivery vehicles of various therapeutic agents for a variety of therapeutic applications, including different diseases and disorders such as cancer treatment, cardiovascular and neurodegenerative diseases, are emphasized. Administration routes of exosomes into the body are also included. A novelty in the article is the emphasis on global companies that are already successfully developing and testing such therapeutic biomaterials, with a focus on the most influential ones. Moreover, a comparison of the advantages and disadvantages of the various methods of exosome production is summarized for the first time.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
28
|
Amini H, Rezabakhsh A, Heidarzadeh M, Hassanpour M, Hashemzadeh S, Ghaderi S, Sokullu E, Rahbarghazi R, Reiter RJ. An Examination of the Putative Role of Melatonin in Exosome Biogenesis. Front Cell Dev Biol 2021; 9:686551. [PMID: 34169078 PMCID: PMC8219171 DOI: 10.3389/fcell.2021.686551] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
During the last two decades, melatonin has been found to have pleiotropic effects via different mechanisms on its target cells. Data are abundant for some aspects of the signaling pathways within cells while other casual mechanisms have not been adequately addressed. From an evolutionary perspective, eukaryotic cells are equipped with a set of interrelated endomembrane systems consisting of intracellular organelles and secretory vesicles. Of these, exosomes are touted as cargo-laden secretory vesicles that originate from the endosomal multivesicular machinery which participate in a mutual cross-talk at different cellular interfaces. It has been documented that cells transfer various biomolecules and genetic elements through exosomes to sites remote from the original cell in a paracrine manner. Findings related to the molecular mechanisms between melatonin and exosomal biogenesis and cargo sorting are the subject of the current review. The clarification of the interplay between melatonin and exosome biogenesis and cargo sorting at the molecular level will help to define a cell's secretion capacity. This review precisely addresses the role and potential significance of melatonin in determining the efflux capacity of cells via the exosomal pathway. Certain cells, for example, stem cells actively increase exosome efflux in response to melatonin treatment which accelerates tissue regeneration after transplantation into the injured sites.
Collapse
Affiliation(s)
- Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Heidarzadeh
- Koç University Translational Medicine Research Center (KUTTAM), Istanbul, Turkey
| | - Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Hashemzadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrouz Ghaderi
- Medical Faculty, Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Emel Sokullu
- Koç University Translational Medicine Research Center (KUTTAM), Istanbul, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
29
|
Butreddy A, Kommineni N, Dudhipala N. Exosomes as Naturally Occurring Vehicles for Delivery of Biopharmaceuticals: Insights from Drug Delivery to Clinical Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1481. [PMID: 34204903 PMCID: PMC8229362 DOI: 10.3390/nano11061481] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Exosomes as nanosized vesicles are emerging as drug delivery systems for therapeutics owing to their natural origin, their ability to mediate intercellular communication, and their potential to encapsulate various biological molecules such as proteins and nucleic acids within the lipid bilayer membrane or in the lumen. Exosomes contain endogenous components (proteins, lipids, RNA) that could be used to deliver cargoes to target cells, offering an opportunity to diagnose and treat various diseases. Owing to their ability to travel safely in extracellular fluid and to transport cargoes to target cells with high efficacy, exosomes offer enhanced delivery of cargoes in vivo. However, several challenges related to the stabilization of the exosomes, the production of sufficient amounts of exosomes with safety and efficacy, the efficient loading of drugs into exosomes, the clearance of exosomes from circulation, and the transition from the bench scale to clinical production may limit their development and clinical use. For the clinical use of exosomes, it is important to understand the molecular mechanisms behind the transport and function of exosome vesicles. This review exploits techniques related to the isolation and characterization of exosomes and their drug delivery potential to enhance the therapeutic outcome and stabilization methods. Further, routes of administration, clinical trials, and regulatory aspects of exosomes will be discussed in this review.
