1
|
Wen J, Xu Q, Li J, Shen X, Zhou X, Huang J, Liu S. Sodium butyrate exerts a neuroprotective effect in rats with acute carbon monoxide poisoning by activating autophagy through the mTOR signaling pathway. Sci Rep 2024; 14:4610. [PMID: 38409245 PMCID: PMC10897214 DOI: 10.1038/s41598-024-55198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Acute carbon monoxide (CO) poisoning is a prevalent type of poisoning that causes significant harm globally. Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is a severe complication that occurs after acute CO poisoning; however, the exact underlying pathological cause of DEACMP remains unclear. Accumulating evidence indicates that abnormal inflammation and immune-mediated brain damage, cellular apoptosis and autophagy, and direct neuronal toxicity are involved in the development of delayed neurologic sequelae. Sodium butyrate, a histone deacetylase inhibitor, has gained increasing attention for its numerous beneficial effects on various diseases, such as obesity, diabetes, inflammatory diseases, and cerebral damage. In this study, an acute carbon monoxide poisoning (ACOP) model is established in rats to investigate the mechanism of CO poisoning and the therapeutic potential of sodium butyrate. The results suggested that the ACOP rats had impaired spatial memory, and cell apoptosis was observed in the hippocampi with activated autophagy. Sodium butyrate treatment further increased the activation of autophagy in the hippocampi of CO-exposed rats, inhibited apoptosis, and consolidated spatial memory. These findings indicated that sodium butyrate may improve memory and cognitive function in ACMP rats by promoting autophagy and inhibiting apoptosis.
Collapse
Affiliation(s)
- Jing Wen
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- North Sichuan Medical College Innovation Center for Science and Technology, Nanchong, 637000, China
| | - Qiong Xu
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Li
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xuanyang Shen
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- North Sichuan Medical College Innovation Center for Science and Technology, Nanchong, 637000, China
| | - Xiaolong Zhou
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Huang
- North Sichuan Medical College Innovation Center for Science and Technology, Nanchong, 637000, China
| | - Shiping Liu
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
2
|
Gao Y, Ma K, Zhu Z, Zhang Y, Zhou Q, Wang J, Guo X, Luo L, Wang H, Peng K, Liu M. Modified Erchen decoction ameliorates cognitive dysfunction in vascular dementia rats via inhibiting JAK2/STAT3 and JNK/BAX signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154797. [PMID: 37037084 DOI: 10.1016/j.phymed.2023.154797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Vascular dementia (VaD) is one of the most common clinical syndromes of progressive neurocognitive dysfunction with uncertain mechanisms. Modified Erchen decoction (MECD), developed from "Erchen decoction (ECD)" recorded in "Taiping Huimin Heji Jufang", showed a good effect in the treatment of VaD. However, its therapeutic mechanism is still unclear. PURPOSE This study aimed to elucidate the multi-target mechanisms of MECD against VaD in vivo and in vitro. METHODS VaD model was established by two-vessel obstruction (2-VO) in Sprague-Dawley rats. Six groups, including the control, 2-VO operation, MECD treatment (2.5, 5.0 and 10.0 g kg-1 d-1), donepezil hydrochloride (positive control, 0.45 g kg-1 d-1) were designed in the whole experiment. After oral administration for 4 weeks, the effects of MECD were verified by behavioral experiments, histological observation, and biochemical index analysis. The chemical profiling of MECD was performed by UHPLC-Orbitrap Fusion-HRMS, and a "compound-target-pathway" multivariate network was constructed to validate and elucidate its pharmacological mechanisms. RESULTS Compared with 2-VO group, MECD treatment significantly alleviated anxiety and improved spatial memory in VaD rats according to the open field test (OFT) and Y-maze test. A significant increase in neuron number was observed from hematoxylin and eosin (H&E) stained images in cornu ammonis 1 (CA1) of the hippocampal region after MECD treatment. On the one hand, MECD reduced the plasma levels of triglyceride (TG), low-density lipoprotein (LDL), malondialdehyde (MDA), and amyloid-beta 42 (Aβ42), and inhibited mRNA expression of interleukin-1 beta (Il-1β) and Il-6 in the hippocampus. On the other hand, superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) were significantly increased after treatment with MECD. Moreover, MECD reduced the mRNA expression and protein expression of janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), c-Jun N-terminal kinase (JNK), and BCL2-associated X (BAX) in the brain of 2-VO rats. Furthermore, 71 compounds were identified from the extract of MECD. Among them, liquiritin and isochlorogenic acid C gave inhibiting effects on the mRNA expression of Jnk. In addition, liquiritin and hesperetin were conformed with the inhibition of Jak2 transcription level in vitro experiments. CONCLUSION MECD has demonstrated a significant amelioration effect on cognitive dysfunction in VaD rats via JAK2/STAT3 and JNK/BAX signaling pathways, which represents an innovative insight into the "activate blood and eliminate phlegm" theory.
