1
|
Grabarczyk M, Justyńska W, Czpakowska J, Smolińska E, Bielenin A, Glabinski A, Szpakowski P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants (Basel) 2024; 13:1364. [PMID: 39594506 PMCID: PMC11591432 DOI: 10.3390/antiox13111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Polyphenols are an important group of biologically active compounds present in almost all food sources of plant origin and are primarily known for their anti-inflammatory and antioxidative capabilities. Numerous studies have indicated their broad spectrum of pharmacological properties and correlations between their increased supply in the human diet and lower prevalence of various disorders. The positive effects of polyphenols application are mostly discussed in terms of cardiovascular system well-being. However, in recent years, they have also increasingly mentioned as prophylactic and therapeutic factors in the context of neurological diseases, being able to suppress the progression of such disorders and soothe accompanying symptoms. Among over 8000 various compounds, that have been identified, the most widely examined comprise resveratrol, curcumin, luteolin and quercetin. This review focuses on in vitro assessments, animal models and clinical trials, reflecting the most actual state of knowledge, of mentioned polyphenols' medicinal capabilities in epilepsy, demyelinating and neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Mikołaj Grabarczyk
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Weronika Justyńska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Joanna Czpakowska
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Ewa Smolińska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Aleksandra Bielenin
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| |
Collapse
|
2
|
Valenza M, Facchinetti R, Steardo L, Scuderi C. Palmitoylethanolamide and White Matter Lesions: Evidence for Therapeutic Implications. Biomolecules 2022; 12:biom12091191. [PMID: 36139030 PMCID: PMC9496237 DOI: 10.3390/biom12091191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Palmitoylethanolamide (PEA), the naturally occurring amide of ethanolamine and palmitic acid, is an endogenous lipid compound endowed with a plethora of pharmacological functions, including analgesic, neuroprotective, immune-modulating, and anti-inflammatory effects. Although the properties of PEA were first characterized nearly 65 years ago, the identity of the receptor mediating these actions has long remained elusive, causing a period of research stasis. In the last two decades, a renewal of interest in PEA occurred, and a series of interesting studies have demonstrated the pharmacological properties of PEA and clarified its mechanisms of action. Recent findings showed the ability of formulations containing PEA in promoting oligodendrocyte differentiation, which represents the first step for the proper formation of myelin. This evidence opens new and promising research opportunities. White matter defects have been detected in a vast and heterogeneous group of diseases, including age-related neurodegenerative disorders. Here, we summarize the history and pharmacology of PEA and discuss its therapeutic potential in restoring white matter defects.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
| | - Roberta Facchinetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
- Università Giustino Fortunato, 82100 Benevento, Italy
- Correspondence: (L.S.); (C.S.)
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
- Correspondence: (L.S.); (C.S.)
| |
Collapse
|
3
|
Ansari WA, Ahamad T, Khan MA, Khan ZA, Khan MF. Exploration of Luteolin as Potential Anti-COVID-19 Agent: Molecular
Docking, Molecular Dynamic Simulation, ADMET and DFT Analysis. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666211222151725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background:
Coronavirus disease-2019 (COVID-19) has recently emerged as a pandemic
respiratory disease with mild to severe pneumonia symptoms. No clinical antiviral agent is available so
far. However, several repurposing drugs and vaccines are being given to individuals or in clinical trials
against SARS-CoV-2
Objective:
The aim of this study is to uncover the potential effects of Luteolin (Lut) as an inhibitor of
SARS-CoV2 encoded proteins via utilizing computational tools.
Method:
Molecular modelling to unfold the anti-SARS-CoV2 potential of Lut along with reference
drugs namely remdesivir and nafamostat was performed by the use of molecular docking, molecular dynamic
(MD) simulation, absorption, distribution, metabolism, excretion, toxicity (ADMET) and density
functional theory (DFT) methods against the five different SARS-CoV-2 encoded key proteins and one
human receptor protein. The chemical reactivity of Luteolin is done through prediction of HOMO-LUMO
gap energy and other chemical descriptors analysis.