Collapse
Affiliation(s)
- Arun Butreddy
- Formulation R&D, Biological E. Limited, IKP Knowledge Park, Shameerpet, Hyderabad 500078, Telangana State, India;
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Narendar Dudhipala
- Depratment of Pharmaceutics, Vaagdevi College of Pharmacy, Warangal 506005, Telangana State, India
| |
Collapse
|
30
|
Gao Y, Qin Y, Wan C, Sun Y, Meng J, Huang J, Hu Y, Jin H, Yang K. Small Extracellular Vesicles: A Novel Avenue for Cancer Management. Front Oncol 2021; 11:638357. [PMID: 33791224 PMCID: PMC8005721 DOI: 10.3389/fonc.2021.638357] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles are small membrane particles derived from various cell types. EVs are broadly classified as ectosomes or small extracellular vesicles, depending on their biogenesis and cargoes. Numerous studies have shown that EVs regulate multiple physiological and pathophysiological processes. The roles of small extracellular vesicles in cancer growth and metastasis remain to be fully elucidated. As endogenous products, small extracellular vesicles are an ideal drug delivery platform for anticancer agents. However, several aspects of small extracellular vesicle biology remain unclear, hindering the clinical implementation of small extracellular vesicles as biomarkers or anticancer agents. In this review, we summarize the utility of cancer-related small extracellular vesicles as biomarkers to detect early-stage cancers and predict treatment outcomes. We also review findings from preclinical and clinical studies of small extracellular vesicle-based cancer therapies and summarize interventional clinical trials registered in the United States Food and Drug Administration and the Chinese Clinical Trials Registry. Finally, we discuss the main challenges limiting the clinical implementation of small extracellular vesicles and recommend possible approaches to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Mobarak H, Heidarpour M, Rahbarghazi R, Nouri M, Mahdipour M. Amniotic fluid-derived exosomes improved spermatogenesis in a rat model of azoospermia. Life Sci 2021; 274:119336. [PMID: 33716061 DOI: 10.1016/j.lfs.2021.119336] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
AIMS This study aimed to explore the therapeutic effects of amniotic fluid-derived extracellular vesicles including exosomes (AF-Exos) on the recovery of sperm production capacity in a rat model of azoospermia. MAIN METHODS The non-obstructive azoospermia (NOA) was induced in rats using intratesticular administration of Busulfan. Azoospermia was confirmed by testis histology. AF-Exos samples containing 10 or 40 μg exosomal proteins were injected into testicular tissue of NOA rats. After two months, the recovery of spermatogenesis was monitored via histopathological staining, spermiogram, and hormonal analysis. Immunohistochemistry staining for OCT-3/4 was used to identify of spermatogonial progenitors. The expression of DAZL and VASA, was also measured. KEY FINDINGS AF-Exos exhibited sphere-shaped morphology with the mean diameter and zeta potential of 50 ± 7.521 nm and -7.16 mV. Immunoblots revealed that isolated nanoparticles were CD63, CD9, and CD81 positive. Histopathological evaluation revealed that spermatogenesis was improved significantly in NOA rats after AF-Exos injection. Data showed that the sperm parameters and spermatogenesis index were significantly improved after AF-Exos injection compared to azoospermic groups. OCT-3/4+ cells were increased in NOA rats after AF-Exos injection, showing the restoration of spermatogenesis. In the present study, both doses of exosome (10 and 40 μg) restored the testicular function of NOA rats. DAZL and VASA were increased significantly in animals who received 40 μg exosomal protein compared to azoospermic rats. Except in a high dose of AF-Exos (40 μg) for Testosterone and FSH, no statistically significant differences were found regarding hormones post-exosome injection. SIGNIFICANCE Our study demonstrated that AF-Exos regenerated spermatogenesis and improved sperm quality in NOA rats.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Mohammad Heidarpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran.
| | - Reza Rahbarghazi
- Biotechnology Research Center, Tabriz University of Medical Sciences, 5165665811 Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5166615739 Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5166615739 Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran.
| |
Collapse
|
32
|
Wu Z, He D, Li H. Bioglass enhances the production of exosomes and improves their capability of promoting vascularization. Bioact Mater 2021; 6:823-835. [PMID: 33024902 PMCID: PMC7530219 DOI: 10.1016/j.bioactmat.2020.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, exosomes have been extensively applied in tissue regeneration. However, their practical applications are severely restricted by the limited exosome secretion capability of cells. Therefore, developing strategies to enhance the production of exosomes and improve their biological function attracts great interest. Studies have shown that biomaterials can significantly enhance the paracrine effects of cells and exosomes are the main signal carriers of intercellular paracrine communication, thus biomaterials are considered to affect the exosome secretion of cells and their biological function. In this study, a widely recognized biomaterial, 45S5 Bioglass® (BG), is used to create a mild and cell-friendly microenvironment for mesenchymal stem cells (MSCs) with its ion products. Results showed that BG ion products can significantly improve exosome production of MSCs by upregulating the expression of neutral sphingomyelinase-2 (nSMase2) and Rab27a which enhanced the nSMases and Rab GTPases pathways, respectively. Besides, microRNA analysis indicates that BG ion products can modulate the cargoes of MSCs-derived exosomes by decreasing microRNA-342-5p level while increasing microRNA-1290 level. Subsequently, the function of exosomes is modified as their capabilities of promoting the vascularization of endothelial cells and facilitating the intradermal angiogenesis are enhanced. Taken together, BG ion products are confirmed to enhance exosome production and simultaneously improve exosome function, suggesting a feasible approach to improve the practical application of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Zhi Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Dan He
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Haiyan Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| |
Collapse
|
33
|
Role of Tumor-Derived Extracellular Vesicles in Glioblastoma. Cells 2021; 10:cells10030512. [PMID: 33670924 PMCID: PMC7997231 DOI: 10.3390/cells10030512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary central nervous system tumor and one of the most lethal cancers worldwide, with morbidity of 5.26 per 100,000 population per year. These tumors are often associated with poor prognosis and terrible quality of life. Extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by cells and contain lipid, protein, DNA, mRNA, miRNA and other bioactive substances. EVs perform biological functions by binding or horizontal transfer of bioactive substances to target cell receptors. In recent years, EVs have been considered as possible targets for GBM therapy. A great many types of research demonstrated that EVs played a vital role in the GBM microenvironment, development, progression, angiogenesis, invasion, and even the diagnosis of GBM. Nevertheless, the exact molecular mechanisms and roles of EVs in these processes are unclear. It can provide the basis for GBM treatment in the future that clarifying the regulatory mechanism and related signal pathways of EVs derived from GBM and their clinical value in GBM diagnosis and treatment. In this paper, the research progress and clinical application prospects of GBM-derived EVs are reviewed and discussed.
