1
|
Soubannier V, Chaineau M, Gursu L, Lépine S, Kalaydjian D, Sirois J, Haghi G, Rouleau G, Durcan TM, Stifani S. Early nuclear phenotypes and reactive transformation in human iPSC-derived astrocytes from ALS patients with SOD1 mutations. Glia 2024; 72:2079-2094. [PMID: 39092466 DOI: 10.1002/glia.24598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive death of motor neurons (MNs). Glial cells play roles in MN degeneration in ALS. More specifically, astrocytes with mutations in the ALS-associated gene Cu/Zn superoxide dismutase 1 (SOD1) promote MN death. The mechanisms by which SOD1-mutated astrocytes reduce MN survival are incompletely understood. To characterize the impact of SOD1 mutations on astrocyte physiology, we generated astrocytes from human induced pluripotent stem cell (iPSC) derived from ALS patients carrying SOD1 mutations, together with control isogenic iPSCs. We report that astrocytes harboring SOD1(A4V) and SOD1(D90A) mutations exhibit molecular and morphological changes indicative of reactive astrogliosis when compared to isogenic astrocytes. We show further that a number of nuclear phenotypes precede, or coincide with, reactive transformation. These include increased nuclear oxidative stress and DNA damage, and accumulation of the SOD1 protein in the nucleus. These findings reveal early cell-autonomous phenotypes in SOD1-mutated astrocytes that may contribute to the acquisition of a reactive phenotype involved in alterations of astrocyte-MN communication in ALS.
Collapse
Affiliation(s)
- Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Mathilde Chaineau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Lale Gursu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Sarah Lépine
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - David Kalaydjian
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Julien Sirois
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Ghazal Haghi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Structural Genomics Consortium, Toronto, Ontario, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Du M, Akerman SC, Fare CM, Ruan L, Vidensky S, Mamedova L, Lee J, Rothstein JD. Divergent and Convergent TMEM106B Pathology in Murine Models of Neurodegeneration and Human Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618765. [PMID: 39464100 PMCID: PMC11507888 DOI: 10.1101/2024.10.16.618765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
TMEM106B is a lysosomal/late endosome protein that is a potent genetic modifier of multiple neurodegenerative diseases as well as general aging. Recently, TMEM106B was shown to form insoluble aggregates in postmortem human brain tissue, drawing attention to TMEM106B pathology and the potential role of TMEM106B aggregation in disease. In the context of neurodegenerative diseases, TMEM106B has been studied in vivo using animal models of neurodegeneration, but these studies rely on overexpression or knockdown approaches. To date, endogenous TMEM106B pathology and its relationship to known canonical pathology in animal models has not been reported. Here, we analyze histological patterns of TMEM106B in murine models of C9ORF72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD), SOD1-related ALS, and tauopathy and compare these to postmortem human tissue from patients with C9-ALS/FTD, Alzheimer's disease (AD), and AD with limbic-predominant age-related TDP-43 encephalopathy (AD/LATE). We show that there are significant differences between TMEM106B pathology in mouse models and human patient tissue. Importantly, we also identified convergent evidence from both murine models and human patients that links TMEM106B pathology to TDP-43 nuclear clearance specifically in C9-ALS. Similarly, we find a relationship at the cellular level between TMEM106B pathology and phosphorylated Tau burden in Alzheimer's disease. By characterizing endogenous TMEM106B pathology in both mice and human postmortem tissue, our work reveals considerations that must be taken into account when analyzing data from in vivo mouse studies and elucidates new insights supporting the involvement of TMEM106B in the pathogenesis and progression of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Muzi Du
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Suleyman C. Akerman
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Charlotte M. Fare
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Linhao Ruan
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Svetlana Vidensky
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lyudmila Mamedova
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joshua Lee
- Department of Psychological and Brain Sciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, 21218, USA
| | - Jeffrey D. Rothstein
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
3
|
