1
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Antioxidant Therapies in the Treatment of Multiple Sclerosis. Biomolecules 2024; 14:1266. [PMID: 39456199 PMCID: PMC11506420 DOI: 10.3390/biom14101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Several studies have proposed a potential role for oxidative stress in the development of multiple sclerosis (MS). For this reason, it seems tentative to think that treatment with antioxidant substances could be useful in the treatment of this disease. In this narrative review, we provide a summary of the current findings on antioxidant treatments, both in experimental models of MS, especially in experimental autoimmune encephalomyelitis (EAE) and in the cuprizone-induced demyelination model, and clinical trials in patients diagnosed with MS. Practically all the antioxidants tested in experimental models of MS have shown improvement in clinical parameters, in delaying the evolution of the disease, and in improving histological and biochemical parameters, including decreased levels of markers of inflammation and oxidative stress in the central nervous system and other tissues. Only a few clinical trials have been carried out to investigate the potential efficacy of antioxidant substances in patients with MS, most of them in the short term and involving a short series of patients, so the results of these should be considered inconclusive. In this regard, it would be desirable to design long-term, randomized, multicenter clinical trials with a long series of patients, assessing several antioxidants that have demonstrated efficacy in experimental models of MS.
Collapse
Grants
- PI18/00540 Fondo de Investigación Sanitaria, Instituto de Salud Carlos, Madrid, Spain
- PI21/01683 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain
- IB20134 Junta de Extremadura, Mérida, Spain
- GR21073 Junta de Extremadura, Mérida, Spain
Collapse
Affiliation(s)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
2
|
Andrade S, Nunes D, Dabur M, Ramalho MJ, Pereira MC, Loureiro JA. Therapeutic Potential of Natural Compounds in Neurodegenerative Diseases: Insights from Clinical Trials. Pharmaceutics 2023; 15:pharmaceutics15010212. [PMID: 36678841 PMCID: PMC9860553 DOI: 10.3390/pharmaceutics15010212] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Neurodegenerative diseases are caused by the gradual loss of neurons' function. These neurological illnesses remain incurable, and current medicines only alleviate the symptoms. Given the social and economic burden caused by the rising frequency of neurodegenerative diseases, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compounds' therapeutic effects for neurodegenerative disease treatment have been investigated in numerous in vitro and in vivo studies, only few have moved to clinical trials. This article provides the first systematic review of the clinical trials evaluating natural compounds' safety and efficacy for the treatment of the five most prevalent neurodegenerative disorders: Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Débora Nunes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Meghna Dabur
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria J. Ramalho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C. Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (M.C.P.); (J.A.L.)
| | - Joana A. Loureiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (M.C.P.); (J.A.L.)
| |
Collapse
|
3
|
Alpha lipoic acid reverses scopolamine-induced spatial memory loss and pyramidal cell neurodegeneration in the prefrontal cortex of Wistar Rats. IBRO Neurosci Rep 2022; 13:1-8. [PMID: 35664083 PMCID: PMC9157193 DOI: 10.1016/j.ibneur.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/15/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative disorders are linked to oxidative tissue damage characterized by gradual loss of cognitive functions and neuronal cells. Alpha-lipoic acid (AHA) has a strong antioxidant property. Scopolamine is an anti-muscarinic agent used to study the mechanism of memory loss in an animal model. This study is aimed at evaluating the antioxidant role of alpha lipoic acid in reversing scopolamine induced memory loss and neurodegenerative process in the prefrontal cortex of Wistar rats. Twenty adult male Wistar rats used were divided into four groups (n = 5): Group 1 received vehicle (Control), Group 2 had scopolamine (1 mg/kg, i.p) for 4 days, Group 3 received AHA (200 mg/kg, p.o) for 10 days while Group 4 were pretreated with scopolamine (1 mg/kg, i.p) for 4 days followed by oral administration of 200 mg/kg of AHA for 10 days. The rats were subjected to Y-maze test to assess their spatial memory. The rats were euthanized, the prefrontal area was excised and fixed in 10% formol-calcium and processed for Haematoxylin and Eosin, Cresyl fast violet for Nissl Bodies (Ribosome), and Glial Fibrillary Acidic Protein (GFAP) stains. Scopolamine caused a significant decline in spatial working memory, prefrontal neuron cell loss, and increased proliferation of reactive astrocytes (astrogliosis) when compared with the control and AHA treated group. AHA process of reversing scopolamine-induced memory deficit, prefrontal neuron cell loss, and generation of reactive astrocytes (astrogliosis) is mediated by its antioxidant mediated positive modulation of astrocyte-neuronal interaction during neuroinflammation in response to oxidative tissue damage.