Results:
In the present study, Lut binds effectively in the binding pockets of spike glycoprotein (6VSB),
ADP phosphatase of NSP3 (6W02), and RNA dependent RNA polymerase (7AAP) protein receptors with
significant values of docking scores -7.00, -7.25, and -6.46 respectively as compared to reference drugs
remdesivir and nafamostat.
Conclusion::
Thus, Lut can act as a therapeutic agent and is orally safe for human consumption as predicted
by molecular modelling against SARS-CoV-2 in the treatment of COVID-19.
Collapse
Affiliation(s)
- Waseem Ahmad Ansari
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Lucknow 226003, UP,
India
| | - Tanveer Ahamad
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Lucknow 226003, UP,
India
| | - Mohsin Ali Khan
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Lucknow 226003, UP,
India
| | - Zaw Ali Khan
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Lucknow 226003, UP,
India
| | - Mohammad Faheem Khan
- Department of Biotechnology, Era’s Lucknow Medical College & Hospital, Era University, Lucknow 226003, UP,
India
| |
Collapse
|
4
|
Effects of Palmitoylethanolamide on Neurodegenerative Diseases: A Review from Rodents to Humans. Biomolecules 2022; 12:biom12050667. [PMID: 35625595 PMCID: PMC9138306 DOI: 10.3390/biom12050667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023] Open
Abstract
Palmitoylethanolamide (PEA) stands out among endogenous lipid mediators for its neuroprotective, anti-inflammatory, and analgesic functions. PEA belonging to the N-acetylanolamine class of phospholipids was first isolated from soy lecithin, egg yolk, and peanut flour. It is currently used for the treatment of different types of neuropathic pain, such as fibromyalgia, osteoarthritis, carpal tunnel syndrome, and many other conditions. The properties of PEA, especially of its micronized or ultra-micronized forms maximizing bioavailability and efficacy, have sparked a series of innovative research to evaluate its possible application as therapeutic agent for neurodegenerative diseases. Neurodegenerative diseases are widespread throughout the world, and although they are numerous and different, they share common patterns of conditions that result from progressive damage to the brain areas involved in mobility, muscle coordination and strength, mood, and cognition. The present review is aimed at illustrating in vitro and in vivo research, as well as human studies, using PEA treatment, alone or in combination with other compounds, in the presence of neurodegeneration. Namely, attention has been paid to the effects of PEA in counteracting neuroinflammatory conditions and in slowing down the progression of diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Frontotemporal dementia, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. Literature research demonstrated the efficacy of PEA in addressing the damage typical of major neurodegenerative diseases.
Collapse
|
5
|
Noormohammadi M, Ghorbani Z, Naser Moghadasi A, Saeedirad Z, Shahemi S, Ghanaatgar M, Rezaeimanesh N, Hekmatdoost A, Ghaemi A, Razeghi Jahromi S. MIND Diet Adherence Might be Associated with a Reduced Odds of Multiple Sclerosis: Results from a Case-Control Study. Neurol Ther 2022; 11:397-412. [PMID: 35094301 PMCID: PMC8857348 DOI: 10.1007/s40120-022-00325-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The Mediterranean Dietary Approaches to the Stop Hypertension (DASH) Intervention for Neurodegenerative Delay (MIND) diet has been shown to have beneficial neuroprotective effects. The purpose of this research was to evaluate the link between the MIND diet adherence and multiple sclerosis (MS), a degenerative neurological illness. METHODS In a hospital-based case-control setting, 77 patients with relapsing-remitting multiple sclerosis (RRMS) and 148 healthy individuals were recruited. A validated 168-item semi-quantitative food frequency questionnaire was used to assess participants' dietary intakes and the MIND diet score. A logistic regression model was used to evaluate the association between MIND diet adherence and MS. RESULTS