Martin LJ, Koh SJ, Price A, Park D, Kim BW. Nuclear Localization of Human SOD1 in Motor Neurons in Mouse Model and Patient Amyotrophic Lateral Sclerosis: Possible Links to Cholinergic Phenotype, NADPH Oxidase, Oxidative Stress, and DNA Damage. Int J Mol Sci 2024; 25:9106. [PMID: 39201793 PMCID: PMC11354607 DOI: 10.3390/ijms25169106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease that causes degeneration of motor neurons (MNs) and paralysis. ALS can be caused by mutations in the gene that encodes copper/zinc superoxide dismutase (SOD1). SOD1 is known mostly as a cytosolic antioxidant protein, but SOD1 is also in the nucleus of non-transgenic (tg) and human SOD1 (hSOD1) tg mouse MNs. SOD1's nuclear presence in different cell types and subnuclear compartmentations are unknown, as are the nuclear functions of SOD1. We examined hSOD1 nuclear localization and DNA damage in tg mice expressing mutated and wildtype variants of hSOD1 (hSOD1-G93A and hSOD1-wildtype). We also studied ALS patient-derived induced pluripotent stem (iPS) cells to determine the nuclear presence of SOD1 in undifferentiated and differentiated MNs. In hSOD1-G93A and hSOD1-wildtype tg mice, choline acetyltransferase (ChAT)-positive MNs had nuclear hSOD1, but while hSOD1-wildtype mouse MNs also had nuclear ChAT, hSOD1-G93A mouse MNs showed symptom-related loss of nuclear ChAT. The interneurons had preserved parvalbumin nuclear positivity in hSOD1-G93A mice. hSOD1-G93A was seen less commonly in spinal cord astrocytes and, notably, oligodendrocytes, but as the disease emerged, the oligodendrocytes had increased mutant hSOD1 nuclear presence. Brain and spinal cord subcellular fractionation identified mutant hSOD1 in soluble nuclear extracts of the brain and spinal cord, but mutant hSOD1 was concentrated in the chromatin nuclear extract only in the spinal cord. Nuclear extracts from mutant hSOD1 tg mouse spinal cords had altered protein nitration, footprinting peroxynitrite presence, and the intact nuclear extracts had strongly increased superoxide production as well as the active NADPH oxidase marker, p47phox. The comet assay showed that MNs from hSOD1-G93A mice progressively (6-14 weeks of age) accumulated DNA single-strand breaks. Ablation of the NCF1 gene, encoding p47phox, and pharmacological inhibition of NADPH oxidase with systemic treatment of apocynin (10 mg/kg, ip) extended the mean lifespan of hSOD1-G93A mice by about 25% and mitigated genomic DNA damage progression. In human postmortem CNS, SOD1 was found in the nucleus of neurons and glia; nuclear SOD1 was increased in degenerating neurons in ALS cases and formed inclusions. Human iPS cells had nuclear SOD1 during directed differentiation to MNs, but mutant SOD1-expressing cells failed to establish wildtype MN nuclear SOD1 levels. We conclude that SOD1 has a prominent nuclear presence in the central nervous system, perhaps adopting aberrant contexts to participate in ALS pathobiology.
Collapse
Affiliation(s)
- Lee J. Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Shannon J. Koh
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
- Texas Health Presbyterian Hospital, Dallas, TX 75231, USA
| | - Antionette Price
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
| | - Dongseok Park
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
| | - Byung Woo Kim
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| |
Collapse
|
4
|
Magalhães RSS, Monteiro Neto JR, Ribeiro GD, Paranhos LH, Eleutherio ECA. Trehalose Protects against Superoxide Dismutase 1 Proteinopathy in an Amyotrophic Lateral Sclerosis Model. Antioxidants (Basel) 2024; 13:807. [PMID: 39061876 PMCID: PMC11274086 DOI: 10.3390/antiox13070807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This work aimed to study the effect of trehalose in protecting cells against Sod1 proteinopathy associated with amyotrophic lateral sclerosis (ALS). Humanized yeast cells in which native Sod1 was replaced by wild-type human Sod1 or an ALS mutant (WT-A4V Sod1 heterodimer) were used as the experimental model. Cells were treated with 10% trehalose (p/v) before or after the appearance of hSod1 proteinopathy induced by oxidative stress. In both conditions, trehalose reduced the number of cells with Sod1 inclusions, increased Sod1 activity, and decreased the levels of intracellular oxidation, demonstrating that trehalose avoids Sod1 misfolding and loss of function in response to oxidative stress. The survival rates of ALS Sod1 cells stressed in the presence of trehalose were 60% higher than in their absence. Treatment with trehalose after the appearance of Sod1 inclusions in cells expressing WT Sod1 doubled longevity; after 5 days, non-treated cells did not survive, but 15% of cells treated with sugar were still alive. Altogether, our results emphasize the potential of trehalose as a novel therapy, which might be applied preventively in ALS patients with a family history of the disease or after diagnosis in ALS patients who discover the disease following the first symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Elis C. A. Eleutherio
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (R.S.S.M.); (J.R.M.N.); (G.D.R.); (L.H.P.)
| |
Collapse
|
5
|
Watanabe S, Amporndanai K, Awais R, Latham C, Awais M, O'Neill PM, Yamanaka K, Hasnain SS. Ebselen analogues delay disease onset and its course in fALS by on-target SOD-1 engagement. Sci Rep 2024; 14:12118. [PMID: 38802492 PMCID: PMC11130262 DOI: 10.1038/s41598-024-62903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) selectively affects motor neurons. SOD1 is the first causative gene to be identified for ALS and accounts for at least 20% of the familial (fALS) and up to 4% of sporadic (sALS) cases globally with some geographical variability. The destabilisation of the SOD1 dimer is a key driving force in fALS and sALS. Protein aggregation resulting from the destabilised SOD1 is arrested by the clinical drug ebselen and its analogues (MR6-8-2 and MR6-26-2) by redeeming the stability of the SOD1 dimer. The in vitro target engagement of these compounds is demonstrated using the bimolecular fluorescence complementation assay with protein-ligand binding directly visualised by co-crystallography in G93A SOD1. MR6-26-2 offers neuroprotection slowing disease onset of SOD1G93A mice by approximately 15 days. It also protected neuromuscular junction from muscle denervation in SOD1G93A mice clearly indicating functional improvement.
