1
|
Musazzi L, Mingardi J, Ieraci A, Barbon A, Popoli M. Stress, microRNAs, and stress-related psychiatric disorders: an overview. Mol Psychiatry 2023; 28:4977-4994. [PMID: 37391530 DOI: 10.1038/s41380-023-02139-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Stress is a major risk factor for psychiatric disorders. During and after exposure to stressors, the stress response may have pro- or maladaptive consequences, depending on several factors related to the individual response and nature of the stressor. However, the mechanisms mediating the long-term effects of exposure to stress, which may ultimately lead to the development of stress-related disorders, are still largely unknown. Epigenetic mechanisms have been shown to mediate the effects of the environment on brain gene expression and behavior. MicroRNAs, small non-coding RNAs estimated to control the expression of about 60% of all genes by post-transcriptional regulation, are a fundamental epigenetic mechanism. Many microRNAs are expressed in the brain, where they work as fine-tuners of gene expression, with a key role in the regulation of homeostatic balance, and a likely influence on pro- or maladaptive brain changes. Here we have selected a number of microRNAs, which have been strongly implicated as mediators of the effects of stress in the brain and in the development of stress-related psychiatric disorders. For all of them recent evidence is reported, obtained from rodent stress models, manipulation of microRNAs levels with related behavioral changes, and clinical studies of stress-related psychiatric disorders. Moreover, we have performed a bioinformatic analysis of the predicted brain-expressed target genes of the microRNAs discussed, and found a central role for mechanisms involved in the regulation of synaptic function. The complex regulatory role of microRNAs has suggested their use as biomarkers for diagnosis and treatment response, as well as possible therapeutic drugs. While, microRNA-based diagnostics have registered advancements, particularly in oncology and other fields, and many biotech companies have launched miRNA therapeutics in their development pipeline, the development of microRNA-based tests and drugs for brain disorders is comparatively slower.
Collapse
Affiliation(s)
- Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
- Molecular Pharmacology, Cellular and Behavioral Physiology; Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
2
|
D'Addario SL, Municchi D, Mancini C, Ielpo D, Babicola L, Di Segni M, Iacono LL, Ferlazzo F, Cifani C, Andolina D, Ventura R. The long-lasting effects of early life adversities are sex dependent: The signature of miR-34a. J Affect Disord 2023; 322:277-288. [PMID: 36414112 DOI: 10.1016/j.jad.2022.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Exposure to early life adversities (ELA) can influence a plethora of biological mechanisms leading to stress-related disorders later in life through epigenetic mechanisms, such as microRNAs (miRs). MiR-34 is a critical modulator of stress response and stress-induced pathologies and a link between ELA and miR-34a has been reported. METHODS Here using our well-established model of ELA (Repeated Cross Fostering) we investigate the behavioral long-term effects of ELA in male and female mice. We also assess basal and ELA-induced miR-34a expression in adult mice and investigate whether ELA affects the later miR-34a response to adult acute stress exposure across brain areas (medial preFrontal Cortex, Dorsal Raphe Nuclei) and peripheral organs (heart, plasma) in animals from both sexes. Finally, based on our previous data demonstrating the critical role of Dorsal Raphe Nuclei miR-34a expression in serotonin (5-HT) transmission, we also investigated prefrontal-accumbal 5-HT outflow induced by acute stress exposure in ELA and Control females by in vivo intracerebral microdialysis. RESULTS ELA not just induces a depressive-like state as well as enduring changes in miR-34a expression, but also alters miR-34a expression in response to adult acute stress exclusively in females. Finally, altered DRN miR-34a expression is associated with prefrontal-accumbal 5-HT release under acute stress exposure in females. LIMITATIONS Translational study on humans is necessary to verify the results obtained in our animal models of ELA-induced depression. CONCLUSIONS This is the first evidence showing long-lasting sex related effects of ELA on brain and peripheral miR-34a expression levels in an animal model of depression-like phenotype.