Collapse
Affiliation(s)
- Yinhuang Gao
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ke Ma
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhibo Zhu
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yan Zhang
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiong Zhou
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaowen Guo
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Liuting Luo
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haitao Wang
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kang Peng
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Menghua Liu
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Yi T, Gao P, Hou M, Lv H, Huang M, Gao S, He J, Yang D, Chen W, Zhu T, Yu C, Liu F, Yin H, Jin S. The mechanisms underlying the actions of Xuefu Zhuyu decoction pretreatment against neurological deficits after ischemic stroke in mice: The mediation of glymphatic function by aquaporin-4 and its anchoring proteins. Front Pharmacol 2022; 13:1053253. [PMID: 36582539 PMCID: PMC9792381 DOI: 10.3389/fphar.2022.1053253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke (IS) has been associated with an impairment in glymphatic function. Xuefu Zhuyu Decoction (XFZYD) is widely used in the prevention and treatment of ischemic stroke. We hypothesized that Xuefu Zhuyu decoction pretreatment could attenuate early neurological deficits after ischemic stroke by enhancing the function of the glymphatic system. To prove our hypothesis, we carried out temporary middle cerebral artery occlusion and reperfusion surgery on C57BL/6 mice and then measured neurological score, infarct size and performed hematoxylin-eosin staining to assess stroke outcomes after 24 h of reperfusion. Subsequently, we injected fluorescent tracers in to the cisterna magna and evaluated tracer distribution in coronal brain sections. The polarization of aquaporin-4 (AQP4), colocalization of aquaporin-4, α-dystroglycan, β-dystroglycan and agrin were determined by immunofluorescence. Our research showed that pretreatment with Xuefu Zhuyu decoction significantly alleviated neurological scores, neurological deficits and pathological abnormalities in a mouse model of ischemic stroke. Importantly, Xuefu Zhuyu decoction pretreatment enhanced cerebrospinal fluid influx, protected aquaporin-4 depolarization and promoted the colocalization of aquaporin-4 with its anchoring proteins in the brain. Our findings highlight novel mechanisms underlying the neuroprotective effect of Xuefu Zhuyu decoction pretreatment on ischemic stroke-induced brain damage through the glymphatic system. Xuefu Zhuyu decoction pretreatment may offer a promising approach to slow the onset and progression of ischemic stroke.
Collapse
Affiliation(s)
- Ting Yi
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Gao
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng Hou
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Lv
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengyuan Huang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Gao
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong He
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongdong Yang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weiyin Chen
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianmin Zhu
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chang Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fuyou Liu
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haiyan Yin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Haiyan Yin, ; Shuoguo Jin,
| | - Shuoguo Jin
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Haiyan Yin, ; Shuoguo Jin,
| |
Collapse
|
4
|
Laminin as a Biomarker of Blood-Brain Barrier Disruption under Neuroinflammation: A Systematic Review. Int J Mol Sci 2022; 23:ijms23126788. [PMID: 35743229 PMCID: PMC9224176 DOI: 10.3390/ijms23126788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Laminin, a non-collagenous glycoprotein present in the brain extracellular matrix, helps to maintain blood–brain barrier (BBB) integrity and regulation. Neuroinflammation can compromise laminin structure and function, increasing BBB permeability. The aim of this paper is to determine if neuroinflammation-induced laminin functional changes may serve as a potential biomarker of alterations in the BBB. The 38 publications included evaluated neuroinflammation, BBB disruption, and laminin, and were assessed for quality and risk of bias (protocol registered in PROSPERO; CRD42020212547). We found that laminin may be a good indicator of BBB overall structural integrity, although changes in expression are dependent on the pathologic or experimental model used. In ischemic stroke, permanent vascular damage correlates with increased laminin expression (β and γ subunits), while transient damage correlates with reduced laminin expression (α subunits). Laminin was reduced in traumatic brain injury and cerebral hemorrhage studies but increased in multiple sclerosis and status epilepticus studies. Despite these observations, there is limited knowledge about the role played by different subunits or isoforms (such as 411 or 511) of laminin in maintaining structural architecture of the BBB under neuroinflammation. Further studies may clarify this aspect and the possibility of using laminin as a biomarker in different pathologies, which have alterations in BBB function in common.