Collapse
Affiliation(s)
- Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8601, Japan
| | - Kangsa Amporndanai
- Molecular Biophysics Group, Department of Biochemistry and System Biology, Institute of System, M0polecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Raheela Awais
- School of Life Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Caroline Latham
- School of Life Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Muhammad Awais
- Department of Molecular and Clinical Cancer Medicine, Institute of System, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Paul M O'Neill
- Department of Chemistry, Faculty of Science and Engineering, University of Liverpool, Liverpool, L69 7ZD, UK.
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8601, Japan.
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan.
| | - S Samar Hasnain
- Molecular Biophysics Group, Department of Biochemistry and System Biology, Institute of System, M0polecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
6
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
7
|
Monteiro Neto JR, Ribeiro GD, Magalhães RSS, Follmer C, Outeiro TF, Eleutherio ECA. Glycation modulates superoxide dismutase 1 aggregation and toxicity in models of sporadic amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166835. [PMID: 37558009 DOI: 10.1016/j.bbadis.2023.166835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/27/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
Different SOD1 proteoforms are implicated## in both familial and sporadic cases of Amyotrophic Lateral Sclerosis (ALS), an aging-associated disease that affects motor neurons. SOD1 is crucial to neuronal metabolism and health, regulating the oxidative stress response and the shift between oxidative-fermentative metabolism, which is important for astrocyte-neuron metabolic cooperation. Neurons have a limited capacity to metabolize methylglyoxal (MGO), a potentially toxic side product of glycolysis. MGO is highly reactive and can readily posttranslationally modify proteins, in a reaction known as glycation, impacting their normal biology. Here, we aimed to investigate the effect of glycation on the aggregation and toxicity of human SOD1WT (hSOD1WT). Cells with deficiency in MGO metabolism showed increased levels of hSOD1WT inclusions, displaying also reduced hSOD1WT activity and viability. Strikingly, we also found that the presence of hSOD1WT in stress granules increased upon MGO treatment. The treatment of recombinant hSOD1WT with MGO resulted in the formation of SDS-stable oligomers, specially trimers, and thioflavin-T positive aggregates, which can promote cell toxicity and TDP-43 pathology. Together, our results suggest that glycation may play a still underappreciated role on hSOD1WT and TDP-43 pathologies in sporadic ALS, which could open novel perspectives for therapeutic intervention.
Collapse
Affiliation(s)
- José R Monteiro Neto
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil; Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriela D Ribeiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Rayne S S Magalhães
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Cristian Follmer
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Department of Physical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Elis C A Eleutherio
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Gerovska D, Noer JB, Qin Y, Ain Q, Januzi D, Schwab M, Witte OW, Araúzo-Bravo MJ, Kretz A. A distinct circular DNA profile intersects with proteome changes in the genotoxic stress-related hSOD1 G93A model of ALS. Cell Biosci 2023; 13:170. [PMID: 37705092 PMCID: PMC10498603 DOI: 10.1186/s13578-023-01116-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Numerous genes, including SOD1, mutated in familial and sporadic amyotrophic lateral sclerosis (f/sALS) share a role in DNA damage and repair, emphasizing genome disintegration in ALS. One possible outcome of chromosomal instability and repair processes is extrachromosomal circular DNA (eccDNA) formation. Therefore, eccDNA might accumulate in f/sALS with yet unknown function. METHODS We combined rolling circle amplification with linear DNA digestion to purify eccDNA from the cervical spinal cord of 9 co-isogenic symptomatic hSOD1G93A mutants and 10 controls, followed by deep short-read sequencing. We mapped the eccDNAs and performed differential analysis based on the split read signal of the eccDNAs, referred as DifCir, between the ALS and control specimens, to find differentially produced per gene circles (DPpGC) in the two groups. Compared were eccDNA abundances, length distributions and genic profiles. We further assessed proteome alterations in ALS by mass spectrometry, and matched the DPpGCs with differentially expressed proteins (DEPs) in ALS. Additionally, we aligned the ALS-specific DPpGCs to ALS risk gene databases. RESULTS We found a six-fold enrichment in the number of unique eccDNAs in the genotoxic ALS-model relative to controls. We uncovered a distinct genic circulome profile characterized by 225 up-DPpGCs, i.e., genes that produced more eccDNAs from distinct gene sequences in ALS than under control conditions. The inter-sample recurrence rate was at least 89% for the top 6 up-DPpGCs. ALS proteome analyses revealed 42 corresponding DEPs, of which 19 underlying genes were itemized for an ALS risk in GWAS databases. The up-DPpGCs and their DEP tandems mainly impart neuron-specific functions, and gene set enrichment analyses indicated an overrepresentation of the adenylate cyclase modulating G protein pathway. CONCLUSIONS We prove, for the first time, a significant enrichment of eccDNA in the ALS-affected spinal cord. Our triple circulome, proteome and genome approach provide indication for a potential importance of certain eccDNAs in ALS neurodegeneration and a yet unconsidered role as ALS biomarkers. The related functional pathways might open up new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| | - Julie B Noer
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Yating Qin
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Quratul Ain
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
- Department of Internal Medicine IV, Hepatology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Donjetë Januzi
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
- Jena Center for Healthy Ageing, Jena University Hospital, Jena, Thuringia, Germany
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastian, Spain.
