1
|
Wang J, Chen H, Hou W, Han Q, Wang Z. Hippo Pathway in Schwann Cells and Regeneration of Peripheral Nervous System. Dev Neurosci 2023; 45:276-289. [PMID: 37080186 DOI: 10.1159/000530621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Hippo pathway is an evolutionarily conserved signaling pathway comprising a series of MST/LATS kinase complexes. Its key transcriptional coactivators YAP and TAZ regulate transcription factors such as TEAD family to direct gene expression. The regulation of Hippo pathway, especially the nuclear level change of YAP and TAZ, significantly influences the cell fate switching from proliferation to differentiation, regeneration, and postinjury repair. This review outlines the main findings of Hippo pathway in peripheral nerve development, regeneration, and tumorigenesis, especially the studies in Schwann cells. We also summarize other roles of Hippo pathway in damage repair of the peripheral nerve system and discuss the potential future research which probably contributes to novel therapeutic strategies.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haofeng Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wulei Hou
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingjian Han
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Huashan Hospital, Fudan University, Shanghai, China
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Pan B, Wang Y, Shi Y, Yang Q, Han B, Zhu X, Liu Y. Altered expression levels of miR-144-3p and ATP1B2 are associated with schizophrenia. World J Biol Psychiatry 2022; 23:666-676. [PMID: 34989308 DOI: 10.1080/15622975.2021.2022757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Objectives: Schizophrenia is a devastating mental disease. Various microRNAs were proven to be associated with schizophrenia. Altered microRNA-144-3p (miR-144-3p) levels were found in various neurological and psychotic disorders. Beta2-subunit of Na(+)/K(+)-ATPase (ATP1B2) regulates neuronal migration and cell growth during brain development through the PI3K/Akt/mTOR pathway. The present study explored the associations of miR-144-3p and ATP1B2 with schizophrenia and their mutual interaction.Methods: A schizophrenic animal model employing repeated MK-801 administration was established and 293 T cells over-expressing miR-144-3p were constructed by lentivirus. The in vitro and in vivo levels of miR-144-3p, ATP1B2, and the PI3K/Akt/mTOR pathway were examined by qRT-PCR and Western Blots. The interaction between miR-144-3p and ATP1B2 was predicted and assessed by using bioinformatic methods and a luciferase reporter gene assay, respectively.Results: MiR-144-3p expression was elevated in the schizophrenic rat hippocampus. ATP1B2 was down-regulated in schizophrenic patients by analysing GEO datasets. Additionally, miR-144-3p can directly bind with ATP1B2. Furthermore, the ATP1B2 expression and PI3K/Akt/mTOR phosphorylation levels were down-regulated in the 293 T cells over-expressing miR-144-3p and schizophrenic rat hippocampus, which could be reversed by risperidone.Conclusions: This study revealed that up-regulated miR-144-3p might be associated with schizophrenia through down-regulating ATP1B2, implicating new targets of schizophrenia treatment.
Collapse
Affiliation(s)
- Bo Pan
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, PR China.,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, PR China
| | - Yuting Wang
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, PR China.,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, PR China
| | - Yiwen Shi
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, PR China
| | - Qianzhan Yang
- Shimadzu (China) Co., LTD. Chongqing Branch, Chongqing, PR China
| | - Bing Han
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, PR China.,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, PR China
| | - Xiaoli Zhu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, PR China.,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, PR China
| | - Yanqing Liu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, PR China.,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, PR China
| |
Collapse
|
3
|
Pan B, Xu L, Weng J, Wang Y, Ji H, Han B, Zhu X, Liu Y. Effects of icariin on alleviating schizophrenia-like symptoms by regulating the miR-144-3p/ATP1B2/mTOR signalling pathway. Neurosci Lett 2022; 791:136918. [DOI: 10.1016/j.neulet.2022.136918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022]
|
4
|
Roldán ML, Ramírez-Salinas GL, Martinez-Archundia M, Cuellar-Perez F, Vilchis-Nestor CA, Cancino-Diaz JC, Shoshani L. The β2-Subunit (AMOG) of Human Na+, K+-ATPase Is a Homophilic Adhesion Molecule. Int J Mol Sci 2022; 23:ijms23147753. [PMID: 35887102 PMCID: PMC9322774 DOI: 10.3390/ijms23147753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
The β2 subunit of Na+, K+-ATPase was originally identified as the adhesion molecule on glia (AMOG) that mediates the adhesion of astrocytes to neurons in the central nervous system and that is implicated in the regulation of neurite outgrowth and neuronal migration. While β1 isoform have been shown to trans-interact in a species-specific mode with the β1 subunit on the epithelial neighboring cell, the β2 subunit has been shown to act as a recognition molecule on the glia. Nevertheless, none of the works have identified the binding partner of β2 or described its adhesion mechanism. Until now, the interactions pronounced for β2/AMOG are heterophilic cis-interactions. In the present report we designed experiments that would clarify whether β2 is a cell–cell homophilic adhesion molecule. For this purpose, we performed protein docking analysis, cell–cell aggregation, and protein–protein interaction assays. We observed that the glycosylated extracellular domain of β2/AMOG can make an energetically stable trans-interacting dimer. We show that CHO (Chinese Hamster Ovary) fibroblasts transfected with the human β2 subunit become more adhesive and make large aggregates. The treatment with Tunicamycin in vivo reduced cell aggregation, suggesting the participation of N-glycans in that process. Protein–protein interaction assay in vivo with MDCK (Madin-Darby canine kidney) or CHO cells expressing a recombinant β2 subunit show that the β2 subunits on the cell surface of the transfected cell lines interact with each other. Overall, our results suggest that the human β2 subunit can form trans-dimers between neighboring cells when expressed in non-astrocytic cells, such as fibroblasts (CHO) and epithelial cells (MDCK).