Collapse
|
5
|
Gao Y, Liu J, Wang J, Liu Y, Zeng LH, Ge W, Ma C. Proteomic analysis of human hippocampal subfields provides new insights into the pathogenesis of Alzheimer's disease and the role of glial cells. Brain Pathol 2022; 32:e13047. [PMID: 35016256 PMCID: PMC9245939 DOI: 10.1111/bpa.13047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 01/23/2023] Open
Abstract
The hippocampus and entorhinal cortex (EC), the earliest affected areas, are considered relative to early memory loss in Alzheimer's disease (AD). The hippocampus is composed of heterogeneous subfields that are affected in a different order and varying degrees during AD pathogenesis. In this study, we conducted a comprehensive proteomic analysis of the hippocampal subfields and EC region in human postmortem specimens obtained from the Chinese human brain bank. Bioinformatics analysis identified region‐consistent differentially expressed proteins (DEPs) which associated with astrocytes, and region‐specific DEPs which associated with oligodendrocytes and the myelin sheath. Further analysis illuminated that the region‐consistent DEPs functioned as connection of region‐specific DEPs. Moreover, in region‐consistent DEPs, the expression level of S100A10, a marker of protective astrocytes, was increased in both aging and AD patients. Immunohistochemical analysis confirmed an increase in the number of S100A10‐positive astrocytes in all hippocampal subfields and the EC region of AD patients. Dual immunofluorescence results further showed that S100A10‐positive astrocytes contained apoptotic neuron debris in AD patients, suggesting that S100A10‐positive astrocytes may protect brain through phagocytosis of apoptotic neurons. In region‐specific DEPs, the proteome showed a specific reduction of oligodendrocytes and myelin markers in CA1, CA3, and EC regions of AD patients. Immunohistochemical analysis confirmed the loss of myelin in EC region. Above all, these results highlight the role of the glial cells in AD and provide new insights into the pathogenesis of AD and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yanpan Gao
- School of Medicine, Zhejiang University City College, Hangzhou, China.,State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiayu Wang
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Yifan Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling-Hui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Hebei Key Laboratory of Chronic Kidney Diseases and Bone Metabolism, Affiliated Hospital of Hebei University, Baoding, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Sharma S, Behl T, Kumar A, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S. Targeting Endothelin in Alzheimer's Disease: A Promising Therapeutic Approach. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7396580. [PMID: 34532504 PMCID: PMC8440097 DOI: 10.1155/2021/7396580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/07/2021] [Indexed: 11/18/2022]
Abstract
Endothelin is a chemical mediator that helps in maintaining balance within the blood-brain barrier by regulating the levels of toxicants and molecules which pass through the brain, suggesting that a rise in its production determines Alzheimer's disease. The inequity in the amyloid β occurs due to a problem in its clearance from the brain initiating the production of reactive oxygen species and superoxide that activates a cascade wherein the release of inflammatory mediators and various enzymes like endothelin-converting enzymes take place. Furthermore, the cascade increases the levels of endothelin in the brain from endothelial cells. Endothelin levels are upregulated, which can be regulated by modulating the action of endothelin-converting enzymes and endothelin receptors. Hence, endothelin paves a pathway in the treatment of Alzheimer's disease. In this article, we have covered various mechanisms and preclinical studies that support and direct endothelin involvement in the progression of Alzheimer's disease by using various search tools such as PubMed, Science Direct, and Medline. Conclusive outcome data were extracted that all together defy contrivance pathways, potential drugs, endothelin receptors, and endothelin enzymes in our article giving profound importance to target endothelin for prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Shiwali Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anoop Kumar