Collapse
|
34
|
Nie W, Wu G, Zhong H, Xie HY. Membrane vesicles nanotheranostic systems: sources, engineering methods, and challenges. Biomed Mater 2021; 16:022009. [PMID: 33307545 DOI: 10.1088/1748-605x/abd2c8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) are cell secretory native components with long-circulation, good biocompatibility, and physiologic barriers cross ability. EVs derived from different donor cells inherit varying characteristics and functions from their original cells and are favorable to serve as vectors for diagnosing and treating various diseases. However, EVs nanotheranostics are still in their infancy because of their limited accumulation at lesion sites and compromised therapy efficiency. Hence, engineering modification of EVs is usually needed to further enhance their stability, biological activity, and lesion-targeting capacity. Herein, we overview the characteristics of EVs from different sources, as well as the latest developments of surface engineering and cargo loading methods. We also focus especially on advances in EVs-based disease theranostics. At the end of the review, we predict the obstacles and prospects of the future clinical application of EVs.
Collapse
Affiliation(s)
- Weidong Nie
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | | | | | | |
Collapse
|
35
|
Esfandyari S, Elkafas H, Chugh RM, Park HS, Navarro A, Al-Hendy A. Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22042165. [PMID: 33671587 PMCID: PMC7926632 DOI: 10.3390/ijms22042165] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-cell communication is an essential mechanism for the maintenance and development of various organs, including the female reproductive system. Today, it is well-known that the function of the female reproductive system and successful pregnancy are related to appropriate follicular growth, oogenesis, implantation, embryo development, and proper fertilization, dependent on the main regulators of cellular crosstalk, exosomes. During exosome synthesis, selective packaging of different factors into these vesicles happens within the originating cells. Therefore, exosomes contain both genetic and proteomic data that could be applied as biomarkers or therapeutic targets in pregnancy-associated disorders or placental functions. In this context, the present review aims to compile information about the potential exosomes with key molecular cargos that are dysregulated in female reproductive diseases which lead to infertility, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), Asherman syndrome, endometriosis, endometrial cancer, cervical cancer, ovarian cancer, and preeclampsia, as well as signaling pathways related to the regulation of the reproductive system and pregnancy outcome during these pathological conditions. This review might help us realize the etiology of reproductive dysfunction and improve the early diagnosis and treatment of the related complications.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hoda Elkafas
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) Formally, (NODCAR), Cairo 35521, Egypt
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hang-soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Antonia Navarro
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
- Correspondence: ; Tel.: +1-773-832-0742
| |
Collapse
|
36
|
Colletti M, Ceglie D, Di Giannatale A, Nazio F. Autophagy and Exosomes Relationship in Cancer: Friends or Foes? Front Cell Dev Biol 2021; 8:614178. [PMID: 33511121 PMCID: PMC7835528 DOI: 10.3389/fcell.2020.614178] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is an intracellular degradation process involved in the removal of proteins and damaged organelles by the formation of a double-membrane vesicle named autophagosome and degraded through fusion with lysosomes. An intricate relationship between autophagy and the endosomal and exosomal pathways can occur at different stages with important implications for normal physiology and human diseases. Recent researches have revealed that extracellular vesicles (EVs), such as exosomes, could have a cytoprotective role by inducing intracellular autophagy; on the other hand, autophagy plays a crucial role in the biogenesis and degradation of exosomes. Although the importance of these processes in cancer is well established, their interplay in tumor is only beginning to be documented. In some tumor contexts (1) autophagy and exosome-mediated release are coordinately activated, sharing the molecular machinery and regulatory mechanisms; (2) cancer cell-released exosomes impact on autophagy in recipient cells through mechanisms yet to be determined; (3) exosome-autophagy relationship could affect drug resistance and tumor microenvironment (TME). In this review, we survey emerging discoveries relevant to the exosomes and autophagy crosstalk in the context of cancer initiation, progression and recurrence. Consequently, we discuss clinical implications by targeting autophagy-exosomal pathway interaction and how this could lay a basis for the purpose of novel cancer therapeutics.