There was significant difference between RRMS and control groups in the median (Q1-Q3) of age (years, P value < 0.001), body mass index (BMI) (kg/m2, P value < 0.001), and total intake of calories (kcal, P value = 0.032), carbohydrates (g, P value = 0.003), animal-based protein (g, P value = 0.009), and fiber (g, P value = 0.001). Adherence to the MIND diet was associated with a reduced odds of MS [adjusted odds ratio (aOR) = 0.10, 95 percent confidence interval (95% CI) = 0.01-0.88, P for trend = 0.001]. MS odds was significantly lower in the last tertile of green leafy vegetables (aOR = 0.02, 95% CI = 0.00-0.21, P value < 0.001), other vegetables (aOR = 0.17, 95% CI = 0.04-0.73, P value = 0.001), butter and stick margarine (aOR = 0.20, 95% CI = 0.06-0.65, P value = 0.008), and beans (aOR = 0.05, 95% CI = 0.01-0.28, P value < 0.001) consumption. While it was significantly higher in the last tertile of cheese (aOR = 4.45, 95% CI = 1.70-11.6, P value = 0.003), poultry (aOR = 3.95, 95% CI = 1.01-15.5, P value = 0.039), pastries and sweets (aOR = 13.9, 95% CI = 3.04-64.18, P value < 0.001), and fried/fast foods (aOR = 32.8, 95% CI = 5.39-199.3, P value < 0.001). CONCLUSION The MIND diet and its components, including green leafy vegetables, other vegetables, and beans, seem to decrease the odds of MS; besides butter and stick margarine, the MIND diet's unhealthy components seem to have the same protective effects, while pastries and sweets, cheese, poultry, and fried/fast foods have an inverse effect.
Collapse
Affiliation(s)
- Morvarid Noormohammadi
- Student Research Committee, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine,, Guilan University of Medical Sciences, Rasht, Iran
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Saeedirad
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Shahemi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ghanaatgar
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Rezaeimanesh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Soodeh Razeghi Jahromi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Infantino R, Schiano C, Luongo L, Paino S, Mansueto G, Boccella S, Guida F, Ricciardi F, Iannotta M, Belardo C, Marabese I, Pieretti G, Serra N, Napoli C, Maione S. MED1/BDNF/TrkB pathway is involved in thalamic hemorrhage-induced pain and depression by regulating microglia. Neurobiol Dis 2022; 164:105611. [PMID: 34995755 DOI: 10.1016/j.nbd.2022.105611] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Central post-stroke pain (CPSP) and associated depression remain poorly understood and pharmacological treatments are unsatisfactory. Recently, microglia activation was suggested to be involved in CPSP pathophysiology. The goal of this study was to investigate the effectiveness of a co-ultramicronized combination of N-palmitoylethanolamide and luteolin (PEALut) in a mouse model of thalamic hemorrhage (TH)-induced CPSP. TH was established through the collagenase-IV injection in thalamic ventral-posterolateral-nucleus. PEALut effects in CPSP-associated behaviors were evaluated during a 28-days observation period. We found that repeated administrations of co-ultra PEALut significantly reduced mechanical hypersensitivity after TH, as compared to vehicle, by reducing the early microglial activation in the perilesional site. Moreover, PEALut prevented the development of depressive-like behavior (21 days post-TH). These effects were associated with the restoration of synaptic plasticity in LEC-DG pathway and monoamines levels found impaired in TH mice. Hippocampal MED1 and TrkB expressions were significantly increased in TH compared to sham mice 21 days post-TH, whereas BDNF levels were decreased. PEALut restored MED1/TrkB/BDNF expression in mice. Remarkably, we found significant overexpression of MED1 in the human autoptic brain specimens after stroke, indicating a translational potential of our findings. These results pave the way for better-investigating depression in TH- induced CPSP, together with the involvement of MED1/TrkB/BDNF pathway, proposing PEALut as an adjuvant treatment.