- Delhi Pharmaceutical Sciences and Research University, Delhi, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Amity Institute of Pharmacy, Amity University, Haryana, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
7
|
Yan BC, Cao J, Liu J, Gu Y, Xu Z, Li D, Gao L. Dietary Fe 3O 4 Nanozymes Prevent the Injury of Neurons and Blood-Brain Barrier Integrity from Cerebral Ischemic Stroke. ACS Biomater Sci Eng 2020; 7:299-310. [PMID: 33346645 DOI: 10.1021/acsbiomaterials.0c01312] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebral ischemic stroke stimulates excessive reactive oxygen species, which lead to blood-brain-barrier disruption, neuron death, and aggravated cerebral infarction. Thus, it is critical to develop an antioxidant strategy for stroke treatment. Herein, we report a dietary strategy to promote stroke healing using iron oxide (Fe3O4) nanoparticles with intrinsic enzyme-like activities. We find that Fe3O4 nanozymes exhibit triple enzyme-like activities, peroxidase, catalase, and superoxide dismutase, thus potentially possessing the ability to regulate the ROS level. Importantly, intragastric administration of PEG-modified Fe3O4 nanozymes significantly reduces cerebral infarction and neuronal death in a rodent model following cerebral ischemic stroke. Ex vivo analysis shows that PEG-modified Fe3O4 nanozymes localize in the cerebral vasculature, ameliorate local redox state with decreased malondialdehyde and increased Cu/Zn SOD, and facilitate blood-brain-barrier recovery by elevating ZO-1 and Claudin-5 in the hippocampus. Altogether, our results suggest that dietary PEG-modified Fe3O4 nanozymes can facilitate blood-brain-barrier reconstruction and protect neurons following ischemic stroke.
Collapse
Affiliation(s)
- Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, People's Republic of China.,Department of Neurology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, PR China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Jianwen Cao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, People's Republic of China
| | - Jiajia Liu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, People's Republic of China
| | - Yunhao Gu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, People's Republic of China
| | - Zhuobin Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, People's Republic of China
| | - Dandan Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, People's Republic of China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of BiophysicsChinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
8
|
Simões-Pires EN, Ferreira ST, Linden R. Roles of glutamate receptors in a novel in vitro model of early, comorbid cerebrovascular, and Alzheimer's diseases. J Neurochem 2020; 156:539-552. [PMID: 32683713 DOI: 10.1111/jnc.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022]
Abstract
Systemic multimorbidity is highly prevalent in the elderly and, remarkably, coexisting neuropathological markers of Alzheimer's (AD) and cerebrovascular (CVD) diseases are found at autopsy in most brains of patients clinically diagnosed as AD. Little is known on neurodegeneration peculiar to comorbidities, especially at early stages when pathogenesis may propagate at subclinical levels. We developed a novel in vitro model of comorbid CVD/AD in organotypic hippocampal cultures, by combining oxygen-glucose deprivation (OGD) and exposure to amyloid-Aβ oligomers (AβOs), both applied at levels subtoxic to neurons when used in isolation. We focused on synaptic proteins and the roles of glutamate receptors, which have been implicated in many basic and clinical approaches to either CVD or AD. Subtoxic insults by OGD and AβOs synergized to reduce levels of synaptophysin (SYP) and PSD-95 without cell death, while effects of antagonists of either metabotropic or ionotropic glutamate receptors were distinct from reports in models of isolated CVD or AD. In particular, modulation of glutamate receptors differentially impacted SYP and PSD-95, and antagonists of a single receptor subtype had distinct effects when either isolated or combined. Our findings highlight the complexity of CVD/AD comorbidity, help understand variable responses to glutamate receptor antagonists in patients diagnosed with AD and may contribute to future development of therapeutics based on investigation of the pattern of progressive comorbidity.