Collapse
|
4
|
Staykov H, Lazarova M, Hassanova Y, Stefanova M, Tancheva L, Nikolov R. Neuromodulatory Mechanisms of a Memory Loss-Preventive Effect of Alpha-Lipoic Acid in an Experimental Rat Model of Dementia. J Mol Neurosci 2022; 72:1018-1025. [PMID: 35174445 DOI: 10.1007/s12031-022-01979-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 12/01/2022]
Abstract
This study evaluates some of the neuromodulatory mechanisms of the memory loss preventive effect of alpha-lipoic acid (ALA) in a scopolamine (Sco)-induced rat model of Alzheimer's disease (AD) type dementia. Our results confirmed that Sco administration induces significant memory impairment, worsens exploratory behaviour and habituation, increases acetylcholinesterase (AChE) activity, and induces pathological monoamine content changes in the prefrontal cortex and hippocampus. ALA administration largely prevented Sco-induced memory impairment. It also improved exploratory behaviour and preserved habituation, and it decreased AChE activity, reversing it to control group levels, and corrected aberrant monoamine levels in the prefrontal cortex and hippocampus. According to the data available, this is the first time that ALA-induced changes in AChE and monoamine levels in the prefrontal cortex and hippocampus (brain structures related to learning and memory) have been demonstrated in a Sco-induced rat model of AD type dementia.
Collapse
Affiliation(s)
- Hristian Staykov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 Zdrave St, 1431, Sofia, Bulgaria
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria.
| | - Yozljam Hassanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Rumen Nikolov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 Zdrave St, 1431, Sofia, Bulgaria
| |
Collapse
|
5
|
Quester K, Rodríguez-González S, González-Dávalos L, Lozano-Flores C, González-Gallardo A, Zapiain-Merino SJ, Shimada A, Mora O, Vazquez-Duhalt R. Chitosan Nanoparticles Containing Lipoic Acid with Antioxidant Properties as a Potential Nutritional Supplement. Animals (Basel) 2022; 12:ani12040417. [PMID: 35203125 PMCID: PMC8868310 DOI: 10.3390/ani12040417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Alfa-lipoic acid (ALA) is an important antioxidant that could be added to animal feed as a nutritional supplement. To improve its stability in the digestive system, ALA was encapsulated in chitosan nanoparticles. The nanoparticles containing ALA were stable in stomach-like conditions and were able to cross the intestinal barrier. Chitosan-based nanoparticles seem to be an attractive administration method for antioxidants, or other sensible additives, in food. Abstract The addition of the antioxidant α-lipoic acid (ALA) to a balanced diet might be crucial for the prevention of comorbidities such as cardiovascular diseases, diabetes, and obesity. Due to its low half-life and instability under stomach-like conditions, α-lipoic acid was encapsulated into chitosan nanoparticles (Ch-NPs). The resulting chitosan nanoparticles containing 20% w/w ALA (Ch-ALA-NPs) with an average diameter of 44 nm demonstrated antioxidant activity and stability under stomach-like conditions for up to 3 h. Furthermore, fluorescent Ch-ALA-NPs were effectively internalized into 3T3-L1 fibroblasts and were able to cross the intestinal barrier, as evidenced by everted intestine in vitro experiments. Thus, chitosan-based nanoparticles seem to be an attractive administration method for antioxidants, or other sensible additives, in food.