Collapse
Affiliation(s)
- Marta Colletti
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Donatella Ceglie
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Di Giannatale
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Nazio
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
37
|
Li Y, Tang Y, Yang GY. Therapeutic application of exosomes in ischaemic stroke. Stroke Vasc Neurol 2021; 6:483-495. [PMID: 33431513 PMCID: PMC8485240 DOI: 10.1136/svn-2020-000419] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Ischaemic stroke is a leading cause of long-term disability in the world, with limited effective treatments. Increasing evidence demonstrates that exosomes are involved in ischaemic pathology and exhibit restorative therapeutic effects by mediating cell–cell communication. The potential of exosome therapy for ischaemic stroke has been actively investigated in the past decade. In this review, we mainly discuss the current knowledge of therapeutic applications of exosomes from different cell types, different exosomal administration routes, and current advances of exosome tracking and targeting in ischaemic stroke. We also briefly summarised the pathology of ischaemic stroke, exosome biogenesis, exosome profile changes after stroke as well as registered clinical trials of exosome-based therapy.
Collapse
Affiliation(s)
- Yongfang Li
- Department of Neurology, Ruijin Hospital, School of medcine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Center, Medx Research Institute, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of medcine, Shanghai Jiao Tong University, Shanghai, China .,Neuroscience and Neuroengineering Center, Medx Research Institute, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| |
Collapse
|
38
|
Preclinical Experimental Applications of miRNA Loaded BMSC Extracellular Vesicles. Stem Cell Rev Rep 2021; 17:471-501. [PMID: 33398717 DOI: 10.1007/s12015-020-10082-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
Bone marrow mesenchymal stem cells have been investigated for many years, especially for tissue regeneration, and have inherent limitations. One of the rapidly developing fields in the scientific world in recent years is extracellular vesicles. Especially, bone marrow mesenchymal stem cell originated extracellular vesicles are known to have positive contributions in tissue regeneration, and these extracellular vesicles have also been used as gene transfer systems for cellular therapy. Through gene expression analysis and bioinformatics tools, it is possible to determine which genes have changed in the targeted tissue or cell and which miRNAs that can correct this gene expression disorder. This approach connecting the stem cell, extracellular vesicles, epigenetics regulation and bioinformatics fields is one of the promising areas for the treatment of diseases in the future. With this review, it is aimed to present the studies carried out for the use of bone marrow stem cell-derived extracellular vesicles loaded with targeted miRNAs in different in vivo and in vitro human disease models and to discuss recent developments in this field.
Collapse
|
39
|
Saffari S, Saffari TM, Ulrich DJO, Hovius SER, Shin AY. The interaction of stem cells and vascularity in peripheral nerve regeneration. Neural Regen Res 2021; 16:1510-1517. [PMID: 33433464 PMCID: PMC8323682 DOI: 10.4103/1673-5374.303009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The degree of nerve regeneration after peripheral nerve injury can be altered by the microenvironment at the site of injury. Stem cells and vascularity are postulated to be a part of a complex pathway that enhances peripheral nerve regeneration; however, their interaction remains unexplored. This review aims to summarize current knowledge on this interaction, including various mechanisms through which trophic factors are promoted by stem cells and angiogenesis. Angiogenesis after nerve injury is stimulated by hypoxia, mediated by vascular endothelial growth factor, resulting in the growth of pre-existing vessels into new areas. Modulation of distinct signaling pathways in stem cells can promote angiogenesis by the secretion of various angiogenic factors. Simultaneously, the importance of stem cells in peripheral nerve regeneration relies on their ability to promote myelin formation and their capacity to be influenced by the microenvironment to differentiate into Schwann-like cells. Stem cells can be acquired through various sources that correlate to their differentiation potential, including embryonic stem cells, neural stem cells, and mesenchymal stem cells. Each source of stem cells serves its particular differentiation potential and properties associated with the promotion of revascularization and nerve regeneration. Exosomes are a subtype of extracellular vesicles released from cell types and play an important role in cell-to-cell communication. Exosomes hold promise for future transplantation applications, as these vesicles contain fewer membrane-bound proteins, resulting in lower immunogenicity. This review presents pre-clinical and clinical studies that focus on selecting the ideal type of stem cell and optimizing stem cell delivery methods for potential translation to clinical practice. Future studies integrating stem cell-based therapies with the promotion of angiogenesis may elucidate the synergistic pathways and ultimately enhance nerve regeneration.