Collapse
Affiliation(s)
| | - Sergio T Ferreira
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.,Instituto de Bioquímica Médica Leopoldo de Meis, UFRJ, Rio de Janeiro, Brazil
| | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Amtul Z, Najdat AN, Hill DJ, Arany EJ. Differential temporal and spatial post-injury alterations in cerebral cell morphology and viability. J Comp Neurol 2020; 529:421-433. [PMID: 32447764 DOI: 10.1002/cne.24955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 01/05/2023]
Abstract
Combination of ischemia and β-amyloid (Aβ) toxicity has been shown to simultaneously increase neuro-inflammation, endogenous Aβ deposition, and neurodegeneration. However, studies on the evolution of infarct and panorama of cellular degeneration as a synergistic or overlapping mechanism between ischemia and Aβ toxicity are lacking. Here, we compared fluorojade B (FJB) and hematoxylin and eosin (H&E) stains primarily to examine the chronology of infarct, and the viability and morphological changes in neuroglia and neurons located in different brain regions on d1, d7, and d28 post Aβ toxicity and endothelin-1 induced ischemia (ET1) in rats. We demonstrated a regional difference in cellular degeneration between cortex, corpus callosum, striatum, globus pallidus, and thalamus after cerebral injury. Glial cells in the cortex and corpus callosum underwent delayed FJB staining from d7 to d28, but neurons in cortex disappeared within the first week of cerebral injury. Striatal lesion core and globus pallidus of Aβ + ET1 rats showed extensive degeneration of neuronal cells compared with ET1 rats alone starting from d1. Differential and exacerbated expressions of cyclooxygenase-2 might be the cause of excessive neuronal demise in the striatum of Aβ + ET1 rats. Such an investigation may improve our understanding to identify and manipulate a critical therapeutic window post comorbid injury.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada
| | - Abdullah N Najdat
- Department of Biology, University of Western Ontario, London, Canada
| | - David J Hill
- Departments of Medicine, Physiology, and Pharmacology, and Pediatrics, University of Western Ontario, London, Canada.,Lawson Health Research Institute, London, Ontario, Canada
| | - Edith J Arany
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Canada
| |
Collapse
|
10
|
Amtul Z, Randhawa J, Najdat AN, Hill DJ, Arany EJ. Role of Delayed Neuroglial Activation in Impaired Cerebral Blood Flow Restoration Following Comorbid Injury. Cell Mol Neurobiol 2020; 40:369-380. [PMID: 31522299 DOI: 10.1007/s10571-019-00735-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/04/2019] [Indexed: 11/27/2022]
Abstract
Besides other causes, ischemia and Alzheimer's disease pathology is also linked to decreased cerebral blood flow (CBF). There is little or no consensus about the role of neuroglial cells in maintaining CBF in various neuropathologies. This consensus becomes scarcer when it comes to clinical and experimental cases of comorbid Abeta-amyloid (Aβ) toxicity and ischemia. Here, a comorbid rat model of Aβ toxicity and endothelin-1 induced ischemia (ET1) not only demonstrated the appearance of axotomized phagocytosed pyknotic neurons (NeuN) immediately after the injury, but also showed a diversity of continuously changing neuroglia (MHC Class II/OX6, Iba1) and macrophage (Iba1/CD68) phenotypes with round, stout somas, and retracted processes. This is indicative of a response to a concomitant increase in large fluid-filled spaces due to the vascular leakage. Ironically 4 weeks after the injury despite a conclusive reduction in neurons, CBF restoration in ET1 rats was associated with a massive increase in neuroglial cell numbers, hypertrophy, ramification, and soma sizes bordering the continuously reducing lesion core and inflamed vasculature, possibly to shield their leaky phenotype. Astrocytes were also found to be releasing matrix metalloproteinase9 (MMP9), which stabilized matrix ligand β-dystroglycan (β-DG) in repaired or functional vessels. Changing neuroglia phenotypes, responses, motility, astrocytic recruitment of MMP9, and β-DG stabilization implies the role of communication between neuroglia and endothelium in recovering CBF, in the absence of neurons, in ET1 rats compared to Aβ+ET1 rats, which showed characteristics delayed neuroglial activation. Stimulation of timely neuroglial reactivity may serve as a viable strategy to compensate for the neuronal loss in restoring CBF in comorbid cases of ischemia and Aβ toxicity.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1, Canada.