Collapse
Affiliation(s)
- Rosmara Infantino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Salvatore Paino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy; Legal Medicine Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Serena Boccella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Flavia Ricciardi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gorizio Pieretti
- Multidisciplinary Department of Surgical and Dental Specialities, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicola Serra
- Department of Public Health, University Federico II, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; IRCSS, Neuromed, Pozzilli, Italy.
| |
Collapse
|
7
|
Facci L, Barbierato M, Fusco M, Giusti P, Zusso M. Co-Ultramicronized Palmitoylethanolamide/Luteolin-Induced Oligodendrocyte Precursor Cell Differentiation is Associated With Tyro3 Receptor Upregulation. Front Pharmacol 2021; 12:698133. [PMID: 34276381 PMCID: PMC8277943 DOI: 10.3389/fphar.2021.698133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Remyelination in patients with multiple sclerosis frequently fails, especially in the chronic phase of the disease promoting axonal and neuronal degeneration and progressive disease disability. Drug-based therapies able to promote endogenous remyelination capability of oligodendrocytes are thus emerging as primary approaches to multiple sclerosis. We have recently reported that the co-ultramicronized composite of palmitoylethanolamide and the flavonoid luteolin (PEALut) promotes oligodendrocyte precursor cell (OPC) maturation without affecting proliferation. Since TAM receptor signaling has been reported to be important modulator of oligodendrocyte survival, we here evaluated the eventual involvement of TAM receptors in PEALut-induced OPC maturation. The mRNAs related to TAM receptors -Tyro3, Axl, and Mertk- were all present at day 2 in vitro. However, while Tyro3 gene expression significantly increased upon cell differentiation, Axl and Mertk did not change during the first week in vitro. Tyro3 gene expression developmental pattern resembled that of MBP myelin protein. In OPCs treated with PEALut the developmental increase of Tyro3 mRNA was significantly higher as compared to vehicle while was reduced gene expression related to Axl and Mertk. Rapamycin, an inhibitor of mTOR, prevented oligodendrocyte growth differentiation and myelination. PEALut, administered to the cultures 30 min after rapamycin, prevented the alteration of mRNA basal expression of the TAM receptors as well as the expression of myelin proteins MBP and CNPase. Altogether, data obtained confirm that PEALut promotes oligodendrocyte differentiation as shown by the increase of MBP and CNPase and Tyro3 mRNAs as well as CNPase and Tyro3 immunostainings. The finding that these effects are reduced when OPCs are exposed to rapamycin suggests an involvement of mTOR signaling in PEALut effects.
Collapse
Affiliation(s)
- Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Mariella Fusco
- Scientific Information and Documentation Center, Epitech Group SpA, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.,IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
8
|
Selective adenosine A 2A receptor inhibitor SCH58261 reduces oligodendrocyte loss upon brain injury in young rats. Saudi J Biol Sci 2021; 28:310-316. [PMID: 33424311 PMCID: PMC7783643 DOI: 10.1016/j.sjbs.2020.09.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 11/21/2022] Open
Abstract
Cellular elements of maturing brain are vulnerable to insults, which lead to neurodevelopmental defects. There are no established treatments at present. Here we examined the efficacy of selective adenosine A2A receptor inhibitor SCH58261 to combat brain injury, particularly oligodendrocyte (OL) lineage cells, in young rats. Wistar rats (n = 24, 6.5 days old) were randomly divided into equal groups of four. The sham (SHAM) group received no treatment, the vehicle (VEHICLE) group received 0.1% dimethylsufoxide, the injury (INJ) group was exposed to oxygen-glucose deprivation insult, and the injury+SCH58261 (INJ+SCH58261) group was exposed to the insult and received 1 μM SCH58261. Immunocytochemical experiments revealed that there was a significant reduction in the populations of mature OL (MBP+ OLs) and immature OL precursors (NG2+ OPCs) in the INJ group compared to SHAM group. Furthermore, there was also a significant increase in the percent of apoptotic MBP+ OL and NG2+ OPC populations as evidenced by TUNEL assay. In addition, there was a significant reduction in the proliferation rate among NG2+ OPCs, which was confirmed by BrdU immunostaining. On the other hand, treatment with SCH58261 significantly enhanced survival, evidenced by the reduction in apoptotic indices for both cell types, and it is preserved the NG2+ OPC proliferation. Activation of adenosine A2A receptors may contribute to OL lineage cell loss in association with decreased mitotic behavior of OPCs in neonatal brains upon injury. Future investigations assessing ability of SCH58261 to regenerate myelin will provide insights into its wider clinical relevance.