Collapse
Affiliation(s)
- Sebastian Luca D'Addario
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Diana Municchi
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Camilla Mancini
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| | - Donald Ielpo
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Lucy Babicola
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | | | - Luisa Lo Iacono
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Fabio Ferlazzo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| | - Diego Andolina
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Rossella Ventura
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| |
Collapse
|
3
|
The Complex Interaction between P53 and miRNAs Joins New Awareness in Physiological Stress Responses. Cells 2022; 11:cells11101631. [PMID: 35626668 PMCID: PMC9139524 DOI: 10.3390/cells11101631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022] Open
Abstract
This review emphasizes the important role of cross-talk between P53 and microRNAs in physiological stress signaling. P53 responds to stress in a variety of ways ranging from activating survival-promotion pathways to triggering programmed cell death to eliminate damaged cells. In physiological stress generated by any external or internal condition that challenges cell homeostasis, P53 exerts its function as a transcription factor for target genes or by regulating the expression and maturation of a class of small non-coding RNA molecules (miRNAs). The miRNAs control the level of P53 through direct control of P53 or through indirect control of P53 by targeting its regulators (such as MDMs). In turn, P53 controls the expression level of miRNAs targeted by P53 through the regulation of their transcription or biogenesis. This elaborate regulatory scheme emphasizes the relevance of miRNAs in the P53 network and vice versa.
Collapse
|
4
|
Rosa JM, Formolo DA, Yu J, Lee TH, Yau SY. The Role of MicroRNA and Microbiota in Depression and Anxiety. Front Behav Neurosci 2022; 16:828258. [PMID: 35299696 PMCID: PMC8921933 DOI: 10.3389/fnbeh.2022.828258] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Depression and anxiety are devastating disorders. Understanding the mechanisms that underlie the development of depression and anxiety can provide new hints on novel treatments and preventive strategies. Here, we summarize the latest findings reporting the novel roles of gut microbiota and microRNAs (miRNAs) in the pathophysiology of depression and anxiety. The crosstalk between gut microbiota and the brain has been reported to contribute to these pathologies. It is currently known that some miRNAs can regulate bacterial growth and gene transcription while also modulate the gut microbiota composition, suggesting the importance of miRNAs in gut and brain health. Treatment and prevention strategies for neuropsychiatric diseases, such as physical exercise, diet, and probiotics, can modulate the gut microbiota composition and miRNAs expressions. Nonetheless, there are critical questions to be addressed to understand further the mechanisms involved in the interaction between the gut microbiota and miRNAs in the brain. This review summarizes the recent findings of the potential roles of microbiota and miRNA on the neuropathology of depression and anxiety, and its potential as treatment strategies.
Collapse
Affiliation(s)
- Julia M. Rosa
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Douglas A. Formolo
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Thomas H. Lee
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Neurocentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
5
|
Wang C, Jia Q, Guo X, Li K, Chen W, Shen Q, Xu C, Fu Y. microRNA-34 Family: From Mechanism to Potential Applications. Int J Biochem Cell Biol 2022; 144:106168. [DOI: 10.1016/j.biocel.2022.106168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
6
|
Andolina D, Savi M, Ielpo D, Barbetti M, Bocchi L, Stilli D, Ventura R, Lo Iacono L, Sgoifo A, Carnevali L. Elevated miR-34a expression and altered transcriptional profile are associated with adverse electromechanical remodeling in the heart of male rats exposed to social stress. Stress 2021; 24:621-634. [PMID: 34227918 DOI: 10.1080/10253890.2021.1942830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
This study investigated epigenetic risk factors that may contribute to stress-related cardiac disease in a rodent model. Experiment 1 was designed to evaluate the expression of microRNA-34a (miR-34a), a known modulator of both stress responses and cardiac pathophysiology, in the heart of male adult rats exposed to a single or repeated episodes of social defeat stress. Moreover, RNA sequencing was conducted to identify transcriptomic profile changes in the heart of repeatedly stressed rats. Experiment 2 was designed to assess cardiac electromechanical changes induced by repeated social defeat stress that may predispose rats to cardiac dysfunction. Results indicated a larger cardiac miR-34a expression after repeated social defeat stress compared to a control condition. This molecular modification was associated with increased vulnerability to pharmacologically induced arrhythmias and signs of systolic left ventricular dysfunction. Gene expression analysis identified clusters of differentially expressed genes in the heart of repeatedly stressed rats that are mainly associated with morphological and functional properties of the mitochondria and may be directly regulated by miR-34a. These results suggest the presence of an association between miR-34a overexpression and signs of adverse electromechanical remodeling in the heart of rats exposed to repeated social defeat stress, and point to compromised mitochondria efficiency as a potential mediator of this link. This rat model may provide a useful tool for investigating the causal relationship between miR-34a expression, mitochondrial (dys)function, and cardiac alterations under stressful conditions, which could have important implications in the context of stress-related cardiac disease.