Collapse
Affiliation(s)
- Sara Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tiam M Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dietmar J O Ulrich
- Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Steven E R Hovius
- Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander Y Shin
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
40
|
Environmental control of mammary carcinoma cell expansion by acidification and spheroid formation in vitro. Sci Rep 2020; 10:21959. [PMID: 33319820 PMCID: PMC7738540 DOI: 10.1038/s41598-020-78989-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the leading cause of cancer death among women worldwide. Like other cancers, mammary carcinoma progression involves acidification of the tumor microenvironment, which is an important factor for cancer detection and treatment strategies. However, the effects of acidity on mammary carcinoma cell morphology and phenotype have not been thoroughly characterized. Here, we evaluated fundamental effects of environmental acidification on mammary carcinoma cells in standard two-dimensional cultures and three-dimensional spheroids. Acidification decreased overall mammary carcinoma cell viability, while increasing their resistance to the anthracycline doxorubicin. Environmental acidification also increased extracellular vesicle production by mammary carcinoma cells. Conditioned media containing these vesicles appeared to increase fibroblast motility. Acidification also increased mammary carcinoma cell motility when cultured with fibroblasts in spheroids. Taken together, results from this study suggest that environmental acidification induces drug resistance and extracellular vesicle production by mammary carcinoma cells that promote tumor expansion.
Collapse
|
41
|
Ye Z, Zheng M, Zeng Y, Wei S, Wang Y, Lin Z, Shu C, Xie Y, Zheng Q, Chen L. Bioinformatics Analysis Reveals an Association Between Cancer Cell Stemness, Gene Mutations, and the Immune Microenvironment in Stomach Adenocarcinoma. Front Genet 2020; 11:595477. [PMID: 33362856 PMCID: PMC7759681 DOI: 10.3389/fgene.2020.595477] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs), characterized by infinite proliferation and self-renewal, greatly challenge tumor therapy. Research into their plasticity, dynamic instability, and immune microenvironment interactions may help overcome this obstacle. Data on the stemness indices (mRNAsi), gene mutations, copy number variations (CNV), tumor mutation burden (TMB), and corresponding clinical characteristics were obtained from The Cancer Genome Atlas (TCGA) and UCSC Xena Browser. The infiltrating immune cells in stomach adenocarcinoma (STAD) tissues were predicted using the CIBERSORT method. Differentially expressed genes (DEGs) between the normal and tumor tissues were used to construct prognostic models with weighted gene co-expression network analysis (WGCNA) and Lasso regression. The association between cancer stemness, gene mutations, and immune responses was evaluated in STAD. A total of 6,739 DEGs were identified between the normal and tumor tissues. DEGs in the brown (containing 19 genes) and blue (containing 209 genes) co-expression modules were used to perform survival analysis based on Cox regression. A nine-gene signature prognostic model (ARHGEF38-IT1, CCDC15, CPZ, DNASE1L2, NUDT10, PASK, PLCL1, PRR5-ARHGAP8, and SYCE2) was constructed from 178 survival-related DEGs that were significantly related to overall survival, clinical characteristics, tumor microenvironment immune cells, TMB, and cancer-related pathways in STAD. Gene correlation was significant across the prognostic model, CNVs, and drug sensitivity. Our findings provide a prognostic model and highlight potential mechanisms and associated factors (immune microenvironment and mutation status) useful for targeting CSCs.
Collapse
Affiliation(s)
- Zaisheng Ye
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Miao Zheng
- Department of Clinical Laboratory, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yi Zeng
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Shenghong Wei
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yi Wang
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Zhitao Lin
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Chen Shu
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yunqing Xie
- Department of Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Qiuhong Zheng
- Department of Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Luchuan Chen
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
42
|
Liu J, Wu J, Li L, Li T, Wang J. The Role of Exosomal Non-Coding RNAs in Coronary Artery Disease. Front Pharmacol 2020; 11:603104. [PMID: 33363474 PMCID: PMC7753098 DOI: 10.3389/fphar.2020.603104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide. Atherosclerosis (AS) is a major cause of CVD. Oxidative stress, endothelial dysfunction, and inflammation are key factors involved in the development and progression of AS. Exosomes are nano-sized vesicles secreted into the extracellular space by most types of cells, and are ideal substances for the transmission and integration of signals between cells. Cells can selectively encapsulate biologically active substances, such as lipids, proteins and RNA in exosomes and act through paracrine mechanisms. Non-coding RNAs (ncRNAs) are important for communication between cells. They can reach the recipient cells through exosomes, causing phenotypic changes and playing a molecular regulatory role in cell function. Elucidating their molecular mechanisms can help identify therapeutic targets or strategies for CVD. Coronary artery disease (CAD) is the most important disease in CVD. Here, we review the role and the regulatory mechanism of exosomal ncRNAs in the pathophysiology of CAD, as well as the potential contribution of exosomal ncRNA to diagnosis and treatment of CAD.
Collapse
Affiliation(s)
- Jia Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Longbo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Junnan Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Pofali P, Mondal A, Londhe V. Exosome as a Natural Gene Delivery Vector for Cancer Treatment. Curr Cancer Drug Targets 2020; 20:821-830. [DOI: 10.2174/1568009620666200924154149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Background:
Current gene therapy vectors such as viral, non-viral, and bacterial vectors,
which are used for cancer treatment, but there are certain safety concerns and stability issues
of these conventional vectors. Exosomes are the vesicles of size 40-100 nm secreted from multivesicular
bodies into the extracellular environment by most of the cell types in-vivo and in-vitro.