Collapse
|
9
|
Autophagy regulation using luteolin: new insight into its anti-tumor activity. Cancer Cell Int 2020; 20:537. [PMID: 33292250 PMCID: PMC7641824 DOI: 10.1186/s12935-020-01634-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Application of novel methods in cancer therapy is important in terms of management and treatment of the life-threatening disorder. It appears that autophagy is a potential target in cancer therapy, as a variety of drugs targeting autophagy have shown great potential in reducing the viability and proliferation of cancer cells. Autophagy is primarily a catabolic process which provides energy during starvation. Besides, this process contributes to the degradation of aged or potentially toxic components and organelles. On the other hand, the source of a variety of naturally occurring anti-tumor drugs are flavonoids which have high anti-tumor activity. Luteolin is a polyphenolic flavone with the great pharmacological effects such as anti-diabetic, hepatoprotective, antioxidant, anti-inflammation, and anti-tumor. At the present review, we demonstrate how luteolin affects on autophagy process to induce anti-tumor activity.
Collapse
|
10
|
N-Acylethanolamine Acid Amidase contributes to disease progression in a mouse model of multiple sclerosis. Pharmacol Res 2020; 160:105064. [PMID: 32634582 DOI: 10.1016/j.phrs.2020.105064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) deactivates the endogenous peroxisome proliferator-activated receptor-α (PPAR-α) agonist palmitoylethanolamide (PEA). NAAA-regulated PEA signaling participates in the control of peripheral inflammation, but evidence suggests also a role in the modulation of neuroinflammatory pathologies such as multiple sclerosis (MS). Here we show that disease progression in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS is accompanied by induction of NAAA expression in spinal cord, which in presymptomatic animals is confined to motor neurons and oligodendrocytes but, as EAE progresses, extends to microglia/macrophages and other cell types. As previously reported for NAAA inhibition, genetic NAAA deletion delayed disease onset and attenuated symptom intensity in female EAE mice, suggesting that accrued NAAA expression may contribute to pathology. To further delineate the role of NAAA in EAE, we generated a mouse line that selectively overexpresses the enzyme in macrophages, microglia and other monocyte-derived cells. Non-stimulated alveolar macrophages from these NaaaCD11b+ mice contain higher-than-normal levels of inducible nitric oxide synthase and display an activated morphology. Furthermore, intranasal lipopolysaccharide injections cause greater alveolar leukocyte accumulation in NaaaCD11b+ than in control mice. NaaaCD11b+ mice also display a more aggressive clinical response to EAE induction, compared to their wild-type littermates. The results identify NAAA as a critical control step in EAE pathogenesis, and point to this enzyme as a possible target for the treatment of MS.
Collapse
|
11
|
Looking for a Treatment for the Early Stage of Alzheimer's Disease: Preclinical Evidence with Co-Ultramicronized Palmitoylethanolamide and Luteolin. Int J Mol Sci 2020; 21:ijms21113802. [PMID: 32471239 PMCID: PMC7312730 DOI: 10.3390/ijms21113802] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND At the earliest stage of Alzheimer's disease (AD), although patients are still asymptomatic, cerebral alterations have already been triggered. In addition to beta amyloid (Aβ) accumulation, both glial alterations and neuroinflammation have been documented at this stage. Starting treatment at this prodromal AD stage could be a valuable therapeutic strategy. AD requires long-term care; therefore, only compounds with a high safety profile can be used, such as the new formulation containing palmitoylethanolamide and luteolin (co-ultra PEALut) already approved for human use. Therefore, we investigated it in an in vivo pharmacological study that focused on the prodromal stage of AD. METHODS We tested the anti-inflammatory and neuroprotective effects of co-ultra PEALut (5 mg/Kg) administered for 14 days in rats that received once, 5 µg Aβ(1-42) into the hippocampus. RESULTS Glial activation and elevated levels of proinflammatory mediators were observed in Aβ-infused rats. Early administration of co-ultra PEALut prevented the Aβ-induced astrogliosis and microgliosis, the upregulation in gene expression of pro-inflammatory cytokines and enzymes, as well as the reduction of mRNA levels BDNF and GDNF. Our findings also highlight an important neuroprotective effect of co-ultra PEALut treatment, which promoted neuronal survival. CONCLUSIONS Our results reveal the presence of cellular and molecular modifications in the prodromal stage of AD. Moreover, the data presented here demonstrate the ability of co-ultra PEALut to normalize such Aβ-induced alterations, suggesting it as a valuable therapeutic strategy.