Collapse
Affiliation(s)
- Katrin Quester
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada 22860, Mexico; (K.Q.); (S.J.Z.-M.)
| | - Sarahí Rodríguez-González
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), FES-C, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico; (S.R.-G.); (L.G.-D.); (C.L.-F.); (A.S.); (O.M.)
| | - Laura González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), FES-C, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico; (S.R.-G.); (L.G.-D.); (C.L.-F.); (A.S.); (O.M.)
| | - Carlos Lozano-Flores
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), FES-C, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico; (S.R.-G.); (L.G.-D.); (C.L.-F.); (A.S.); (O.M.)
| | - Adriana González-Gallardo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico;
| | - Santino J. Zapiain-Merino
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada 22860, Mexico; (K.Q.); (S.J.Z.-M.)
| | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), FES-C, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico; (S.R.-G.); (L.G.-D.); (C.L.-F.); (A.S.); (O.M.)
| | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), FES-C, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico; (S.R.-G.); (L.G.-D.); (C.L.-F.); (A.S.); (O.M.)
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada 22860, Mexico; (K.Q.); (S.J.Z.-M.)
- Correspondence:
| |
Collapse
|
6
|
Xie H, Yang X, Cao Y, Long X, Shang H, Jia Z. Role of lipoic acid in multiple sclerosis. CNS Neurosci Ther 2021; 28:319-331. [PMID: 34964271 PMCID: PMC8841304 DOI: 10.1111/cns.13793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Lipoic acid (LA) is an endogenous antioxidant that exists widely in nature. Supplementation with LA is a promising approach to improve the outcomes of patients with multiple sclerosis (MS). This systematic review aimed to provide a comprehensive overview of both in vitro and in vivo studies describing the pharmacokinetics, efficacy, safety, and mechanism of LA in MS‐related experiments and clinical trials. A total of 516 records were identified by searching five databases, including PubMed, Web of Science, Embase, Scopus, and Cochrane Library. Overall, we included 20 studies reporting LA effects in cell and mouse models of MS and 12 studies reporting LA effects in patients with MS. Briefly, cell experiments revealed that LA protected neurons by inhibiting the expression of inflammatory mediators and activities of immune cells. Experimental autoimmune encephalomyelitis mouse experiments demonstrated that LA consistently reduced the number of infiltrating immune cells in the central nervous system and decreased the clinical disability scores. Patients with MS showed relatively stable Expanded Disability Status Scale scores and better walking performance with few adverse events after the oral administration of LA. Notably, heterogeneity of this evidence existed among modeling methods, LA usage, MS stage, and trial duration. In conclusion, this review provides evidence for the anti‐inflammatory and antioxidative effects of LA in both in vitro and in vivo experiments; therefore, patients with MS may benefit from LA administration. Whether LA can be a routine supplementary therapy warrants further study.
Collapse
Affiliation(s)
- Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xiufang Yang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Failed, Interrupted, or Inconclusive Trials on Neuroprotective and Neuroregenerative Treatment Strategies in Multiple Sclerosis: Update 2015-2020. Drugs 2021; 81:1031-1063. [PMID: 34086251 PMCID: PMC8217012 DOI: 10.1007/s40265-021-01526-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
In the recent past, a plethora of drugs have been approved for the treatment of multiple sclerosis (MS). These therapeutics are mainly confined to immunomodulatory or immunosuppressive strategies but do not sufficiently address remyelination and neuroprotection. However, several neuroregenerative agents have shown potential in pre-clinical research and entered Phase I to III clinical trials. Although none of these compounds have yet proceeded to approval, understanding the causes of failure can broaden our knowledge about neuroprotection and neuroregeneration in MS. Moreover, most of the investigated approaches are characterised by consistent mechanisms of action and proved convincing efficacy in animal studies. Therefore, learning from their failure will help us to enforce the translation of findings acquired in pre-clinical studies into clinical application. Here, we summarise trials on MS treatment published since 2015 that have either failed or were interrupted due to a lack of efficacy, adverse events, or for other reasons. We further outline the rationale underlying these drugs and analyse the background of failure to gather new insights into MS pathophysiology and optimise future study designs. For conciseness, this review focuses on agents promoting remyelination and medications with primarily neuroprotective properties or unconventional approaches. Failed clinical trials that pursue immunomodulation are presented in a separate article.