As a natural nanocarrier, exosomes are immunologically inert, biocompatible, and can cross biological
barriers like the blood-brain barrier, intestinal barrier, and placental barrier.
Objective:
This review focusses on the role of exosome as a carrier to efficiently deliver a gene for
cancer treatment and diagnosis. The methods for loading of nucleic acids onto the exosomes, advantages
of exosomes as a smart intercellular shuttle for gene delivery and therapeutic applications as
a gene delivery vector for siRNA, miRNA and Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR) and also the limitations of exosomes as a gene carrier are all reviewed in this article.
Methods:
Mostly, electroporation and chemical transfection are used to prepare gene loaded exosomes.
Results:
Exosome-mediated delivery is highly promising and advantageous in comparison to the
current delivery methods for systemic gene therapy. Targeted exosomes, loaded with therapeutic
nucleic acids, can efficiently promote the reduction of tumor proliferation without any adverse effects.
Conclusion:
In the near future, exosomes can become an efficient gene carrier for delivery and a
biomarker for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Prasad Pofali
- National Institute of Immunohematology, Parel, Mumbai 400012, India
| | - Adrita Mondal
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Vile Parle West, Mumbai 400056, Maharashtra, India
| | - Vaishali Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Vile Parle West, Mumbai 400056, Maharashtra, India
| |
Collapse
|
44
|
Mesenchymal stem cell derived-exosomes: a modern approach in translational medicine. J Transl Med 2020; 18:449. [PMID: 33246476 PMCID: PMC7691969 DOI: 10.1186/s12967-020-02622-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have captured great attention in regenerative medicine for over a few decades by virtue of their differentiation capacity, potent immunomodulatory properties, and their ability to be favorably cultured and manipulated. Recent investigations implied that the pleiotropic effects of MSCs is not associated to their ability of differentiation, but rather is mediated by the secretion of soluble paracrine factors. Exosomes, nanoscale extracellular vesicles, are one of these paracrine mediators. Exosomes transfer functional cargos like miRNA and mRNA molecules, peptides, proteins, cytokines and lipids from MSCs to the recipient cells. Exosomes participate in intercellular communication events and contribute to the healing of injured or diseased tissues and organs. Studies reported that exosomes alone are responsible for the therapeutic effects of MSCs in numerous experimental models. Therefore, MSC-derived exosomes can be manipulated and applied to establish a novel cell-free therapeutic approach for treatment of a variety of diseases including heart, kidney, liver, immune and neurological diseases, and cutaneous wound healing. In comparison with their donor cells, MSC-derived exosomes offer more stable entities and diminished safety risks regarding the administration of live cells, e.g. microvasculature occlusion risk. This review discusses the exosome isolation methods invented and utilized in the clinical setting thus far and presents a summary of current information on MSC exosomes in translational medicine.
Collapse
|
45
|
Alqurashi H, Ortega Asencio I, Lambert DW. The Emerging Potential of Extracellular Vesicles in Cell-Free Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:530-538. [PMID: 33126845 DOI: 10.1089/ten.teb.2020.0222] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (Evs) are membrane-enclosed vesicles secreted by all cell types that mediate cell-cell communication via their protein, lipid, carbohydrate, and nucleic acid (RNA, DNA) cargo. EVs are involved in a multitude of physiological processes, including development, cell differentiation, and angiogenesis, and have been implicated in tissue repair. Thus, they have been suggested to offer opportunities for the development of novel cell-free tissue engineering (TE) approaches. In this review, we provide an overview of current understanding and emerging applications of EVs in TE and address opportunities and challenges for clinical translation. In addition, we discuss systemic and local routes of delivery of EVs and the advantages and disadvantages of different biomaterials in providing a substrate for the sustained release of EVs in vivo. Impact statement Extracellular vesicles (EVs) are nanoscale, membrane-bound vesicles released by most, if not all, cells in the body. They are implicated in a wide range of physiological processes and diseases ranging from cancer to neurodegeneration, and hold huge potential as mediators of tissue regeneration. This has led to an explosion of interest in using EVs in a variety of tissue engineering applications. In this review, we provide an overview of current progress in the field and highlight the opportunities and challenges of harnessing the potential of EVs in regenerative medicine.