Collapse
|
12
|
Peritore AF, Siracusa R, Crupi R, Cuzzocrea S. Therapeutic Efficacy of Palmitoylethanolamide and Its New Formulations in Synergy with Different Antioxidant Molecules Present in Diets. Nutrients 2019; 11:E2175. [PMID: 31514292 PMCID: PMC6769461 DOI: 10.3390/nu11092175] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022] Open
Abstract
The use of a complete nutritional approach seems increasingly promising to combat chronic inflammation. The choice of healthy sources of carbohydrates, fats, and proteins, associated with regular physical activity and avoidance of smoking is essential to fight the war against chronic diseases. At the base of the analgesic, anti-inflammatory, or antioxidant action of the diets, there are numerous molecules, among which some of a lipidic nature very active in the inflammatory pathway. One class of molecules found in diets with anti-inflammatory actions are ALIAmides. Among all, one is particularly known for its ability to counteract the inflammatory cascade, the Palmitoylethanolamide (PEA). PEA is a molecular that is present in nature, in numerous foods, and is endogenously produced by our body, which acts as a balancer of inflammatory processes, also known as endocannabionoid-like. PEA is often used in the treatment of both acute and chronic inflammatory pathologies, either alone or in association with other molecules with properties, such as antioxidants or analgesics. This review aims to illustrate an overview of the different diets that are involved in the process of opposition to the inflammatory cascade, focusing on capacity of PEA and new formulations in synergy with other molecules.
Collapse
Affiliation(s)
- Alessio Filippo Peritore
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalia Crupi
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
- Department of Pharmacological and Physiological Sciences, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
13
|
Contarini G, Franceschini D, Facci L, Barbierato M, Giusti P, Zusso M. A co-ultramicronized palmitoylethanolamide/luteolin composite mitigates clinical score and disease-relevant molecular markers in a mouse model of experimental autoimmune encephalomyelitis. J Neuroinflammation 2019; 16:126. [PMID: 31221190 PMCID: PMC6587257 DOI: 10.1186/s12974-019-1514-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/04/2019] [Indexed: 01/31/2023] Open
Abstract
Background Persistent and/or recurrent inflammatory processes are the main factor leading to multiple sclerosis (MS) lesions. The composite ultramicronized palmitoylethanolamide, an endogenous N-acylethanolamine, combined with the flavonoid luteolin, PEALut, have been found to exert neuroprotective activities in experimental models of spinal and brain injury and Alzheimer disease, as well as a clinical improvement in human stroke patients. Furthermore, PEALut enhances the expression of different myelin proteins in oligodendrocyte progenitor cells suggesting that this composite might have protective effects in MS experimental models. Methods The mouse model of experimental autoimmune encephalomyelitis (EAE) based on active immunization with a fragment of myelin oligodendrocyte glycoprotein (MOG35-55) was used. The daily assessment of clinical score and the expression of serum amyloid A (SAA1), proinflammatory cytokines TNF-α, IL-1β, IFN-γ, and NLRP3 inflammasome, as well as TLR2, Fpr2, CD137, CD3-γ, and TCR-ζ chain, heterodimers that form T cell surface glycoprotein (TCR), and cannabinoid receptors CB1, CB2, and MBP, were evaluated in the brainstem and cerebellum at different postimmunization days (PIDs). Results Vehicle-MOG35-55-immunized (MOG35-55) mice developed ascending paralysis which peaked several days later and persisted until the end of the experiment. PEALut, given intraperitoneally daily starting on day 11 post-immunization, dose-dependently improved clinical score over the range 0.1–5 mg/kg. The mRNA expression of SAA1, TNF-α, IL-1β, IFN-γ, and NLRP3 were significantly increased in MOG35-55 mice at 14 PID. In MOG35-55 mice treated with 5 mg /kg PEALut, the increase of SAA1, TNF- α, IL-1β, and IFN-γ transcripts at 14 PID was statistically downregulated as compared to vehicle-MOG35-55 mice (p < 0.05). The expression of TLR2, Fpr2, CD137, CD3-γ, TCR-ζ chain, and CB2 receptors showed a significant upregulation in vehicle-MOG35-55 mice at 14 PID. Instead, CB1 and MBP transcripts have not changed in expression at any time. In MOG/PEALut-treated mice, TLR2, Fpr2, CD137, CD3-γ, TCR-ζ chain, and CB2 mRNAs were significantly downregulated as compared to vehicle MOG35-55 mice. Conclusions The present results demonstrate that the intraperitoneal administration of the composite PEALut significantly reduces the development of clinical signs in the MOG35-55 model of EAE. The dose-dependent improvement of clinical score induced by PEALut was associated with a reduction in transcript expression of the acute-phase protein SAA1, TNF-α, IL-1β, IFN-γ, and NLRP3 proinflammatory proteins and TLR2, Fpr2, CD137, CD3-γ, TCR-ζ chain, and CB2 receptors.
