1
|
Santiago-Balmaseda A, Aguirre-Orozco A, Valenzuela-Arzeta IE, Villegas-Rojas MM, Pérez-Segura I, Jiménez-Barrios N, Hurtado-Robles E, Rodríguez-Hernández LD, Rivera-German ER, Guerra-Crespo M, Martinez-Fong D, Ledesma-Alonso C, Diaz-Cintra S, Soto-Rojas LO. Neurodegenerative Diseases: Unraveling the Heterogeneity of Astrocytes. Cells 2024; 13:921. [PMID: 38891053 PMCID: PMC11172252 DOI: 10.3390/cells13110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The astrocyte population, around 50% of human brain cells, plays a crucial role in maintaining the overall health and functionality of the central nervous system (CNS). Astrocytes are vital in orchestrating neuronal development by releasing synaptogenic molecules and eliminating excessive synapses. They also modulate neuronal excitability and contribute to CNS homeostasis, promoting neuronal survival by clearance of neurotransmitters, transporting metabolites, and secreting trophic factors. Astrocytes are highly heterogeneous and respond to CNS injuries and diseases through a process known as reactive astrogliosis, which can contribute to both inflammation and its resolution. Recent evidence has revealed remarkable alterations in astrocyte transcriptomes in response to several diseases, identifying at least two distinct phenotypes called A1 or neurotoxic and A2 or neuroprotective astrocytes. However, due to the vast heterogeneity of these cells, it is limited to classify them into only two phenotypes. This review explores the various physiological and pathophysiological roles, potential markers, and pathways that might be activated in different astrocytic phenotypes. Furthermore, we discuss the astrocyte heterogeneity in the main neurodegenerative diseases and identify potential therapeutic strategies. Understanding the underlying mechanisms in the differentiation and imbalance of the astrocytic population will allow the identification of specific biomarkers and timely therapeutic approaches in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Annai Aguirre-Orozco
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Irais E. Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Marcos M. Villegas-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Isaac Pérez-Segura
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Natalie Jiménez-Barrios
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Ernesto Hurtado-Robles
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Luis Daniel Rodríguez-Hernández
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Erick R. Rivera-German
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Magdalena Guerra-Crespo
- Laboratorio de Medicina Regenerativa, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico;
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico;
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico;
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| |
Collapse
|
2
|
Papiri G, D’Andreamatteo G, Cacchiò G, Alia S, Silvestrini M, Paci C, Luzzi S, Vignini A. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr Issues Mol Biol 2023; 45:1443-1470. [PMID: 36826039 PMCID: PMC9954863 DOI: 10.3390/cimb45020094] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Multiple sclerosis (MS) represents the most common acquired demyelinating disorder of the central nervous system (CNS). Its pathogenesis, in parallel with the well-established role of mechanisms pertaining to autoimmunity, involves several key functions of immune, glial and nerve cells. The disease's natural history is complex, heterogeneous and may evolve over a relapsing-remitting (RRMS) or progressive (PPMS/SPMS) course. Acute inflammation, driven by infiltration of peripheral cells in the CNS, is thought to be the most relevant process during the earliest phases and in RRMS, while disruption in glial and neural cells of pathways pertaining to energy metabolism, survival cascades, synaptic and ionic homeostasis are thought to be mostly relevant in long-standing disease, such as in progressive forms. In this complex scenario, many mechanisms originally thought to be distinctive of neurodegenerative disorders are being increasingly recognized as crucial from the beginning of the disease. The present review aims at highlighting mechanisms in common between MS, autoimmune diseases and biology of neurodegenerative disorders. In fact, there is an unmet need to explore new targets that might be involved as master regulators of autoimmunity, inflammation and survival of nerve cells.