- Basque Foundation for Science, IKERBASQUE, 48013, Bilbao, Spain.
- Max Planck Institute for Molecular Biomedicine, Computational Biology and Bioinformatics Group, 48149, Münster, North Rhine-Westphalia, Germany.
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain.
| | - Alexandra Kretz
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany.
- Jena Center for Healthy Ageing, Jena University Hospital, Jena, Thuringia, Germany.
| |
Collapse
|
9
|
Mavadat E, Seyedalipour B, Hosseinkhani S. A double point mutation of SOD1 targeting net charge promotes aggregation under destabilizing conditions: Correlation of charge distribution and ALS-provoking mutation. Biochim Biophys Acta Gen Subj 2023; 1867:130325. [PMID: 36791828 DOI: 10.1016/j.bbagen.2023.130325] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/28/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
A progressive neurodegenerative illness such as amyotrophic lateral sclerosis (ALS) is characterized by the misfolding and aggregation of human CuZn superoxide dismutase (hSOD1) into amyloid aggregates. Thus, designing strategies for the choice of WT-SOD1 and double mutant (G12D/G138E) with an increased net negative charge can be a good idea to elucidate the pathological mechanism of SOD1 in ALS under some destabilizing conditions. Consequently, we show evidence that protein charge, together with other destabilizing conditions, plays an important role in ALS disease. To achieve this purpose, we use methods, such as spectroscopy and transmission electron microscopy (TEM) to monitor the formation of amyloid aggregation. The specific activity of WT-SOD1 was approximately 1.72 times higher than that of the double mutant. Under amyloidogenic circumstances, structural properties such as local, secondary, oligomeric, and fibrillar structures were explored. The double mutant's far-UV CD spectra displayed a broad minimum peak in the region 213 to 218 nm, suggesting the production of β-rich amyloid fibrils. FTIR spectra of the double mutant samples at different incubation times showed a low-frequency peak around 1630-1640 cm-1, attributed to a parallel β-sheet. Moreover, CR-binding assay and TEM analysis revealed and confirmed that mutation with an increased repulsive charge promotes the formation of fibrous aggregates. Consequently, ALS mutations with a higher repulsive charge are the apparent exceptions that validate the rule. This findings revealed that the double mutant increases protein aggregation through a novel mechanism, likely involving destabilization of structure and a change in the net negative charge.
Collapse
Affiliation(s)
- Elaheh Mavadat
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Spatial sequestration of misfolded proteins in neurodegenerative diseases. Biochem Soc Trans 2022; 50:759-771. [PMID: 35311889 DOI: 10.1042/bst20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
Abstract
Properly folded, functional proteins are essential for cell health. Cells sustain protein homeostasis, or proteostasis, via protein quality control (PQC) mechanisms. It is currently hypothesized that a breakdown in proteostasis during ageing leads to the accumulation of protein aggregates in the cell and disease. Sequestration of misfolded proteins into PQC compartments represents one branch of the PQC network. In neurodegenerative diseases, certain proteins form abnormal protein deposits. Which PQC compartments house misfolded proteins associated with neurodegenerative diseases is still being investigated. It remains unclear if sequestration of these misfolded proteins is toxic or protective to the cell. Here, we review the current knowledge on various PQC compartments that form in the cell, the kinds of protein aggregates found in neurodegenerative diseases, and what is known about their sequestration. Understanding how protein sequestration occurs can shed light on why aggregates are toxic to the cell and are linked to neurodegenerative diseases like Huntington's, Alzheimer's, and Parkinson's diseases.
Collapse
|
11
|
Berdyński M, Miszta P, Safranow K, Andersen PM, Morita M, Filipek S, Żekanowski C, Kuźma-Kozakiewicz M. SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Sci Rep 2022; 12:103. [PMID: 34996976 PMCID: PMC8742055 DOI: 10.1038/s41598-021-03891-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
Mutations in superoxide dismutase 1 gene (SOD1) are linked to amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder predominantly affecting upper and lower motor neurons. The clinical phenotype of ALS shows inter- and intrafamilial heterogeneity. The aim of the study was to analyze the relations between individual SOD1 mutations and the clinical presentation using in silico methods to assess the SOD1 mutations severity. We identified SOD1 causative variants in a group of 915 prospectively tested consecutive Polish ALS patients from a neuromuscular clinical center, performed molecular modeling of mutated SOD1 proteins and in silico analysis of mutation impact on clinical phenotype and survival analysis of associations between mutations and hazard of clinical end-points. Fifteen SOD1 mutations were identified in 21.1% familial and 2.3% sporadic ALS cases. Their effects on SOD1 protein structure and functioning inferred from molecular modeling and in silico analyses correlate well with the clinical data. Molecular modeling results support the hypothesis that folding intermediates rather than mature SOD1 protein give rise to the source of cytotoxic conformations in ALS. Significant associations between type of mutation and clinical end-points were found.