Collapse
Affiliation(s)
- Hatim Alqurashi
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom.,College of Dentistry, King Faisal University, Alhassa, Saudi Arabia
| | - Ilida Ortega Asencio
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Daniel W Lambert
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
46
|
Gao XR, Ge J, Li WY, Zhou WC, Xu L, Geng DQ. miR-34a carried by adipocyte exosomes inhibits the polarization of M1 macrophages in mouse osteolysis model. J Biomed Mater Res A 2020; 109:994-1003. [PMID: 32803914 DOI: 10.1002/jbm.a.37088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE After bone prosthesis replacement, M1-type macrophage polarization can be induced by titanium (Ti) particles and produce inflammatory, leading to osteolysis. Adipocyte-derived exosomes (ADEs) exert immune-modulatory impact on the macrophage, while whether it can inhibit the macrophage polarization induced by Ti is unclear. This study focuses on the M1-type macrophage and aims to determine the effect of ADEs on Ti-induced M1-type macrophage polarization in osteolytic mice and the involved mechanism. METHODS Ti particle-induced osteolysis mouse model was established and macrophages were isolated from the osteolysis site. The levels of NLRP3 and specific markers for M1-type macrophage were determined. ADEs isolated from adipocyte cell line 3T3-L1, or conditioned ADEs with low-expressed miR-34a isolated from 3T3-L1 transfected with miR-34a inhibitor were co-cultured with RAW 264.7 to determine their impact on the polarization of macrophage. RESULTS ADEs reduced the M1-type macrophage polarization and caused the upregulation of miR-34a in macrophage of the osteolysis site of the osteolysis mouse model. Also, the level of miR-34a in ADEs was higher than that in the adipocyte. The conditioned ADEs expressed a low level of miR-34a and boosted the Ti-induced M1-type polarization. MiR-34a could target NLRP3 and negatively regulated its expression. Moreover, NLRP3 knockdown in macrophage restricted the conditioned ADEs to promote macrophage towards to Ti-induced M1-type polarization. The inhibitory function of ADEs on M1-type macrophage polarization was abolished by miR-34a silencing in the mouse osteolysis model. CONCLUSION The miR-34a carried by ADEs reduced the polarization of M1-type macrophages by targeting macrophage NLRP3 during Ti particle-induced osteolysis.
Collapse
Affiliation(s)
- Xu-Ren Gao
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jian Ge
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei-Yi Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wang-Chen Zhou
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lei Xu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - De-Qin Geng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
47
|
Rahmani A, Saleki K, Javanmehr N, Khodaparast J, Saadat P, Nouri HR. Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke. Ageing Res Rev 2020; 62:101106. [PMID: 32565329 DOI: 10.1016/j.arr.2020.101106] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
Stem cell-based treatments have been suggested as promising candidates for stroke. Recently, mesenchymal stem cells (MSCs) have been reported as potential therapeutics for a wide range of diseases. In particular, clinical trial studies have suggested MSCs for stroke therapy. The focus of MSC treatments has been directed towards cell replacement. However, recent research has lately highlighted their paracrine actions. The secretion of extracellular vesicles (EVs) is offered to be the main therapeutic mechanism of MSC therapy. However, EV-based treatments may provide a wider therapeutic window compared to tissue plasminogen activator (tPA), the traditional treatment for stroke. Exosomes are nano-sized EVs secreted by most cell types, and can be isolated from conditioned cell media or body fluids such as plasma, urine, and cerebrospinal fluid (CSF). Exosomes apply their effects through targeting their cargos such as microRNAs (miRs), DNAs, messenger RNAs, and proteins at the host cells, which leads to a shift in the behavior of the recipient cells. It has been indicated that exosomes, in particular their functional cargoes, play a significant role in the coupled pathogenesis and recovery of stroke through affecting the neurovascular unit (NVU). Therefore, it seems that exosomes could be utilized as diagnostic and therapeutic tools in stroke treatment. The miRs are small endogenous non-coding RNA molecules which serve as the main functional cargo of exosomes, and apply their effects as epigenetic regulators. These versatile non-coding RNA molecules are involved in various stages of stroke and affect stroke-related factors. Moreover, the involvement of aging-induced changes to specific miRs profile in stroke further highlights the role of miRs. Thus, miRs could be utilized as diagnostic, prognostic, and therapeutic tools in stroke. In this review, we discuss the roles of stem cells, exosomes, and their application in stroke therapy. We also highlight the usage of miRs as a therapeutic choice in stroke therapy.
Collapse
|
48
|
Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics 2020; 12:E616. [PMID: 32630625 PMCID: PMC7407299 DOI: 10.3390/pharmaceutics12070616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), an autosomal recessive genetic disease, is caused by a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This mutation reduces the release of chloride ions (Cl-) in epithelial tissues, and hyperactivates the epithelial sodium channels (ENaC) which aid in the absorption of sodium ions (Na+). Consequently, the mucus becomes dehydrated and thickened, making it a suitable medium for microbial growth. CF causes several chronic lung complications like thickened mucus, bacterial infection and inflammation, progressive loss of lung function, and ultimately, death. Until recently, the standard of clinical care in CF treatment had focused on preventing and treating the disease complications. In this review, we have summarized the current knowledge on CF pathogenesis and provided an outlook on the current therapeutic approaches relevant to CF (i.e., CFTR modulators and ENaC inhibitors). The enormous potential in targeting bacterial biofilms using antibiofilm peptides, and the innovative therapeutic strategies in using the CRISPR/Cas approach as a gene-editing tool to repair the CFTR mutation have been reviewed. Finally, we have discussed the wide range of drug delivery systems available, particularly non-viral vectors, and the optimal properties of nanocarriers which are essential for successful drug delivery to the lungs.