Collapse
Affiliation(s)
- María Luisa Roldán
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, 2508 IPN Ave., San Pedro Zacatenco, Ciudad de México 07360, Mexico; (M.L.R.); (F.C.-P.); (C.A.V.-N.)
| | - Gema Lizbeth Ramírez-Salinas
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Circuito, Mario de La Cueva S/N, C.U., Coyoacán, Ciudad de México 04510, Mexico;
| | - Marlet Martinez-Archundia
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos, Departamento de Posgrado Escuela Superior de Medicina del Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México 11340, Mexico;
| | - Francisco Cuellar-Perez
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, 2508 IPN Ave., San Pedro Zacatenco, Ciudad de México 07360, Mexico; (M.L.R.); (F.C.-P.); (C.A.V.-N.)
| | - Claudia Andrea Vilchis-Nestor
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, 2508 IPN Ave., San Pedro Zacatenco, Ciudad de México 07360, Mexico; (M.L.R.); (F.C.-P.); (C.A.V.-N.)
| | - Juan Carlos Cancino-Diaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México 11340, Mexico;
| | - Liora Shoshani
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, 2508 IPN Ave., San Pedro Zacatenco, Ciudad de México 07360, Mexico; (M.L.R.); (F.C.-P.); (C.A.V.-N.)
- Correspondence: ; Tel.: +52-55-5747-3360
| |
Collapse
|
5
|
Zhang W, Li J. EGF Receptor Signaling Modulates YAP Activation and Promotes Experimental Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 35895037 PMCID: PMC9344224 DOI: 10.1167/iovs.63.8.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Both epidermal growth factor receptor (EGFR) and the Yes-associated protein (YAP) signaling pathway are implicated in cell proliferation and differentiation. In this study, we explored whether the formation of proliferative vitreoretinopathy (PVR) depends on the interaction of the EGFR receptor and YAP pathway. Methods We studied the effects of EGFR and YAP activation on retinal fibrosis in a PVR mouse model as well as in knockout mice (conditional deletion of EGFR or YAP specifically in RPE cells). Reversal and knockdown experiments were performed to induce a model of ARPE-19 cells treated with TGF-β2 in vitro. The effect of EGFR/YAP signaling blockade on the PVR-induced cell cycle and TGF-β2-induced ARPE-19 cell activation was determined. Results The EGFR inhibitor erlotinib or conditional deletion of EGFR attenuated YAP activation and decreased the expression of YAP and its downstream target Cyr61 and of connective tissue growth factor in vivo and in vitro. EGFR-PI3K-PDK1 signaling induced by PVR promoted YAP activation and cell cycle progression. Furthermore, activated EGFR signaling bypassed RhoA to increase the protein levels of YAP, C-Myc, CyclinD1, and Bcl-xl. Conclusions Our work highlights that EGFR-PI3K-PDK1-dependent YAP activation plays a crucial role in the formation of PVR. Targeting EGFR and the YAP pathway provides promising therapeutic treatments for PVR.
Collapse
Affiliation(s)
- Wei Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Li
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Excitatory/Inhibitory Synaptic Ratios in Polymicrogyria and Down Syndrome Help Explain Epileptogenesis in Malformations. Pediatr Neurol 2021; 116:41-54. [PMID: 33450624 DOI: 10.1016/j.pediatrneurol.2020.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The ratio between excitatory (glutamatergic) and inhibitory (GABAergic) inputs into maturing individual cortical neurons influences their epileptic potential. Structural factors during development that alter synaptic inputs can be demonstrated neuropathologically. Increased mitochondrial activity identifies neurons with excessive discharge rates. METHODS This study focuses on the neuropathological examinaion of surgical resections for epilepsy and at autopsy, in fetuses, infants, and children, using immunocytochemical markers, and electron microscopy in selected cases. Polymicrogyria and Down syndrome are highlighted. RESULTS Factors influencing afferent synaptic ratios include the following: (1) synaptic short-circuitry in fused molecular zones of adjacent gyri (polymicrogyria); (2) impaired development of dendritic spines decreasing excitation (Down syndrome); (3) extracellular keratan sulfate proteoglycan binding to somatic membranes but not dendritic spines may be focally diminished (cerebral atrophy, schizencephaly, lissencephaly, polymicrogyria) or augmented, ensheathing individual axons (holoprosencephaly), or acting as a barrier to axonal passage in the U-fiber layer. If keratan is diminished, glutamate receptors on the neuronal soma enable ectopic axosomatic excitatory synapses to form; (4) dysplastic, megalocytic neurons and balloon cells in mammalian target of rapamycin disorders; (5) satellitosis of glial cells displacing axosomatic synapses; (6) peri-neuronal inflammation (tuberous sclerosis) and heat-shock proteins. CONCLUSIONS Synaptic ratio of excitatory/inhibitory afferents is a major fundamental basis of epileptogenesis at the neuronal level. Neuropathology can demonstrate subcellular changes that help explain either epilepsy or lack of seizures in immature brains. Synaptic ratios in malformations influence postnatal epileptogenesis. Single neurons can be hypermetabolic and potentially epileptogenic.