Collapse
Affiliation(s)
- Mariusz Berdyński
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland. .,Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden.
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 72 Powstańców Wlkp. Str., 70-111, Szczecin, Poland
| | - Peter M Andersen
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Cezary Żekanowski
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Kuźma-Kozakiewicz
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland. .,Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
12
|
Woo TG, Yoon MH, Kang SM, Park S, Cho JH, Hwang YJ, Ahn J, Jang H, Shin YJ, Jung EM, Ha NC, Kim BH, Kwon Y, Park BJ. Novel chemical inhibitor against SOD1 misfolding and aggregation protects neuron-loss and ameliorates disease symptoms in ALS mouse model. Commun Biol 2021; 4:1397. [PMID: 34912047 PMCID: PMC8674338 DOI: 10.1038/s42003-021-02862-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective death of motor neurons. Mutations in Cu, Zn-superoxide dismutase (SOD1) causing the gain of its toxic property are the major culprit of familial ALS (fALS). The abnormal SOD1 aggregation in the motor neurons has been suggested as the major pathological hallmark of ALS patients. However, the development of pharmacological interventions against SOD1 still needs further investigation. In this study, using ELISA-based chemical screening with wild and mutant SOD1 proteins, we screened a new small molecule, PRG-A01, which could block the misfolding/aggregation of SOD1 or TDP-43. The drug rescued the cell death induced by mutant SOD1 in human neuroblastoma cell line. Administration of PRG-A01 into the ALS model mouse resulted in significant improvement of muscle strength, motor neuron viability and mobility with extended lifespan. These results suggest that SOD1 misfolding/aggregation is a potent therapeutic target for SOD1 related ALS.
Collapse
Affiliation(s)
- Tae-Gyun Woo
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
- Rare Disease R&D Center, PRG S&T Co., Ltd, Busan, Republic of Korea
| | - Min-Ho Yoon
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Jung-Hyun Cho
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Young Jun Hwang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Jinsook Ahn
- Department of Food Science, College of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyewon Jang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yun-Jeong Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Nam-Chul Ha
- Department of Food Science, College of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bae-Hoon Kim
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
- Rare Disease R&D Center, PRG S&T Co., Ltd, Busan, Republic of Korea
| | - Yonghoon Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.
- Rare Disease R&D Center, PRG S&T Co., Ltd, Busan, Republic of Korea.
| |
Collapse
|
13
|
Sahu R, Upadhayay S, Mehan S. Inhibition of extracellular regulated kinase (ERK)-1/2 signaling pathway in the prevention of ALS: Target inhibitors and influences on neurological dysfunctions. Eur J Cell Biol 2021; 100:151179. [PMID: 34560374 DOI: 10.1016/j.ejcb.2021.151179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Cell signal transduction pathways are essential modulators of several physiological and pathological processes in the brain. During overactivation, these signaling processes may lead to disease progression. Abnormal protein kinase activation is associated with several biological dysfunctions that facilitate neurodegeneration under different biological conditions. As a result, these signaling pathways are essential in understanding brain disorders' development or progression. Recent research findings indicate the crucial role of extracellular signal-regulated kinase-1/2 (ERK-1/2) signaling during the neuronal development process. ERK-1/2 is a key component of its mitogen-activated protein kinase (MAPK) group, controlling certain neurological activities by regulating metabolic pathways, cell proliferation, differentiation, and apoptosis. ERK-1/2 also influences neuronal elastic properties, nerve growth, and neurological and cognitive processing during brain injuries. The primary goal of this review is to elucidate the activation of ERK1/2 signaling, which is involved in the development of several ALS-related neuropathological dysfunctions. ALS is a rare neurological disorder category that mainly affects the nerve cells responsible for regulating voluntary muscle activity. ALS is progressive, which means that the symptoms are getting worse over time, and there is no cure for ALS and no effective treatment to avoid or reverse. Genetic abnormalities, oligodendrocyte degradation, glial overactivation, and immune deregulation are associated with ALS progression. Furthermore, the current review also identifies ERK-1/2 signaling inhibitors that can promote neuroprotection and neurotrophic effects against the clinical-pathological presentation of ALS. As a result, in the future, the potential ERK-1/2 signaling inhibitors could be used in the treatment of ALS and related neurocomplications.