Collapse
|
8
|
Mitochondria, Oxidative Stress, cAMP Signalling and Apoptosis: A Crossroads in Lymphocytes of Multiple Sclerosis, a Possible Role of Nutraceutics. Antioxidants (Basel) 2020; 10:antiox10010021. [PMID: 33379309 PMCID: PMC7823468 DOI: 10.3390/antiox10010021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a complex inflammatory and neurodegenerative chronic disease that involves the immune and central nervous systems (CNS). The pathogenesis involves the loss of blood–brain barrier integrity, resulting in the invasion of lymphocytes into the CNS with consequent tissue damage. The MS etiology is probably a combination of immunological, genetic, and environmental factors. It has been proposed that T lymphocytes have a main role in the onset and propagation of MS, leading to the inflammation of white matter and myelin sheath destruction. Cyclic AMP (cAMP), mitochondrial dysfunction, and oxidative stress exert a role in the alteration of T lymphocytes homeostasis and are involved in the apoptosis resistance of immune cells with the consequent development of autoimmune diseases. The defective apoptosis of autoreactive lymphocytes in patients with MS, allows these cells to perpetuate, within the CNS, a continuous cycle of inflammation. In this review, we discuss the involvement in MS of cAMP pathway, mitochondria, reactive oxygen species (ROS), apoptosis, and their interaction in the alteration of T lymphocytes homeostasis. In addition, we discuss a series of nutraceutical compounds that could influence these aspects.
Collapse
|
9
|
Seizure-Induced Oxidative Stress in Status Epilepticus: Is Antioxidant Beneficial? Antioxidants (Basel) 2020; 9:antiox9111029. [PMID: 33105652 PMCID: PMC7690410 DOI: 10.3390/antiox9111029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common neurological disorder which affects patients physically and mentally and causes a real burden for the patient, family and society both medically and economically. Currently, more than one-third of epilepsy patients are still under unsatisfied control, even with new anticonvulsants. Other measures may be added to those with drug-resistant epilepsy. Excessive neuronal synchronization is the hallmark of epileptic activity and prolonged epileptic discharges such as in status epilepticus can lead to various cellular events and result in neuronal damage or death. Unbalanced oxidative status is one of the early cellular events and a critical factor to determine the fate of neurons in epilepsy. To counteract excessive oxidative damage through exogenous antioxidant supplements or induction of endogenous antioxidative capability may be a reasonable approach for current anticonvulsant therapy. In this article, we will introduce the critical roles of oxidative stress and further discuss the potential use of antioxidants in this devastating disease.
Collapse
|
10
|
Fiedler SE, Spain RI, Kim E, Salinthone S. Lipoic acid modulates inflammatory responses of monocytes and monocyte-derived macrophages from healthy and relapsing-remitting multiple sclerosis patients. Immunol Cell Biol 2020; 99:107-115. [PMID: 32762092 DOI: 10.1111/imcb.12392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023]
Abstract
Multiple sclerosis (MS) is a disabling neuroinflammatory disease. Its etiology is unknown, but both oxidative stress and inflammation appear to be involved in disease pathology. Macrophages are the predominant cell type in acute inflammatory brain lesions in MS. Macrophages produce proinflammatory and toxic molecules that promote demyelination and are key players in phagocytosis/degradation of myelin sheathes. Lipoic acid (LA) is an inexpensive, endogenously produced small molecule that exhibits antioxidant and anti-inflammatory effects. Treatment with LA is protective in MS and other inflammatory diseases. To examine the mechanism(s) by which LA may attenuate inflammatory lesion activity in MS, we used healthy control and MS cells to evaluate the effects of LA on levels of inflammatory cytokines, phagocytosis and the immunomodulator cyclic adenosine monophosphate (cAMP) in monocytes and monocyte-derived macrophages (MDMs). LA treatment resulted in a generally less inflammatory phenotype of monocytes and MDMs from healthy controls, and (to a lesser degree) MS donors. LA inhibited monocyte secretion of cytokines relevant to MS in monocytes, including tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β; LA effects on secretion of these cytokines in MDMs were mixed with inhibition of TNF-α and IL-6, but stimulation of IL-1β, the latter perhaps as a result of altered macrophage polarization. LA inhibited phagocytosis in both monocytes and MDMs, and increased cAMP levels in monocytes. LA may modulate inflammatory cytokine secretion and phagocytosis via a cAMP-mediated mechanism.