Collapse
Affiliation(s)
- Diego Andolina
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donald Ielpo
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
| | - Margherita Barbetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rossella Ventura
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Luisa Lo Iacono
- Department of Psychology and Center "Daniel Bovet," Sapienza University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Andrea Sgoifo
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| | - Luca Carnevali
- Department of Chemistry, Life Sciences and Environmental Sustainability, Stress Physiology Lab, University of Parma, Parma, Italy
| |
Collapse
|
7
|
Zhang WH, Zhang JY, Holmes A, Pan BX. Amygdala Circuit Substrates for Stress Adaptation and Adversity. Biol Psychiatry 2021; 89:847-856. [PMID: 33691931 DOI: 10.1016/j.biopsych.2020.12.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Brain systems that promote maintenance of homeostasis in the face of stress have significant adaptive value. A growing body of work across species demonstrates a critical role for the amygdala in promoting homeostasis by regulating physiological and behavioral responses to stress. This review focuses on an emerging body of evidence that has begun to delineate the contribution of specific long-range amygdala circuits in mediating the effects of stress. After summarizing the major anatomical features of the amygdala and its connectivity to other limbic structures, we discuss recent findings from rodents showing how stress causes structural and functional remodeling of amygdala neuronal outputs to defined cortical and subcortical target regions. We also consider some of the environmental and genetic factors that have been found to moderate how the amygdala responds to stress and relate the emerging preclinical literature to the current understanding of the pathophysiology and treatment of stress-related neuropsychiatric disorders. Future effort to translate these findings to clinics may help to develop valuable tools for prevention, diagnosis, and treatment of these diseases.
Collapse
Affiliation(s)
- Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Jun-Yu Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institues of Health, Bethesda, Maryland
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China.
| |
Collapse
|
8
|
D'Addario SL, Di Segni M, Ledonne A, Piscitelli R, Babicola L, Martini A, Spoleti E, Mancini C, Ielpo D, D'Amato FR, Andolina D, Ragozzino D, Mercuri NB, Cifani C, Renzi M, Guatteo E, Ventura R. Resilience to anhedonia-passive coping induced by early life experience is linked to a long-lasting reduction of I h current in VTA dopaminergic neurons. Neurobiol Stress 2021; 14:100324. [PMID: 33937445 PMCID: PMC8079665 DOI: 10.1016/j.ynstr.2021.100324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/24/2021] [Accepted: 03/27/2021] [Indexed: 02/04/2023] Open
Abstract
Exposure to aversive events during sensitive developmental periods can affect the preferential coping strategy adopted by individuals later in life, leading to either stress-related psychiatric disorders, including depression, or to well-adaptation to future adversity and sources of stress, a behavior phenotype termed “resilience”. We have previously shown that interfering with the development of mother-pups bond with the Repeated Cross Fostering (RCF) stress protocol can induce resilience to depression-like phenotype in adult C57BL/6J female mice. Here, we used patch-clamp recording in midbrain slice combined with both in vivo and ex vivo pharmacology to test our hypothesis of a link between electrophysiological modifications of dopaminergic neurons in the intermediate Ventral Tegmental Area (VTA) of RCF animals and behavioral resilience. We found reduced hyperpolarization-activated (Ih) cation current amplitude and evoked firing in VTA dopaminergic neurons from both young and adult RCF female mice. In vivo, VTA-specific pharmacological manipulation of the Ih current reverted the pro-resilient phenotype in adult early-stressed mice or mimicked behavioral resilience in adult control animals. This is the first evidence showing how pro-resilience behavior induced by early events is linked to a long-lasting reduction of Ih current and excitability in VTA dopaminergic neurons.
