4
|
Jiang Z, Zhang A, Wei W, Li S. Ambra1 modulates the sensitivity of mantle cell lymphoma to palbociclib by regulating cyclin D1. Sci Rep 2023; 13:8389. [PMID: 37225761 DOI: 10.1038/s41598-023-35096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a rare B-cell malignancy with a predominantly aggressive clinical course and poor prognosis. Abnormal expression of Ambra1 is closely related to the occurrence and development of various tumors. However, the role of Ambra1 in MCL remains unknown. Here, we performed both in vitro and in vivo experiments to investigate how Ambra1 regulates MCL progression and whether Ambra1 modulates the sensitivity of MCL cells to the CDK4/6 inhibitor palbociclib. We discovered that MCL cells had decreased levels of Ambra1 expression relative to normal B cells. Overexpression of Ambra1 in MCL cells inhibited autophagy, reduced cell proliferation, migration, and invasion, and decreased cyclin D1 level. While knockdown of Ambra1 reduced MCL cell sensitivity to CDK4/6 inhibitor palbociclib. Furthermore, overexpression of cyclin D1 lowered the sensitivity of MCL cells to palbociclib, enhanced cell proliferation, migration, invasion, and autophagy, and inhibited cell apoptosis. When Ambra1 expression was inhibited, the in vivo antitumor effects of palbociclib on MCL were reversed. Ambra1 expression was downregulated but cyclin D1 expression was upregulated in MCL samples, demonstrating a negative correlation between Ambra1 and cyclin D1. Our findings suggest a unique tumor suppressor function for Ambra1 in the development of MCL.
Collapse
Affiliation(s)
- Zhiping Jiang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Ao Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Wenjia Wei
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Shujun Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, China.
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China.
| |
Collapse
|
10
|
Maiani E, Milletti G, Nazio F, Holdgaard SG, Bartkova J, Rizza S, Cianfanelli V, Lorente M, Simoneschi D, Di Marco M, D'Acunzo P, Di Leo L, Rasmussen R, Montagna C, Raciti M, De Stefanis C, Gabicagogeascoa E, Rona G, Salvador N, Pupo E, Merchut-Maya JM, Daniel CJ, Carinci M, Cesarini V, O'sullivan A, Jeong YT, Bordi M, Russo F, Campello S, Gallo A, Filomeni G, Lanzetti L, Sears RC, Hamerlik P, Bartolazzi A, Hynds RE, Pearce DR, Swanton C, Pagano M, Velasco G, Papaleo E, De Zio D, Maya-Mendoza A, Locatelli F, Bartek J, Cecconi F. AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature 2021; 592:799-803. [PMID: 33854232 PMCID: PMC8864551 DOI: 10.1038/s41586-021-03422-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Mammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel-the MYC pathway and the cyclin D-cyclin-dependent kinase (CDK)-retinoblastoma protein (RB) pathway1,2. Both MYC and the cyclin D-CDK-RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability. The autophagic tumour-suppressor protein AMBRA1 has been linked to the control of cell proliferation, but the underlying molecular mechanisms remain poorly understood. Here we show that AMBRA1 is an upstream master regulator of the transition from G1 to S phase and thereby prevents replication stress. Using a combination of cell and molecular approaches and in vivo models, we reveal that AMBRA1 regulates the abundance of D-type cyclins by mediating their degradation. Furthermore, by controlling the transition from G1 to S phase, AMBRA1 helps to maintain genomic integrity during DNA replication, which counteracts developmental abnormalities and tumour growth. Finally, we identify the CHK1 kinase as a potential therapeutic target in AMBRA1-deficient tumours. These results advance our understanding of the control of replication-phase entry and genomic integrity, and identify the AMBRA1-cyclin D pathway as a crucial cell-cycle-regulatory mechanism that is deeply interconnected with genomic stability in embryonic development and tumorigenesis.
Collapse
Affiliation(s)
- Emiliano Maiani
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giacomo Milletti
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Francesca Nazio
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Søs Grønbæk Holdgaard
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jirina Bartkova
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Valentina Cianfanelli
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Mar Lorente
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Miriam Di Marco
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Luca Di Leo
- Melanoma Research Team, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Rikke Rasmussen
- Brain Tumor Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Costanza Montagna
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Marilena Raciti
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Estibaliz Gabicagogeascoa
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Nélida Salvador
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Emanuela Pupo
- Candiolo Cancer Institute, FPO - IRCCS, Turin, Italy
| | - Joanna Maria Merchut-Maya
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- DNA Replication and Cancer Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Marianna Carinci
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Valeriana Cesarini
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Biomedical Sciences, Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Alfie O'sullivan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Yeon-Tae Jeong
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Matteo Bordi
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Francesco Russo
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Silvia Campello
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Angela Gallo
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giuseppe Filomeni
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Letizia Lanzetti
- Candiolo Cancer Institute, FPO - IRCCS, Turin, Italy
- Department of Oncology, University of Torino Medical School, Turin, Italy
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Petra Hamerlik
- Brain Tumor Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Copenhagen University, Copenhagen, Denmark
| | - Armando Bartolazzi
- Department of Pathology and Pathology Research Laboratory, Sant'Andrea Hospital, Rome, Italy
| | - Robert E Hynds
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - David R Pearce
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniela De Zio
- Melanoma Research Team, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Apolinar Maya-Mendoza
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- DNA Replication and Cancer Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Franco Locatelli
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Gynecology-Obstetrics and Pediatrics, Sapienza University, Rome, Italy
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark.
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
| |
Collapse
|
11
|
Wang YM, Qiu MY, Liu Q, Tang H, Gu HF. Critical role of dysfunctional mitochondria and defective mitophagy in autism spectrum disorders. Brain Res Bull 2021; 168:138-145. [PMID: 33400955 DOI: 10.1016/j.brainresbull.2020.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of complex neurodevelopmental disorders, including autistic disorder, Asperger's syndrome, pervasive developmental disorder and childhood disintegrative disorder. Mitochondria not only provide neurons with energy in the form of ATP to sustain neuron growth, proliferation and neurodevelopment, but also regulate neuron apoptosis, intracellular calcium ion (Ca2+) homeostasis, and reactive oxygen species (ROS) clearance. Due to their postmitotic state and high energy-demanded feature, neurons are particularly prone to mitophagy and mitochondrial disfunction. Mitophagy, a selective autophagy, is critical for sustaining mitochondrial turnover and quality control via eliminating unwanted and dysfunctional mitochondria in neurons. Dysfunctional mitochondria and dysregulated mitophagy have been closely associated with the onset of ASDs. In this review, we summarize the mechanism of mitophagy and its role in neurons, and the consequence of mitophagy dysfunction in ASDs. Deeper appreciation of the role of mitophagy in ASDs pathology is required for developing new therapeutic approaches.
Collapse
Affiliation(s)
- Yuan-Mei Wang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China
| | - Ming-Yue Qiu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China
| | - Qing Liu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China
| | - Huang Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China
| | - Hong-Feng Gu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China.
| |
Collapse
|