Collapse
Affiliation(s)
- Rakesh Sahu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shubham Upadhayay
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
14
|
Storage of Mutant Human SOD1 in Non-Neural Cells from the Type-1 Amyotrophic Lateral Sclerosis rat G93A Model Correlated with the Lysosomes' Dysfunction. Biomedicines 2021; 9:biomedicines9091080. [PMID: 34572266 PMCID: PMC8470315 DOI: 10.3390/biomedicines9091080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023] Open
Abstract
Herein, we explored the impact of the lysosome dysfunction during the progression of Amyotrophic Lateral Sclerosis type-1 (ALS1). We conducted the study in non-neural cells, primary fibroblasts (rFFFs), and bone marrow-mesenchymal stem cells (rBM-MSCs), isolated from the animal model ratG93A for ALS1 at two stages of the disease: Pre-symptomatic-stage (ALS1-PreS) and Terminal-stage (ALS1-EndS). We documented the storage of human mutant Superoxide Dismutase 1, SOD1G93A (SOD1*) in the lysosomes of ALS1-rFFFs and ALS1-rBM-MSCs and demonstrated the hallmarks of the disease in non-neural cells as in ratG93A-ALS1-tissues. We showed that the SOD1* storage is associated with the altered glycohydrolases and proteases levels in tissues and both cell types from ALS1-PreS to ALS1-EndS. Only in ALS1-rFFFs, the lysosomes lost homeostasis, enlarge drastically, and contribute to the cell metabolic damage. Contrariwise, in ALS1-rBM-MSCs, we found a negligible metabolic dysfunction, which makes these cells’ status similar to WT. We addressed this phenomenon to a safety mechanism perhaps associated with an enhanced lysosomal autophagic activity in ALS1-rBM-MSCs compared to ALS1-rFFFs, in which the lysosomal level of LC3-II/LC3I was comparable to that of WT-rFFFs. We suggested that the autophagic machinery could balance the storage of SOD1* aggregates and the lysosomal enzyme dysfunction even in ALS1-EndS-stem cells.
Collapse
|
15
|
Kok JR, Palminha NM, Dos Santos Souza C, El-Khamisy SF, Ferraiuolo L. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cell Mol Life Sci 2021; 78:5707-5729. [PMID: 34173837 PMCID: PMC8316199 DOI: 10.1007/s00018-021-03872-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/27/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence supports the involvement of DNA damage in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Elevated levels of DNA damage are consistently observed in both sporadic and familial forms of ALS and may also play a role in Western Pacific ALS, which is thought to have an environmental cause. The cause of DNA damage in ALS remains unclear but likely differs between genetic subgroups. Repeat expansion in the C9ORF72 gene is the most common genetic cause of familial ALS and responsible for about 10% of sporadic cases. These genetic mutations are known to cause R-loops, thus increasing genomic instability and DNA damage, and generate dipeptide repeat proteins, which have been shown to lead to DNA damage and impairment of the DNA damage response. Similarly, several genes associated with ALS including TARDBP, FUS, NEK1, SQSTM1 and SETX are known to play a role in DNA repair and the DNA damage response, and thus may contribute to neuronal death via these pathways. Another consistent feature present in both sporadic and familial ALS is the ability of astrocytes to induce motor neuron death, although the factors causing this toxicity remain largely unknown. In this review, we summarise the evidence for DNA damage playing a causative or secondary role in the pathogenesis of ALS as well as discuss the possible mechanisms involved in different genetic subtypes with particular focus on the role of astrocytes initiating or perpetuating DNA damage in neurons.
Collapse
Affiliation(s)
- Jannigje Rachel Kok
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Nelma M Palminha
- Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute, Sheffield, UK
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK
| | - Cleide Dos Santos Souza
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute, Sheffield, UK.
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK.
- The Institute of Cancer Therapeutics, West Yorkshire, UK.
| | - Laura Ferraiuolo
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK.
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
16
|
Wells NGM, Tillinghast GA, O'Neil AL, Smith CA. Free energy calculations of ALS-causing SOD1 mutants reveal common perturbations to stability and dynamics along the maturation pathway. Protein Sci 2021; 30:1804-1817. [PMID: 34076319 DOI: 10.1002/pro.4132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/25/2023]
Abstract
With over 150 heritable mutations identified as disease-causative, superoxide dismutase 1 (SOD1) has been a main target of amyotrophic lateral sclerosis (ALS) research and therapeutic efforts. However, recent evidence has suggested that neither loss of function nor protein aggregation is responsible for promoting neurotoxicity. Furthermore, there is no clear pattern to the nature or the location of these mutations that could suggest a molecular mechanism behind SOD1-linked ALS. Here, we utilize reliable and accurate computational techniques to predict the perturbations of 10 such mutations to the free energy changes of SOD1 as it matures from apo monomer to metallated dimer. We find that the free energy perturbations caused by these mutations strongly depend on maturational progress, indicating the need for state-specific therapeutic targeting. We also find that many mutations exhibit similar patterns of perturbation to native and non-native maturation, indicating strong thermodynamic coupling between the dynamics at various sites of maturation within SOD1. These results suggest the presence of an allosteric network in SOD1 which is vulnerable to disruption by these mutations. Analysis of these perturbations may contribute to uncovering a unifying molecular mechanism which explains SOD1-linked ALS and help to guide future therapeutic efforts.