Collapse
Affiliation(s)
- Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro, 5 00184, Rome, Italy
| | | | | | - Rosamaria Piscitelli
- IRCCS Fondazione Santa Lucia, Roma, Italy.,Dept. of Motor Science and Wellness, 'Parthenope' University, Via Medina 40, 80133 Naples, Italy
| | - Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | | | - Elena Spoleti
- Department of Physiology and Pharmacology, Sapienza University, Rome, 00185, Italy
| | - Camilla Mancini
- University of Camerino School of Pharmaceutical Sciences and Health Products, Camerino, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro, 5 00184, Rome, Italy
| | - Francesca R D'Amato
- Biochemistry and Cell Biology Institute, National Research Council, Via E Ramarini 32, 00015, Monterotondo Scalo, Roma, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Davide Ragozzino
- IRCCS Fondazione Santa Lucia, Roma, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, 00185, Italy
| | - Nicola B Mercuri
- IRCCS Fondazione Santa Lucia, Roma, Italy.,Dept. of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Carlo Cifani
- University of Camerino School of Pharmaceutical Sciences and Health Products, Camerino, Italy
| | - Massimiliano Renzi
- Department of Physiology and Pharmacology, Sapienza University, Rome, 00185, Italy
| | - Ezia Guatteo
- IRCCS Fondazione Santa Lucia, Roma, Italy.,Dept. of Motor Science and Wellness, 'Parthenope' University, Via Medina 40, 80133 Naples, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| |
Collapse
|
9
|
MicroRNA-34a regulates 5-HT2C expression in dorsal raphe and contributes to the anti-depressant-like effect of fluoxetine. Neuropharmacology 2021; 190:108559. [PMID: 33845072 DOI: 10.1016/j.neuropharm.2021.108559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 11/24/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are designed to improve mood by raising extracellular serotonin levels through the blockade of the serotonin transporter. However, they exhibit a slow onset of action, suggesting the involvement of adaptive regulatory mechanisms. We hypothesized that the microRNA-34 family facilitates the therapeutic activity of SSRIs. We show that genetic deletion of these microRNAs in mice impairs the response to chronic, but not acute, fluoxetine treatment, with a specific effect on behavioral constructs that are related to depression, rather than anxiety. Moreover, using a pharmacological strategy, we found that an increased expression of the serotonin 2C (5-HT2C) receptor in the dorsal raphe region of the brain contributes to this phenotype. The onset of the therapeutic efficacy of SSRIs is paralleled by the desensitization of the 5-HT2C receptor in the dorsal raphe, and 5-HT2C is a putative target of microRNA-34. In this study, acute and chronic fluoxetine treatment differentially alters the expression of 5-HT2C and microRNA-34a in the dorsal raphe. Moreover, by in vitro luciferase assay, we demonstrated the repressive regulatory activity of microRNA-34a against 5-HT2C mRNA. Specific blockade of this interaction through local infusion of a target site blocker was sufficient to prevent the behavioral effects of chronic fluoxetine. Our results demonstrate a new miR-34a-mediated regulatory mechanism of 5-HT2C expression in the dorsal raphe and implicate it in eliciting the behavioral responses to chronic fluoxetine treatment.