| | - Jasmine Randhawa
- Department of Biology, University of Western Ontario, London, N6A 5B7, Canada
| | - Abdullah N Najdat
- Department of Biology, University of Western Ontario, London, N6A 5B7, Canada
| | - David J Hill
- Departments of Medicine, Physiology, and Pharmacology, and Pediatrics, University of Western Ontario, London, N6A 5C1, Canada
- Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Edith J Arany
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, N6A 5C1, Canada
| |
Collapse
|
11
|
Amtul Z, Frías C, Randhawa J, Hill DJ, Arany EJ. The spatial cerebral damage caused by larger infarct and β-amyloid toxicity is driven by the anatomical/functional connectivity. J Comp Neurol 2020; 528:48-60. [PMID: 31265125 DOI: 10.1002/cne.24738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/04/2019] [Accepted: 06/18/2019] [Indexed: 11/07/2022]
Abstract
Large cerebral infarctions are major predictors of death and severe disability from stroke. Conversely, data concerning these types of infarctions and the affected adjacent brain circuits are scarce. It remains to be determined if the co-morbid concurrence of large infarct and β-amyloid (Aβ) toxicity can precipitate the early development of dementia. Here, we described a dose-dependent effect of a unilateral striatal injection of vasoconstrictive endothelin-1 (ET-1) along with Aβ toxicity on CNS pathogenesis; driven by the anatomical and functional networks within a brain circuit. After 21 days of treatment, a high dose (60 pmol) of ET-1 (E60) alone caused the greatest increase in neuroinflammation, mainly in the ipsilateral striatum and distant regions with synaptic links to the striatal lesion such as white matter (subcortical white matter, corpus callosum, internal capsule, anterior commissure), gray matter (globus pallidus, thalamus), and cortices (cingulate, motor, somatosensory, entorhinal). The combined E60 + Aβ treatment also extended perturbation in the contralateral hemisphere of these rats, such as increased deposition of amyloid precursor protein fragments associated with the appearance of degenerating cells and the leakage of laminin from the basement membrane across a compromised blood-brain barrier. However, the cerebral damage induced by the 6 pmol ET-1 (E6), Aβ and E6 + Aβ rats was not detrimental enough to injure the complete network. The appreciation of the causal interactions among distinct anatomical units in the brain after ischemia and Aβ toxicity will help in the design of effective and alternative therapeutics that may disassociate the synergistic or additive association between the infarcts and Aβ toxicity.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Carmen Frías
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Jasmine Randhawa
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - David J Hill
- Department of Medicine, Physiology, and Pharmacology, and Pediatrics, University of Western Ontario, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada
| | - Edith J Arany
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
12
|
Developing Trojan horses to induce, diagnose and suppress Alzheimer’s pathology. Pharmacol Res 2019; 149:104471. [DOI: 10.1016/j.phrs.2019.104471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
|
13
|
Amtul Z, Yang J, Lee TY, Cechetto DF. Pathological Changes in Microvascular Morphology, Density, Size and Responses Following Comorbid Cerebral Injury. Front Aging Neurosci 2019; 11:47. [PMID: 30971910 PMCID: PMC6445844 DOI: 10.3389/fnagi.2019.00047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Aberrations in brain microcirculation and the associated increase in blood-brain-barrier (BBB) permeability in addition to neuroinflammation and Aβ deposition observed in Alzheimer’s disease (AD) and ischemia have gained considerable attention recently. However, the role of microvascular homeostasis as a pathogenic substrate to disturbed microperfusion as well as an overlapping etiologic mechanism between AD and ischemia has not been thoroughly explored. In this study, we employ temporal histopathology of cerebral vasculature in a rat model of β-amyloid (Aβ) toxicity and endothelin-1 induced-ischemia (ET1) to investigate the panorama of cerebral pathology and the protein expression on d1, d7, and d28 post-injury. The combination of Aβ and ET1 pathological states leads to an alteration in microvascular anatomy, texture, diameter, density, and protein expression, in addition to disturbed vessel-matrix-connections, inter-compartmental water exchange and basement membrane profile within the lesion epicenter localized in the striatum of Aβ+ET1 brains compared to Aβ and ET1 rats. We conclude that the neural microvascular network, in addition to the neural tissue, is not only sensitive to structural deterioration but also serves as an underlying vascular etiology between ischemia and AD pathologies. Such investigation can provide prospects to appreciate the interrelationships between structure and responses of cerebral microvasculature and to provide a venue for vascular remodeling as a new treatment strategy.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Jun Yang
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Ting-Yim Lee
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - David F Cechetto
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|