Collapse
Affiliation(s)
- Sarah E Fiedler
- VA Portland Health Care System, Research and Development Service, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA
| | - Rebecca I Spain
- VA Portland Health Care System, Research and Development Service, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Edward Kim
- VA Portland Health Care System, Research and Development Service, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Sonemany Salinthone
- VA Portland Health Care System, Research and Development Service, 3710 SW US Veterans' Hospital Rd, Portland, OR, 97239, USA.,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| |
Collapse
|
11
|
Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer's Disease? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8409329. [PMID: 31885820 PMCID: PMC6914903 DOI: 10.1155/2019/8409329] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterised by impairments in the cognitive domains associated with orientation, recording, and memory. This pathology results from an abnormal deposition of the β-amyloid (Aβ) peptide and the intracellular accumulation of neurofibrillary tangles. Mitochondrial dysfunctions play an important role in the pathogenesis of AD, due to disturbances in the bioenergetic properties of cells. To date, the usual therapeutic drugs are limited because of the diversity of cellular routes in AD and the toxic potential of these agents. In this context, alpha-lipoic acid (α-LA) is a well-known fatty acid used as a supplement in several health conditions and diseases, such as periphery neuropathies and neurodegenerative disorders. It is produced in several cell types, eukaryotes, and prokaryotes, showing antioxidant and anti-inflammatory properties. α-LA acts as an enzymatic cofactor able to regulate metabolism, energy production, and mitochondrial biogenesis. In addition, the antioxidant capacity of α-LA is associated with two thiol groups that can be oxidised or reduced, prevent excess free radical formation, and act on improvement of mitochondrial performance. Moreover, α-LA has mechanisms of epigenetic regulation in genes related to the expression of various inflammatory mediators, such PGE2, COX-2, iNOS, TNF-α, IL-1β, and IL-6. Regarding the pharmacokinetic profile, α-LA has rapid uptake and low bioavailability and the metabolism is primarily hepatic. However, α-LA has low risk in prolonged use, although its therapeutic potential, interactions with other substances, and adverse reactions have not been well established in clinical trials with populations at higher risk for diseases of aging. Thus, this review aimed to describe the pharmacokinetic profile, bioavailability, therapeutic efficacy, safety, and effects of combined use with centrally acting drugs, as well as report in vitro and in vivo studies that demonstrate the mitochondrial mechanisms of α-LA involved in AD protection.
Collapse
|
12
|
Differential Modulation of NF- κB in Neurons and Astrocytes Underlies Neuroprotection and Antigliosis Activity of Natural Antioxidant Molecules. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8056904. [PMID: 31485299 PMCID: PMC6710787 DOI: 10.1155/2019/8056904] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/20/2019] [Indexed: 02/02/2023]
Abstract
Neuroinflammation, a hallmark of chronic neurodegenerative disorders, is characterized by sustained glial activation and the generation of an inflammatory loop, through the release of cytokines and other neurotoxic mediators that cause oxidative stress and limit functional repair of brain parenchyma. Dietary antioxidants may protect against neurodegenerative diseases by counteracting chronic neuroinflammation and reducing oxidative stress. Here, we describe the effects of a number of natural antioxidants (polyphenols, carotenoids, and thiolic molecules) in rescuing astrocytic function and neuronal viability following glial activation by reducing astrocyte proliferation and restoring astrocytic and neuronal survival and basal levels of reactive oxygen species (ROS). All antioxidant molecules are also effective under conditions of oxidative stress and glutamate toxicity, two maladaptive components of neuroinflammatory processes. Moreover, it is remarkable that their antioxidant and anti-inflammatory activity occurs through differential modulation of NF-κB binding activity in neurons and astrocytes. In fact, we show that inflammatory stimuli promote a significant induction of NF-κB binding activity in astrocytes and its concomitant reduction in neurons. These changes are prevented in astrocytes and neurons pretreated with the antioxidant molecules, suggesting that NF-κB plays a key role in the modulation of survival and anti-inflammatory responses. Finally, we newly demonstrate that effective antigliosis and neuroprotective activity is achieved with a defined cocktail of four natural antioxidants at very low concentrations, suggesting a promising strategy to reduce inflammatory and oxidative damage in neurodegenerative diseases with limited side effects.