Collapse
|
10
|
Chang SH, Su YC, Chang M, Chen JA. MicroRNAs mediate precise control of spinal interneuron populations to exert delicate sensory-to-motor outputs. eLife 2021; 10:63768. [PMID: 33787491 PMCID: PMC8075582 DOI: 10.7554/elife.63768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Although the function of microRNAs (miRNAs) during embryonic development has been intensively studied in recent years, their postnatal physiological functions remain largely unexplored due to inherent difficulties with the presence of redundant paralogs of the same seed. Thus, it is particularly challenging to uncover miRNA functions at neural circuit level since animal behaviors would need to be assessed upon complete loss of miRNA family functions. Here, we focused on the neural functions of MiR34/449 that manifests a dynamic expression pattern in the spinal cord from embryonic to postnatal stages. Our behavioral assays reveal that the loss of MiR34/449 miRNAs perturb thermally induced pain response thresholds and compromised delicate motor output in mice. Mechanistically, MiR34/449 directly target Satb1 and Satb2 to fine-tune the precise number of a sub-population of motor synergy encoder (MSE) neurons. Thus, MiR34/449 fine-tunes optimal development of Satb1/2on interneurons in the spinal cord, thereby refining explicit sensory-to-motor circuit outputs. The spinal cord is an information superhighway that connects the body with the brain. There, circuits of neurons process information from the brain before sending commands to muscles to generate movement. Each spinal cord circuit contains many types of neurons, whose identity is defined by the set of genes that are active or ‘expressed’ in each cell. When a gene is turned on, its DNA sequence is copied to produce a messenger RNA (mRNA), a type of molecule that the cell then uses as a template to produce a protein. MicroRNAs (or miRNAs), on the other hand, are tiny RNA molecules that help to regulate gene expression by binding to and ‘deactivating’ specific mRNAs, stopping them from being used to make proteins. Mammalian cells contain thousands of types of microRNAs, many of which have unknown roles: this includes MiR34/449, a group of six microRNAs found mainly within the nervous system. By using genetic technology to delete this family from the mouse genome, Chang et al. now show that MiR34/449 has a key role in regulating spinal cord circuits. The first clue came from discovering that mice without the MiR34/449 family had unusual posture and a tendency to walk on tiptoe. The animals were also more sensitive to heat, flicking their tails away from a heat source more readily than control mice. At a finer level, the spinal cords of the mutants contained greater numbers of cells in which two genes, Satb1 and Satb2, were turned on. Compared to their counterparts in control mice, the Satb1/2-positive neurons also showed differences in the rest of the genes they expressed. In essence, these neurons had a different genetic profile in MiR34/449 mutant mice, therefore disrupting the neural circuit they belong to. Based on these findings, Chang et al. propose that in wild-type mice, the MiR34/449 family fine-tunes the expression of Satb1/2 in the spinal cord during development. In doing so, it regulates the formation of the spinal cord circuits that help to control movement. More generally, these results provide clues about how miRNAs help to determine cell identities; further studies could then examine whether other miRNAs contribute to the development and maintenance of neuronal circuits.
Collapse
Affiliation(s)
- Shih-Hsin Chang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Yi-Ching Su
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Czéh B, Simon M. Benefits of animal models to understand the pathophysiology of depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110049. [PMID: 32735913 DOI: 10.1016/j.pnpbp.2020.110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD) is a potentially life-threatening mental disorder imposing severe social and economic burden worldwide. Despite the existence of effective antidepressant treatment strategies the exact pathophysiology of the disease is still unknown. Large number of animal models of MDD have been developed over the years, but all of them suffer from significant shortcomings. Despite their limitations these models have been extensively used in academic research and drug development. The aim of this review is to highlight the benefits of animal models of MDD. We focus here on recent experimental data where animal models were used to examine current theories of this complex disease. We argue, that despite their evident imperfections, these models provide invaluable help to understand cellular and molecular mechanisms contributing to the development of MDD. Furthermore, animal models are utilized in research to find clinically useful biomarkers. We discuss recent neuroimaging and microRNA studies since these investigations yielded promising candidates for biomarkers. Finally, we briefly summarize recent progresses in drug development, i.e. the FDA approval of two novel antidepressant drugs: S-ketamine and brexanolone (allopregnanolone). Deeper understanding of the exact molecular and cellular mechanisms of action responsible for the antidepressant efficacy of these rapid acting drugs could aid us to design further compounds with similar effectiveness, but less side effects. Animal studies are likely to provide valuable help in this endeavor.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Maria Simon
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Hungary
| |
Collapse
|
12
|
Zaidan H, Galiani D, Gaisler-Salomon I. Pre-reproductive stress in adolescent female rats alters oocyte microRNA expression and offspring phenotypes: pharmacological interventions and putative mechanisms. Transl Psychiatry 2021; 11:113. [PMID: 33547270 PMCID: PMC7865076 DOI: 10.1038/s41398-021-01220-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022] Open
Abstract
Pre-reproductive stress (PRS) to adolescent female rats alters anxiogenic behavior in first (F1)- and second-generation (F2) offspring and increases mRNA expression of corticotropin-releasing factor receptor type 1 (Crhr1) in oocytes and in neonate offspring brain. Here, we ask whether the expression of Crhr1 and Crhr1-targeting microRNA is altered in brain, blood, and oocytes of exposed females and in the brain of their neonate and adult F1 and F2 offspring. In addition, we inquire whether maternal post-stress drug treatment reverses PRS-induced abnormalities in offspring. We find that PRS induces a selective increase in Crhr1-targeting mir-34a and mir-34c in blood and oocytes, while non-Crhr1 microRNA molecules remain unaltered. PRS induces similar microRNA changes in prefrontal cortex of F1 and F2 neonates. In adult animals, cortical Crhr1, but not mir-34, expression is affected by both maternal and direct stress exposure. Post-PRS fluoxetine (FLX) treatment increases pup mortality, and both FLX and the Crhr1 antagonist NBI 27914 reverse some of the effects of PRS and also have independent effects on F1 behavior and gene expression. PRS also alters behavior as well as gene and miRNA expression patterns in paternally derived F2 offspring, producing effects that are different from those previously found in maternally derived F2 offspring. These findings extend current knowledge on inter- and trans-generational transfer of stress effects, point to microRNA changes in stress-exposed oocytes as a potential mechanism, and highlight the consequences of post-stress pharmacological interventions in adolescence.