Collapse
Affiliation(s)
- Nicholas G M Wells
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA
| | - Grant A Tillinghast
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA.,Department of Biomedical Engineering, Columbia University, New York, New York City, USA
| | - Alison L O'Neil
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA
| | - Colin A Smith
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
17
|
Eleutherio ECA, Silva Magalhães RS, de Araújo Brasil A, Monteiro Neto JR, de Holanda Paranhos L. SOD1, more than just an antioxidant. Arch Biochem Biophys 2020; 697:108701. [PMID: 33259795 DOI: 10.1016/j.abb.2020.108701] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
During cellular respiration, radicals, such as superoxide, are produced, and in a large concentration, they may cause cell damage. To combat this threat, the cell employs the enzyme Cu/Zn Superoxide Dismutase (SOD1), which converts the radical superoxide into molecular oxygen and hydrogen peroxide, through redox reactions. Although this is its main function, recent studies have shown that the SOD1 has other functions that deviates from its original one including activation of nuclear gene transcription or as an RNA binding protein. This comprehensive review looks at the most important aspects of human SOD1 (hSOD1), including the structure, properties, and characteristics as well as transcriptional and post-translational modifications (PTM) that the enzyme can receive and their effects, and its many functions. We also discuss the strategies currently used to analyze it to better understand its participation in diseases linked to hSOD1 including Amyotrophic Lateral Sclerosis (ALS), cancer, and Parkinson.
Collapse
|
18
|
Niu B, Mackness BC, Zitzewitz JA, Matthews CR, Gross ML. Trifluoroethanol Partially Unfolds G93A SOD1 Leading to Protein Aggregation: A Study by Native Mass Spectrometry and FPOP Protein Footprinting. Biochemistry 2020; 59:3650-3659. [PMID: 32924445 DOI: 10.1021/acs.biochem.0c00425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Misfolding of Cu, Zn superoxide dismutase (SOD1) variants may lead to protein aggregation and ultimately amyotrophic lateral sclerosis (ALS). The mechanism and protein conformational changes during this process are complex and remain unclear. To study SOD1 variant aggregation at the molecular level and in solution, we chemically induced aggregation of a mutant variant (G93A SOD1) with trifluoroethanol (TFE) and used both native mass spectrometry (MS) to analyze the intact protein and fast photochemical oxidation of proteins (FPOP) to characterize the structural changes induced by TFE. We found partially unfolded G93A SOD1 monomers prior to oligomerization and identified regions of the N-terminus, C-terminus, and strands β5, β6 accountable for the partial unfolding. We propose that exposure of hydrophobic interfaces of these unstructured regions serves as a precursor to aggregation. Our results provide a possible mechanism and molecular basis for ALS-linked SOD1 misfolding and aggregation.
Collapse
Affiliation(s)
- Ben Niu
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brian C Mackness
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - C Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
19
|
Pro-Oxidant Activity of an ALS-Linked SOD1 Mutant in Zn-Deficient Form. Molecules 2020; 25:molecules25163600. [PMID: 32784718 PMCID: PMC7464938 DOI: 10.3390/molecules25163600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
Cu, Zn superoxide dismutase (SOD1) is a representative antioxidant enzyme that catalyzes dismutation of reactive oxygen species in cells. However, (E,E)-SOD1 mutants in which both copper and zinc ions were deleted exhibit pro-oxidant activity, contrary to their antioxidant nature, at physiological temperatures, following denaturation and subsequent recombination of Cu2+. This oxidative property is likely related to the pathogenesis of amyotrophic lateral sclerosis (ALS); however, the mechanism by which Cu2+ re-binds to the denatured (E,E)-SOD1 has not been elucidated, since the concentration of free copper ions in cells is almost zero. In this study, we prepared the (Cu,E) form in which only a zinc ion was deleted using ALS-linked mutant H43R (His43→Arg) and found that (Cu,E)-H43R showed an increase in the pro-oxidant activity even at physiological temperature. The increase in the pro-oxidant activity of (Cu,E)-H43R was also observed in solution mimicking intracellular environment and at high temperature. These results suggest that the zinc-deficient (Cu,E) form can contribute to oxidative stress in cells, and that the formation of (E,E)-SOD1 together with the subsequent Cu2+ rebinding is not necessary for the acquisition of the pro-oxidant activity.