Collapse
Affiliation(s)
- Fahad A. Almughem
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Ahmad M. Aldossary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Essam A. Tawfik
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia;
| | - Abdullah A. Alshehri
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| |
Collapse
|
49
|
Khalyfa A, Castro-Grattoni AL, Gozal D. Cardiovascular morbidities of obstructive sleep apnea and the role of circulating extracellular vesicles. Ther Adv Respir Dis 2020; 13:1753466619895229. [PMID: 31852426 PMCID: PMC6923690 DOI: 10.1177/1753466619895229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by recurrent upper airway collapse
during sleep resulting in impaired blood gas exchange, namely intermittent
hypoxia (IH) and hypercapnia, fragmented sleep (SF), increased oxidative stress
and systemic inflammation. Among a myriad of potential associated morbidities,
OSA has been particularly implicated as mechanistically contributing to the
prevalence and severity of cardiovascular diseases (CVD). However, the benefits
of continuous positive airway pressure (CPAP), which is generally employed in
OSA treatment, to either prevent or improve CVD outcomes remain unconvincing,
suggesting that the pathophysiological mechanisms underlying the incremental CVD
risk associated with OSA are not clearly understood. One of the challenges in
development of non-invasive diagnostic assays is the ability to identify
clinically and mechanistically relevant biomarkers. Circulating extracellular
vesicles (EVs) and their cargos reflect underlying changes in cellular
homeostasis and can provide insights into how cells and systems cope with
physiological perturbations by virtue of the identity and abundance of miRNAs,
mRNAs, proteins, and lipids that are packaged in the EVs under normal as well as
diseased states, such as OSA. EVs can not only provide unique insights into
coordinated cellular responses at the organ or systemic level, but can also
serve as reporters of the effects of OSA in CVD, either by their properties
enabling regeneration and repair of injured vascular cells or by damaging them.
Here, we highlight recent progress in the pathological CVD consequences of OSA,
and explore the putative roles of EVs in OSA-associated CVD, along with emerging
diagnostic and therapeutic opportunities. The reviews of this paper are available via the supplemental material
section.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - Anabel L Castro-Grattoni
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - David Gozal
- Department of Child Health and MU Women's and Children's Hospital, University of Missouri School of Medicine, 400 N. Keene Street, Suite 010, Columbia, MO 65201, USA
| |
Collapse
|
50
|
Sen K, Sheppe AEF, Singh I, Hui WW, Edelmann MJ, Rinaldi C. Exosomes released by breast cancer cells under mild hyperthermic stress possess immunogenic potential and modulate polarization in vitro in macrophages. Int J Hyperthermia 2020; 37:696-710. [PMID: 32568583 PMCID: PMC8694666 DOI: 10.1080/02656736.2020.1778800] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Macrophages play a dual role in tumor initiation and progression, with both tumor-promoting and tumor-suppressive effects; hence, it is essential to understand the distinct responses of macrophages to tumor progression and therapy. Mild hyperthermia has gained importance as a therapeutic regimen against cancer due to its immunogenic nature, efficacy, and potential synergy with other therapies, yet the response of macrophages to molecular signals from hyperthermic cancer cells has not yet been clearly defined. Due to limited response rate of breast cancer to conventional therapeutics the development, and understanding of alternative therapies like hyperthermia is pertinent. In order to determine conditions corresponding to mild thermal dose, cytotoxicity of different hyperthermic temperatures and treatment durations were tested in normal murine macrophages and breast cancer cell lines. Examination of exosome release in hyperthermia-treated cancer cells revealed enhanced efflux and a larger size of exosomes released under hyperthermic stress. Exposure of naïve murine macrophages to exosomes released from 4T1 and EMT-6 cells posthyperthermia treatment, led to an increased expression of specific macrophage activation markers. Further, exosomes released by hyperthermia-treated cancer cells had increased content of heat shock protein 70 (Hsp70). Together, these results suggest a potential immunogenic role for exosomes released from cancer cells treated with mild hyperthermia.
Collapse
Affiliation(s)
- Kacoli Sen
- Department of Chemical Engineering, University of Florida, Gainesville, USA
| | - Austin E. F. Sheppe
- Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
| | - Ishita Singh
- Department of Chemical Engineering, University of Florida, Gainesville, USA
| | - Winnie W. Hui
- Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
| | - Mariola J. Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
| | - Carlos Rinaldi
- Department of Chemical Engineering, University of Florida, Gainesville, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, USA
| |
Collapse
|