Collapse
Affiliation(s)
- Hiba Zaidan
- grid.18098.380000 0004 1937 0562School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Dalia Galiani
- grid.13992.300000 0004 0604 7563Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Gaisler-Salomon
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel.
| |
Collapse
|
13
|
Restraint Stress in Mice Alters Set of 25 miRNAs Which Regulate Stress- and Depression-Related mRNAs. Int J Mol Sci 2020; 21:ijms21249469. [PMID: 33322800 PMCID: PMC7763317 DOI: 10.3390/ijms21249469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
In the present study, we aim to identify the effect of restrain stress (RS) on the expression of miRNAs in mouse serum. We used three genotypes of animals (mice with knock-out of the gene-encoding norepinephrine transporter, NET-KO; C57BL/6J, and SWR/J) which had previously been shown to display different sensitivity to RS, and focused on miRNAs which were altered by RS in the serum of all three genotypes. An analysis of miRNAs expression allowed for the identification of a set of 25 differentially expressed miRNAs; 10 were down-regulated compared to an appropriate control group of animals, while 15 were up-regulated. The application of DIANA-miRPath v. 3.0 allowed for the identification of selected pathways (KEGG) and Gene Ontology (GO) categories that were significantly controlled by these miRNAs, while miRWalk v. 3.0-the platform that used the machine learning based algorithm, TaRPmiR-was used to find their targets. The results indicate that 25 miRNAs, identified as altered upon RS in three genotypes of mice, are responsible for regulation of mRNA-encoding proteins that are key for the main hypotheses of depression; therefore, they may help to understand the link between stress and depression at the molecular level.
Collapse
|
14
|
Huang LG, Luo YH, Xu JW, Lu QC. Plasma Exosomal MiRNAs Expression Profile in Mesial Temporal Lobe Epilepsy With Hippocampal Sclerosis: Case-Control Study and Analysis of Potential Functions. Front Mol Neurosci 2020; 13:584828. [PMID: 33240042 PMCID: PMC7680973 DOI: 10.3389/fnmol.2020.584828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
Background To explore an expression profile in plasma exosomal miRNAs of mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE + HS) patients and investigate the associated clinical significance and putative pathways involved. Methods Plasma exosomal miRNAs were measured in six mTLE + HS patients who were confirmed with pre-surgical stereo-electroencephalography and six without hippocampal sclerosis (mTLE−HS) using Illumina HiSeq 2500. Then six dysregulated miRNAs were chosen for validation in an independent sample of 18 mTLE + HS patients and 18 mTLE−HS controls using RT-qPCR. Receiver operating characteristic curve was conducted to evaluate the diagnostic value of miRNAs in HS. Bioinformatic analyses were conducted to reveal in which pathways these miRNAs were involved. Results We revealed that a total of 42 exosomal miRNAs were differentially expressed in mTLE + HS. Among them, 25 were increased and 17 decreased. After validation, hsa-miR-129-5p, -214-3p, -219a-5p, and -34c-5p were confirmed as being upregulated, while hsa-miR-421 and -184 were significantly downregulated in mTLE + HS. Moreover, hsa-miR-184 had the best diagnostic value for discriminating mTLE + HS with 88.9% sensitivity and 83.3% specificity. These six miRNAs regulated several genes from neurotrophin-, hippo-, p53-, TGF- beta-, HIF- 1-, mTOR-related pathways. Conclusion Six miRNAs were dysregulated in mTLE + HS patients and targeted several genes. This result might facilitate pathological mechanistic studies of miRNAs in HS and represent potential diagnostic biomarkers. These provided the rationale for further confirmation studies in larger cohorts of prospective patients.