Collapse
|
7
|
Sahu MR, Mondal AC. Neuronal Hippo signaling: From development to diseases. Dev Neurobiol 2020; 81:92-109. [PMID: 33275833 DOI: 10.1002/dneu.22796] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/18/2020] [Accepted: 11/27/2020] [Indexed: 01/12/2023]
Abstract
Hippo signaling pathway is a highly conserved and familiar tissue growth regulator, primarily dealing with cell survival, cell proliferation, and apoptosis. The Yes-associated protein (YAP) is the key transcriptional effector molecule, which is under negative regulation of the Hippo pathway. Wealth of studies have identified crucial roles of Hippo/YAP signaling pathway during the process of development, including the development of neuronal system. We provide here, an overview of the contributions of this signaling pathway at multiple stages of neuronal development including, proliferation of neural stem cells (NSCs), migration of NSCs toward their destined niche, maintaining NSCs in the quiescent state, differentiation of NSCs into neurons, neuritogenesis, synaptogenesis, brain development, and in neuronal apoptosis. Hyperactivation of the neuronal Hippo pathway can also lead to a variety of devastating neurodegenerative diseases. Instances of aberrant Hippo pathway leading to neurodegenerative diseases along with the approaches utilizing this pathway as molecular targets for therapeutics has been highlighted in this review. Recent evidences suggesting neuronal repair and regenerative potential of this pathway has also been pointed out, that will shed light on a novel aspect of Hippo pathway in regenerative medicine. Our review provides a better understanding of the significance of Hippo pathway in the journey of neuronal system from development to diseases as a whole.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Popa N, Boyer F, Jaouen F, Belzeaux R, Gascon E. Social Isolation and Enrichment Induce Unique miRNA Signatures in the Prefrontal Cortex and Behavioral Changes in Mice. iScience 2020; 23:101790. [PMID: 33294798 PMCID: PMC7701176 DOI: 10.1016/j.isci.2020.101790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 09/14/2020] [Accepted: 11/06/2020] [Indexed: 01/19/2023] Open
Abstract
An extensive body of evidence supports the notion that exposure to an enriched/impoverished environment alters brain functions via epigenetic changes. However, how specific modifications of social environment modulate brain functions remains poorly understood. To address this issue, we investigate the molecular and behavioral consequences of briefly manipulating social settings in young and middle-aged wild-type mice. We observe that, modifications of the social context, only affect the performance in socially related tasks. Social enrichment increases sociability whereas isolation leads to the opposite effect. Our work also pointed out specific miRNA signatures associated to each social environment. These miRNA alterations are reversible and found selectively in the medial prefrontal cortex. Finally, we show that miRNA modifications linked to social enrichment or isolation might target rather different intracellular pathways. Together, these observations suggest that the prefrontal cortex may be a key brain area integrating social information via the modification of precise miRNA networks.
Collapse
Affiliation(s)
- Natalia Popa
- Aix-Marseille Université, CNRS, INT, Inst Neurosci Timone, UMR7289, 27, Boulevard Jean Moulin, 13005 Marseille, France
| | - Flora Boyer
- Aix-Marseille Université, CNRS, INT, Inst Neurosci Timone, UMR7289, 27, Boulevard Jean Moulin, 13005 Marseille, France
| | - Florence Jaouen
- Aix-Marseille Université, CNRS, INT, Inst Neurosci Timone, UMR7289, 27, Boulevard Jean Moulin, 13005 Marseille, France
- NeuroBioTools Facility (NeuroVir), Aix Marseille Université, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Raoul Belzeaux
- Aix-Marseille Université, CNRS, INT, Inst Neurosci Timone, UMR7289, 27, Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique Hôpitaux de Marseille, Sainte Marguerite Hospital, Pôle de Psychiatrie Universitaire Solaris, Marseille, France
| | - Eduardo Gascon
- Aix-Marseille Université, CNRS, INT, Inst Neurosci Timone, UMR7289, 27, Boulevard Jean Moulin, 13005 Marseille, France
- Corresponding author
| |
Collapse
|