Collapse
Affiliation(s)
- Gabriella Contarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, 2, 35131, Padua, Italy
| | - Davide Franceschini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, 2, 35131, Padua, Italy.,Present address: Selvita S.A. Park Life Science ul., Bobrzyńskiego, 14 30-348, Kraków, Poland
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, 2, 35131, Padua, Italy
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, 2, 35131, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, 2, 35131, Padua, Italy.
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, 2, 35131, Padua, Italy
| |
Collapse
|
14
|
Skaper SD. Oligodendrocyte precursor cells as a therapeutic target for demyelinating diseases. PROGRESS IN BRAIN RESEARCH 2019; 245:119-144. [PMID: 30961866 DOI: 10.1016/bs.pbr.2019.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms regulating differentiation of multipotent oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs) are critical to our understanding of myelination and remyelination. Following acute demyelination in the central nervous system, adult OPCs migrate to the injury site, differentiate into OLs and generate new myelin sheaths. A common feature of regenerative processes is the fact that remyelination efficiency declines with aging and, accounts for the observation that chronic demyelinating diseases like multiple sclerosis (MS) are characterized by an ineffective remyelination. Without doubt, impairment of OPC differentiation is an essential determinant of the aging effects in remyelination. However, spontaneous remyelination is limited in demyelinating diseases such as MS, owing in part to the failure of adult OPCs to differentiate into myelinating OLs. The inability to restore myelin after injury compromises axon integrity and renders them vulnerable to degeneration. Although the genes that regulate the proliferation and differentiation of OPCs during development have been intensively studied, relatively little is known about the molecular signals that regulate the function of adult OPCs after demyelination. Elucidating the mechanisms regulating OPC differentiation are key to identifying pharmacological targets for remyelination-enhancing therapy. This review will discuss OPC biology, myelination, and possible pharmacological targets for promoting the differentiation of OPCs as a strategy to enhance remyelination, including the potential for nanoscale delivery.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
15
|
Swaminathan A, Basu M, Bekri A, Drapeau P, Kundu TK. The Dietary Flavonoid, Luteolin, Negatively Affects Neuronal Differentiation. Front Mol Neurosci 2019; 12:41. [PMID: 30906251 PMCID: PMC6418693 DOI: 10.3389/fnmol.2019.00041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/01/2019] [Indexed: 11/24/2022] Open
Abstract
Luteolin, a polyphenolic plant flavonoid, has been attributed with numerous beneficial properties like anti-cancer, antioxidant, and anti-inflammatory action. Luteolin has been reported earlier to be neuroprotective in models of spinal cord injury and traumatic brain injury and also induces neurite outgrowth in PC12 cells. However, the effect of luteolin on early differentiation, which might be important for its beneficial effects, is unknown. In this report, we show that luteolin negatively affects early differentiation of embryonic stem cells, hampering the formation of embryoid bodies. At later stages of differentiation, luteolin specifically inhibits neuronal differentiation, where the expression of early neuronal markers is suppressed, whereas luteolin treatment does not inhibit expression of meso- and endodermal markers. Further, in a developing zebrafish model, luteolin treatment leads to fewer numbers of mitotic cells in the brain. These specific effects of luteolin on neuronal differentiation could possibly be due to its ability to inhibit the lysine acetyltransferase, p300, since the structurally closely related p300 non-inhibitor flavonoid, apigenin, does not inhibit neuronal differentiation. These results show that luteolin perturbs neuronal differentiation of embryonic stem cells.