Collapse
Affiliation(s)
- Li-Gang Huang
- Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Minhang Hospital, Fudan University, Shanghai, China
| | - Yun-He Luo
- Minhang Hospital, Fudan University, Shanghai, China
| | - Ji-Wen Xu
- School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qin-Chi Lu
- School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Lo Iacono L, Bussone S, Andolina D, Tambelli R, Troisi A, Carola V. Dissecting major depression: The role of blood biomarkers and adverse childhood experiences in distinguishing clinical subgroups. J Affect Disord 2020; 276:351-360. [PMID: 32871665 DOI: 10.1016/j.jad.2020.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/06/2020] [Accepted: 07/11/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The syndromic diagnosis of major depressive disorder (MDD) is associated with individual differences in prognosis, course, treatment response, and outcome. There is evidence that patients with a history to adverse childhood experiences (ACEs) may belong to a distinct clinical subgroup. The combination of data on ACEs and blood biomarkers could allow the identification of diagnostic MDD subgroups. METHODS We selected several blood markers (global DNA methylation, and VEGF-a, TOLLIP, SIRT1, miR-34a genes) among factors that contribute to the pathogenetic mechanisms of MDD. We examined their level in 37 MDD patients and 30 healthy subjects. ACEs were measured by the Parental Bonding Instrument and the Childhood Trauma Questionnaire. RESULTS We found significant differences between patients and healthy subjects in three biomarkers (TOLLIP, VEGF-a, and global DNA methylation), independently from the confounding effect of parental care received. By contrast, SIRT1 differences were modulated by quality of parental care. The lowest levels of SIRT1 were recorded in patients with active symptoms and low maternal/paternal care. miR-34a and SIRT1 levels were associated with MDD symptoms especially in early-life stressed patients. LIMITATIONS Small sample size, no information on personality comorbidity and suicidal history, cross-sectional definition of remission, and lack of follow-up. CONCLUSIONS Our findings suggest that the levels of global DNA methylation, TOLLIP, and VEGF-a reflect pathophysiological changes associated with MDD that are independent from the long-term effects of low parental care. This study also suggests that SIRT1 may be an additional variable distinguishing the ecophenotype that includes MDD patients with exposure to ACEs.
Collapse
Affiliation(s)
| | - Silvia Bussone
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Via degli Apuli, 1, 00185 Rome, Italy
| | - Diego Andolina
- IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Renata Tambelli
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Via degli Apuli, 1, 00185 Rome, Italy
| | - Alfonso Troisi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valeria Carola
- IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Via degli Apuli, 1, 00185 Rome, Italy.