Collapse
|
20
|
Tompa DR, Muthusamy S, Srikanth S, Kadhirvel S. Molecular dynamics of far positioned surface mutations of Cu/Zn SOD1 promotes altered structural stability and metal-binding site: Structural clues to the pathogenesis of amyotrophic lateral sclerosis. J Mol Graph Model 2020; 100:107678. [PMID: 32768728 DOI: 10.1016/j.jmgm.2020.107678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) mutations are associated to the motor neuron disorder, amyotrophic lateral sclerosis (ALS), which is characterized by aggregates of the misfolded proteins. The distribution of mutations all over the three-dimensional structure of SOD1 makes it complex to determine the exact molecular mechanism underlying SOD1 destabilization and the associated ALS pathology. In this study, we have examined structure and dynamics of SOD1 protein upon two ALS associated point mutations at the surface residue Glu100 (E100G and E100K), which is located far from the Cu and Zn sites and dimer interface. The molecular dynamics simulations were performed for these mutants for 50ns using GROMACS package. Our results indicate that the mutations result in structural destabilization by affecting the gate keeping role of Glu100 and loss of electrostatic interactions on the protein surface which stabilizes the β-barrel structure of the native form. Further, these mutations could increase the fluctuations in the zinc-binding loop (loop IV), primarily due to loss of hydrogen bond between Asp101 and Arg79. The relaxed conformation of Arg79 further affects the native conformation of His80 and Asp83, that results in altered zinc site geometry and the structure of the substrate channel. Our results clearly suggest that, similar to the mutations located at metal sites/dimer interface/disulfide regions, the mutations at the far positioned site (Glu100) also induce significant conformational changes that could affect the metallation and structure of SOD1 molecule, resulting in formation of toxic intermediate species that cause ALS.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Sureshan Muthusamy
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Srimari Srikanth
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Saraboji Kadhirvel
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
21
|
Ohyama T, Kuroi K, Wakabayashi T, Fujimaki N, Nakabayashi T. Enhancement of Oxidative Reaction by the Intramolecular Electron Transfer between the Coordinated Redox-Active Metal Ions in SOD1. J Phys Chem B 2020; 124:2116-2123. [PMID: 32101437 DOI: 10.1021/acs.jpcb.9b11807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The denatured Cu, Zn superoxide dismutase (SOD1) has the pro-oxidant activity that is suggested to be related with the pathogenesis of amyotrophic lateral sclerosis (ALS). We showed from the changes in the coordinated metal ions that the Cu ion in the Cu-binding site is the catalytic site of the pro-oxidant activity, and a redox-active metal ion in the Zn-binding site has the auxiliary function to enhance the pro-oxidant activity. The auxiliary function is suggested to arise from the intramolecular electron transfer between the coordinated metal ions in the denatured SOD1. The oxidation/reduction cycle of Cu in the Cu-binding site is assisted with changing the oxidation state of a metal ion in the Zn-binding site. The magnitude of the toxicity of the denatured SOD1 is discussed based on the ability of the auxiliary function.
Collapse
Affiliation(s)
- Takumi Ohyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Kunisato Kuroi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Taiyu Wakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Nobuhiro Fujimaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
22
|
Characterization of the activity, aggregation, and toxicity of heterodimers of WT and ALS-associated mutant Sod1. Proc Natl Acad Sci U S A 2019; 116:25991-26000. [PMID: 31796595 PMCID: PMC6926019 DOI: 10.1073/pnas.1902483116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aggregation of the antioxidant enzyme Sod1 represents common factors of both familial (fALS) and sporadic cases of ALS, a fatal neurodegenerative disease. Although many ALS studies have focused on Sod1 homodimers/homomers, the investigation of Sod1 heterodimers/heteromers remains controversial and has mostly been performed with recombinant proteins in vitro, in the absence of a cellular environment. By using living cells, this study sheds light into a critical issue in the context of fALS, the high toxicity of the WT–mutant heteromeric inclusions, especially WT–A4V heteromers which accumulate both in human cells as well as in chronologically aged yeast cells. Besides the aggregation, we proposed that an inefficient heteromer response against oxidative conditions might contribute to fALS-linked mutant hSod1 toxicity. Mutations in Cu/Zn superoxide dismutase (Sod1) have been reported in both familial and sporadic amyotrophic lateral sclerosis (ALS). In this study, we investigated the behavior of heteromeric combinations of wild-type (WT) and mutant Sod1 proteins A4V, L38V, G93A, and G93C in human cells. We showed that both WT and mutant Sod1 formed dimers and oligomers, but only mutant Sod1 accumulated in intracellular inclusions. Coexpression of WT and hSod1 mutants resulted in the formation of a larger number of intracellular inclusions per cell than that observed in cells coexpressing WT or mutant hSod1. The number of inclusions was greater in cells expressing A4V hSod1. To eliminate the contribution of endogenous Sod1, and better evaluate the effect of ALS-associated mutant Sod1 expression, we expressed human Sod1 WT and mutants in human cells knocked down for endogenous Sod1 (Sod1-KD), and in sod1Δ yeast cells. Using Sod1-KD cells we found that the WT–A4V heteromers formed higher molecular weight species compared with A4V and WT homomers. Using the yeast model, in conditions of chronological aging, we concluded that cells expressing Sod1 heterodimers showed decreased antioxidant activity, increased oxidative damage, reduced longevity, and oxidative stress-induced mutant Sod1 aggregation. In addition, we also found that ALS-associated Sod1 mutations reduced nuclear localization and, consequently, impaired the antioxidant response, suggesting this change in localization may contribute to disease in familial ALS. Overall, our study provides insight into the molecular underpinnings of ALS and may open avenues for the design of future therapeutic strategies.
Collapse
|