Collapse
|
13
|
Salehi B, Berkay Yılmaz Y, Antika G, Boyunegmez Tumer T, Fawzi Mahomoodally M, Lobine D, Akram M, Riaz M, Capanoglu E, Sharopov F, Martins N, Cho WC, Sharifi-Rad J. Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecules 2019; 9:biom9080356. [PMID: 31405030 PMCID: PMC6723188 DOI: 10.3390/biom9080356] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
α-lipoic acid (ALA, thioctic acid) is an organosulfur component produced from plants, animals, and humans. It has various properties, among them great antioxidant potential and is widely used as a racemic drug for diabetic polyneuropathy-associated pain and paresthesia. Naturally, ALA is located in mitochondria, where it is used as a cofactor for pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase complexes. Despite its various potentials, ALA therapeutic efficacy is relatively low due to its pharmacokinetic profile. Data suggests that ALA has a short half-life and bioavailability (about 30%) triggered by its hepatic degradation, reduced solubility as well as instability in the stomach. However, the use of various innovative formulations has greatly improved ALA bioavailability. The R enantiomer of ALA shows better pharmacokinetic parameters, including increased bioavailability as compared to its S enantiomer. Indeed, the use of amphiphilic matrices has capability to improve ALA bioavailability and intestinal absorption. Also, ALA's liquid formulations are associated with greater plasma concentration and bioavailability as compared to its solidified dosage form. Thus, improved formulations can increase both ALA absorption and bioavailability, leading to a raise in therapeutic efficacy. Interestingly, ALA bioavailability will be dependent on age, while no difference has been found for gender. The present review aims to provide an updated on studies from preclinical to clinical trials assessing ALA's usages in diabetic patients with neuropathy, obesity, central nervous system-related diseases and abnormalities in pregnancy.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Yakup Berkay Yılmaz
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Gizem Antika
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | | | - Devina Lobine
- Department of Health Sciences; Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad; Faisalabad 38000, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha 40100, Pakistan
| | - Esra Capanoglu
- Faculty of Chemical & Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Maslak 34469, Turkey
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| |
Collapse
|
14
|
Waslo C, Bourdette D, Gray N, Wright K, Spain R. Lipoic Acid and Other Antioxidants as Therapies for Multiple Sclerosis. Curr Treat Options Neurol 2019; 21:26. [PMID: 31056714 DOI: 10.1007/s11940-019-0566-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidative stress (OS), when oxidative forces outweigh endogenous and nutritional antioxidant defenses, contributes to the pathophysiology of multiple sclerosis (MS). Evidence of OS is found during acute relapses, in active inflammatory lesions, and in chronic, longstanding plaques. OS results in both ongoing inflammation and neurodegeneration. Antioxidant therapies are a rational strategy for people with MS with all phenotypes and disease durations. PURPOSE OF REVIEW: To understand the function of OS in health and disease, to examine the contributions of OS to MS pathophysiology, and to review current evidence for the effects of selected antioxidant therapies in people with MS (PwMS) with a focus on lipoic acid (LA). RECENT FINDINGS: Studies of antioxidant interventions in both animal and in vivo models result in reductions in serum markers of OS and increases in levels and activity of antioxidant enzymes. Antioxidant trials in PwMS, while generally underpowered, detect short-term improvements in markers of OS and antioxidant defenses, and to a lesser extent, in clinical symptoms (fatigue, depression). The best evidence to date is a 2-year trial of LA in secondary progressive MS which demonstrated a significant reduction of whole-brain atrophy and trend toward improvement in walking speed. Antioxidant therapy is a promising approach to treat MS across the spectrum and duration of disease. Rigorous and well-powered trials are needed to determine their therapeutic benefits.
Collapse
Affiliation(s)
- Carin Waslo
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Dennis Bourdette
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road - L226, Portland, OR, 97239, USA
| | - Nora Gray
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road - L226, Portland, OR, 97239, USA
| | - Kirsten Wright
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road - L226, Portland, OR, 97239, USA
| | - Rebecca Spain
- Veterans Affairs Portland Health Care System, Portland, OR, USA.
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road - L226, Portland, OR, 97239, USA.
| |
Collapse
|