| |
Collapse
|
16
|
Lo Iacono L, Ielpo D, Accoto A, Di Segni M, Babicola L, D’Addario SL, Ferlazzo F, Pascucci T, Ventura R, Andolina D. MicroRNA-34a Regulates the Depression-like Behavior in Mice by Modulating the Expression of Target Genes in the Dorsal Raphè. Mol Neurobiol 2019; 57:823-836. [DOI: 10.1007/s12035-019-01750-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/26/2019] [Indexed: 01/06/2023]
|
17
|
Zurawek D, Gruca P, Antkiewicz-Michaluk L, Dziedzicka-Wasylewska M. Resilient Phenotype in Chronic Mild Stress Paradigm Is Associated with Altered Expression Levels of miR-18a-5p and Serotonin 5-HT 1a Receptor in Dorsal Part of the Hippocampus. Mol Neurobiol 2019; 56:7680-7693. [PMID: 31098953 PMCID: PMC6815272 DOI: 10.1007/s12035-019-1622-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022]
Abstract
Disturbed serotonergic signaling in the hippocampus observed in many individuals vulnerable to stress has been suggested as one of the primary factors contributing to the development of depression. However, little is known about the physiology of the brain in the resilient phenotype. Resilient subjects maintain a positive mood and psychological balance despite being under the stress influence. In our study, we generated stress-vulnerable and resilient rats by using a chronic mild stress (CMS) paradigm. Using different molecular approaches, we revealed that resilient animals exhibited a significantly decreased expression level of miR-18a-5p and, in the same time, an elevated level of 5-HT1AR in dorsal, but not ventral, part of the hippocampus. Described biochemical changes were not observed in animals behaviorally vulnerable to stress. Further, in vitro analysis showed that miR-18a-5p may be a negative epigenetic regulator of 5-HT1AR since the treatment of adult hippocampal neurons with miR-18a-5p mimic significantly lowered the expression level of mRNA encoding 5-HT1AR. Moreover, bioinformatic analysis of potential target genes expressed in the hippocampus and being regulated by miR-18a-5p showed that this microRNA may regulate biological processes, such as axonogenesis, which are important in the functioning of the hippocampus in both rats and humans. All these molecular features may contribute to serotonergic homeostatic balance at the level of serotonin turnover observed in hippocampi of resilient but not stress-vulnerable rats. Delineation of further molecular and biochemical markers underlying resilience to stress may contribute to the development of new antidepressant strategies which will restore resilient phenotype in depressed patients.
Collapse
Affiliation(s)
- Dariusz Zurawek
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland. .,Polish Academy of Sciences, Department of Pharmacology, Institute of Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland.
| | - Piotr Gruca
- Polish Academy of Sciences, Department of Pharmacology, Institute of Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Lucyna Antkiewicz-Michaluk
- Polish Academy of Sciences, Department of Neurochemistry, Institute of Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Marta Dziedzicka-Wasylewska
- Polish Academy of Sciences, Department of Pharmacology, Institute of Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| |
Collapse
|
18
|
Lacal I, Ventura R. Epigenetic Inheritance: Concepts, Mechanisms and Perspectives. Front Mol Neurosci 2018; 11:292. [PMID: 30323739 PMCID: PMC6172332 DOI: 10.3389/fnmol.2018.00292] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023] Open
Abstract
Parents’ stressful experiences can influence an offspring’s vulnerability to many pathological conditions, including psychopathologies, and their effects may even endure for several generations. Nevertheless, the cause of this phenomenon has not been determined, and only recently have scientists turned to epigenetics to answer this question. There is extensive literature on epigenetics, but no consensus exists with regard to how and what can (and must) be considered to study and define epigenetics processes and their inheritance. In this work, we aimed to clarify and systematize these concepts. To this end, we analyzed the dynamics of epigenetic changes over time in detail and defined three types of epigenetics: a direct form of epigenetics (DE) and two indirect epigenetic processes—within (WIE) and across (AIE). DE refers to changes that occur in the lifespan of an individual, due to direct experiences with his environment. WIE concerns changes that occur inside of the womb, due to events during gestation. Finally, AIE defines changes that affect the individual’s predecessors (parents, grandparents, etc.), due to events that occur even long before conception and that are somehow (e.g., through gametes, the intrauterine environment setting) transmitted across generations. This distinction allows us to organize the main body of epigenetic evidence according to these categories and then focus on the latter (AIE), referring to it as a faster route of informational transmission across generations—compared with genetic inheritance—that guides human evolution in a Lamarckian (i.e., experience-dependent) manner. Of the molecular processes that are implicated in this phenomenon, well-known (methylation) and novel (non-coding RNA, ncRNA) regulatory mechanisms are converging. Our discussion of the chief methods that are used to study epigenetic inheritance highlights the most compelling technical and theoretical problems of this discipline. Experimental suggestions to expand this field are provided, and their practical and ethical implications are discussed extensively.
Collapse
Affiliation(s)
- Irene Lacal
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and "Daniel Bovet" Center, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, IRCCS, Rome, Italy
| |
Collapse
|