Collapse
Affiliation(s)
- Giulio Papiri
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Giordano D’Andreamatteo
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Gabriella Cacchiò
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Sonila Alia
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Mauro Silvestrini
- Neurology Unit, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Cristina Paci
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Simona Luzzi
- Neurology Unit, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Arianna Vignini
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
- Correspondence:
| |
Collapse
|
3
|
Pavelek Z, Soucek O, Krejsek J, Sejkorova I, Vysata O, Klimová B, Angelucci F, Stourac P, Valis M, Peterka M, Sobisek L, Novotny M. Assessment of Functional Capacity of Immune System in Patients with Multiple Sclerosis using QuantiFERON Monitor. J Immunol Res 2023; 2023:4653627. [PMID: 37064009 PMCID: PMC10104739 DOI: 10.1155/2023/4653627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/18/2023] Open
Abstract
Background The QuantiFERON®-Monitor (QFM) is an assay that measures interferon-γ production and was developed to provide an objective marker of complex immune response. In this study, we evaluated the use of the QFM test in patients with two forms of multiple sclerosis (MS), relapsing-remitting form treated with fingolimod (fMS) and secondarily progressive form not treated pharmacologically (pMS), and in healthy controls (HC). We hypothesized that IFN-γ levels would be lower in those subjects who are relatively more immunosuppressed and higher in those with normal or activated immune function. Methods This single-center observational study was conducted from November 2020 to October 2021 and compared results in three groups of patients: 86 healthy controls, 96 patients with pMS, and 78 fMS. Combination of lyophilized stimulants was added to 1 ml heparinized whole blood within 8 hr of collection. Plasmatic IFN-γ was measured using the ELISA kit for the QFM and data were obtained in IU/ml. Results The results showed that controls had nearly 2-fold higher levels of IFN-γ (QFM score) in median (q25, q75) 228.00 (112.20, 358.67) than the MS patient groups: pMS 144.80 (31.23, 302.00); fMS 130.50 (39.95, 217.07) which is statistically significant difference P-value: HC vs. pMS = 0.0071; HC vs. fMS = 0.0468. This result was also confirmed by a validation analysis to exclude impact of variable factors, such as disease duration and Expanded Disability Status Scale scores. Conclusions Results showed that controls had higher levels of IFN-γ production than the MS patient groups and suggest that MS patients included in this study have a lower ability of immune system activation than HC. Results confirm that fingolimod is able to suppress production of IFN-γ. The fact that the QFM score of MS patients is significantly lower than that of HC may indicate a dysfunctional state of the immune system in baseline conditions.
Collapse
Affiliation(s)
- Zbysek Pavelek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Ondrej Soucek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Ilona Sejkorova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Oldrich Vysata
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Blanka Klimová
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Francesco Angelucci
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Pavel Stourac
- Department of Neurology, University Hospital and Masaryk University, Brno, Czech Republic
| | - Martin Valis
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Marek Peterka
- Department of Neurology, Faculty of Medicine and University Hospital Plzen, Charles University in Prague, Plzeň, Czech Republic
| | - Lukáš Sobisek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Michal Novotny
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Gorter RP, Baron W. Recent insights into astrocytes as therapeutic targets for demyelinating diseases. Curr Opin Pharmacol 2022; 65:102261. [PMID: 35809402 DOI: 10.1016/j.coph.2022.102261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes are a group of glial cells that exhibit great morphological, transcriptional and functional diversity both in the resting brain and in response to injury. In recent years, astrocytes have attracted increasing interest as therapeutic targets for demyelinating diseases. Following a demyelinating insult, astrocytes can adopt a wide spectrum of reactive states, which can exacerbate damage, but may also facilitate oligodendrocyte progenitor cell differentiation and myelin regeneration. In this review, we provide an overview of recent literature on astrocyte-oligodendrocyte interactions in the context of demyelinating diseases. We highlight novel key roles for astrocytes both during demyelination and remyelination with a focus on potential therapeutic strategies to favor a pro-regenerative astrocyte response in (progressive) multiple sclerosis.
Collapse
Affiliation(s)
- Rianne Petra Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
5
|
Kunkl M, Amormino C, Tedeschi V, Fiorillo MT, Tuosto L. Astrocytes and Inflammatory T Helper Cells: A Dangerous Liaison in Multiple Sclerosis. Front Immunol 2022; 13:824411. [PMID: 35211120 PMCID: PMC8860818 DOI: 10.3389/fimmu.2022.824411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) characterized by the recruitment of self-reactive T lymphocytes, mainly inflammatory T helper (Th) cell subsets. Once recruited within the CNS, inflammatory Th cells produce several inflammatory cytokines and chemokines that activate resident glial cells, thus contributing to the breakdown of blood-brain barrier (BBB), demyelination and axonal loss. Astrocytes are recognized as key players of MS immunopathology, which respond to Th cell-defining cytokines by acquiring a reactive phenotype that amplify neuroinflammation into the CNS and contribute to MS progression. In this review, we summarize current knowledge of the astrocytic changes and behaviour in both MS and experimental autoimmune encephalomyelitis (EAE), and the contribution of pathogenic Th1, Th17 and Th1-like Th17 cell subsets, and CD8+ T cells to the morphological and functional modifications occurring in astrocytes and their pathological outcomes.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
6
|
Ketamine Alters Functional Plasticity of Astroglia: An Implication for Antidepressant Effect. Life (Basel) 2021; 11:life11060573. [PMID: 34204579 PMCID: PMC8234122 DOI: 10.3390/life11060573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Ketamine, a non-competitive N–methyl–d–aspartate receptor (NMDAR) antagonist, exerts a rapid, potent and long-lasting antidepressant effect, although the cellular and molecular mechanisms of this action are yet to be clarified. In addition to targeting neuronal NMDARs fundamental for synaptic transmission, ketamine also affects the function of astrocytes, the key homeostatic cells of the central nervous system that contribute to pathophysiology of major depressive disorder. Here, I review studies revealing that (sub)anesthetic doses of ketamine elevate intracellular cAMP concentration ([cAMP]i) in astrocytes, attenuate stimulus-evoked astrocyte calcium signaling, which regulates exocytotic secretion of gliosignaling molecules, and stabilize the vesicle fusion pore in a narrow configuration, possibly hindering cargo discharge or vesicle recycling. Next, I discuss how ketamine affects astrocyte capacity to control extracellular K+ by reducing vesicular delivery of the inward rectifying potassium channel (Kir4.1) to the plasmalemma that reduces the surface density of Kir4.1. Modified astroglial K+ buffering impacts upon neuronal firing pattern as demonstrated in lateral habenula in a rat model of depression. Finally, I highlight the discovery that ketamine rapidly redistributes cholesterol in the astrocyte plasmalemma, which may alter the flux of cholesterol to neurons. This structural modification may further modulate a host of processes that synergistically contribute to ketamine’s rapid antidepressant action.