Collapse
Affiliation(s)
- Amrutha Swaminathan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.,Department of Biochemistry, University of Montreal, Montreal, QC, Canada
| | - Moumita Basu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Abdelhamid Bekri
- Department of Biochemistry, University of Montreal, Montreal, QC, Canada.,Université de Montréal Hospital Research Centre (CRCHUM), Université de Montréal, Montreal, QC, Canada
| | - Pierre Drapeau
- Université de Montréal Hospital Research Centre (CRCHUM), Université de Montréal, Montreal, QC, Canada.,Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This review seeks to examine current research related to the role of diet in multiple sclerosis (MS). RECENT FINDINGS Recent research in preclinical models, epidemiologic studies, and limited prospectively followed cohorts provide preliminary evidence that dietary factors influence MS incidence, disease course, and symptomatology. Current evidence for the effects of fatty acids, fruits and vegetables, whole grains, dairy, and salt are reviewed. Dietary patterns including overall diet quality, caloric restriction, McDougall diet, Paleolithic diet, and Mediterranean diet are discussed. Hypotheses regarding potential mechanistic connections underlying observed effects are also presented. Several individual dietary components and patterns demonstrate potential for significant impact in MS. Definitive answers regarding the ability of diet to act as a disease modifier in MS will ultimately require large-scale clinical trials. Continued prospective studies and clinical trials to further advance this line of research are warranted.
Collapse
Affiliation(s)
- Ilana Katz Sand
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, 5 East 98th Street, Suite 1138, New York, NY, 10029, USA.
| |
Collapse
|
17
|
Mische LJ, Mowry EM. The Evidence for Dietary Interventions and Nutritional Supplements as Treatment Options in Multiple Sclerosis: a Review. Curr Treat Options Neurol 2018; 20:8. [PMID: 29549521 DOI: 10.1007/s11940-018-0494-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW This review aims to critically evaluate published studies examining diets and nutritional supplements (excepting vitamin D) for the impact on prevention and prognosis of multiple sclerosis (MS). RECENT FINDINGS There is a negative relationship between the Mediterranean diet and vascular disease, and vascular co-morbidities are associated with a worse MS prognosis. Low-fat, fish-based diets, sodium-restricted diets, calorie restriction, the paleo diet, and gluten-free diets have been examined, mostly in observational studies; results are inconclusive. With regard to nutritional supplements, pilot data show a possible benefit of biotin with respect to disability worsening in people with progressive MS (PMS). The best designed randomized controlled trials (RCTs) for PUFA supplementation have not shown significant impact, but several weaker RCTs have. Many other nutritional supplements have been tested, including several anti-oxidants. While some early studies show positive results, no result has been definitive. Unfortunately, there is no strong evidence for a direct benefit of any given dietary intervention on MS risk or prognosis. However, due to its relationship with vascular co-morbidities, the Mediterranean diet has the strongest rationale for employment in PwMS. Higher-quality clinical trials are needed to ascertain the possible benefits of nutritional supplements.
Collapse
Affiliation(s)
- Leah J Mische
- Johns Hopkins School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA.
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21218, USA
| |
Collapse
|