Collapse
|
7
|
Kato H, Okuno T. Functional imaging of astrocyte activity. Neural Regen Res 2021; 16:1206-1207. [PMID: 33269778 PMCID: PMC8224105 DOI: 10.4103/1673-5374.300432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiroki Kato
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka Suita, Osaka, Japan
| |
Collapse
|
8
|
Molecular Effects of FDA-Approved Multiple Sclerosis Drugs on Glial Cells and Neurons of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21124229. [PMID: 32545828 PMCID: PMC7352301 DOI: 10.3390/ijms21124229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by peripheral and central inflammatory features, as well as demyelination and neurodegeneration. The available Food and Drug Administration (FDA)-approved drugs for MS have been designed to suppress the peripheral immune system. In addition, however, the effects of these drugs may be partially attributed to their influence on glial cells and neurons of the central nervous system (CNS). We here describe the molecular effects of the traditional and more recent FDA-approved MS drugs Fingolimod, Dimethyl Fumarate, Glatiramer Acetate, Interferon-β, Teriflunomide, Laquinimod, Natalizumab, Alemtuzumab and Ocrelizumab on microglia, astrocytes, neurons and oligodendrocytes. Furthermore, we point to a possible common molecular effect of these drugs, namely a key role for NFκB signaling, causing a switch from pro-inflammatory microglia and astrocytes to anti-inflammatory phenotypes of these CNS cell types that recently emerged as central players in MS pathogenesis. This notion argues for the need to further explore the molecular mechanisms underlying MS drug action.
Collapse
|
9
|
Stenovec M, Li B, Verkhratsky A, Zorec R. Astrocytes in rapid ketamine antidepressant action. Neuropharmacology 2020; 173:108158. [PMID: 32464133 DOI: 10.1016/j.neuropharm.2020.108158] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Ketamine, a general anaesthetic and psychotomimetic drug, exerts rapid, potent and long-lasting antidepressant effect, albeit the cellular and molecular mechanisms of this action are yet to be discovered. Besides targeting neuronal NMDARs fundamental for synaptic transmission, ketamine affects the function of astroglia the key homeostatic cells of the central nervous system that contribute to pathophysiology of psychiatric diseases including depression. Here we review studies revealing that (sub)anaesthetic doses of ketamine elevate intracellular cAMP concentration ([cAMP]i) in astrocytes, attenuate stimulus-evoked astrocyte calcium signalling, which regulates exocytotic secretion of gliosignalling molecules, and stabilize the vesicle fusion pore in a narrow configuration possibly hindering cargo discharge or vesicle recycling. Next we discuss how ketamine affects astroglial capacity to control extracellular K+ by reducing cytoplasmic mobility of vesicles delivering the inward rectifying potassium channel (Kir4.1) to the plasmalemma. Modified astroglial K+ buffering impacts upon neuronal excitability as demonstrated in the lateral habenula rat model of depression. Finally, we highlight the recent discovery that ketamine rapidly redistributes cholesterol in the plasmalemma of astrocytes, but not in fibroblasts nor in neuronal cells. This alteration of membrane structure may modulate a host of processes that synergistically contribute to ketamine's rapid and prominent antidepressant action.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China; Department of Poison Analysis, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Alexei Verkhratsky
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
| | - Robert Zorec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Zhou Y, Cui C, Ma X, Luo W, Zheng SG, Qiu W. Nuclear Factor κB (NF-κB)-Mediated Inflammation in Multiple Sclerosis. Front Immunol 2020; 11:391. [PMID: 32265906 PMCID: PMC7105607 DOI: 10.3389/fimmu.2020.00391] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling cascade has been implicating in a broad range of biological processes, including inflammation, cell proliferation, differentiation, and apoptosis. The past three decades have witnessed a great progress in understanding the impact of aberrant NF-κB regulation on human autoimmune and inflammatory disorders. In this review, we discuss how aberrant NF-κB activation contributes to multiple sclerosis, a typical inflammatory demyelinating disease of the central nervous system, and its involvement in developing potential therapeutic targets.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunping Cui
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjing Luo
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|