1
|
Sgro M, Kodila ZN, Li C, Carmichael I, Warren S, Reichelt AC, Yamakawa GR, Mychasiuk R. Microbiome depletion prior to repeat mild TBI differentially alters social deficits and prefrontal cortex plasticity in adolescent and adult rats. iScience 2024; 27:109395. [PMID: 38510122 PMCID: PMC10952042 DOI: 10.1016/j.isci.2024.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/21/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Although aging, repeat mild traumatic brain injury (RmTBI), and microbiome modifications independently change social behavior, there has been no investigation into their cumulative effects on social behavior and neuroplasticity within the prefrontal cortex. Therefore, we examined how microbiome depletion prior to RmTBI affected social behavior and neuroplasticity in adolescent and adult rats. Play, temperament analysis, elevated plus maze, and the hot/cold plate assessed socio-emotional function. Analyses of perineuronal nets (PNNs) and parvalbumin (PV) interneurons was completed. Social-emotional deficits were more pronounced in adults, with microbiome depletion attenuating social behavior deficits associated with RmTBI in both age groups. Microbiome depletion increased branch length and PNN arborization within the PFC but decreased the overall number of PNNs. Adults and males were more vulnerable to RmTBI. Interestingly, microbiome depletion may have attenuated the changes to neuroplasticity and subsequent social deficits, suggesting that the microbiome is a viable, but age-specific, target for RmTBI therapeutics.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Zoe N. Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Irena Carmichael
- Monash Micro Imaging, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Samantha Warren
- Monash Micro Imaging, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Amy C. Reichelt
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
2
|
Ahmed N, Kassis A, Malone J, Yang J, Zamzami E, Lin AH, Gordon SM, Gong M, Bardo M, Dalmasso C, Loria AS. Prenatal Morphine Exposure Increases Cardiovascular Disease Risk and Programs Neurogenic Hypertension in the Adult Offspring. Hypertension 2023; 80:1283-1296. [PMID: 37042247 PMCID: PMC10274123 DOI: 10.1161/hypertensionaha.122.20262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND The opioid overdose and opioid use disorder epidemics are concomitant with increased metabolic and CVD risk. Although opioid use disorder causes adverse pregnancy outcomes, the offspring's cardiovascular health is understudied. We hypothesized that offspring exposed to in utero morphine exposure (IUME) would show increased CVD risk factors and endogenous opioid system dysregulation. METHODS Sprague Dawley dams were treated with saline (vehicle, n=10) or escalating doses of morphine (5-20 mg/kg per day, SC, n=10) during gestation. Cardiovascular and metabolic parameters were assessed in adult offspring. RESULTS Litter size and pups' birth weight were not different in response to IUME. Female and male IUME offspring showed reduced body length at birth (P<0.05) and body weight from weeks 1 to 3 of life (P<0.05), followed by a catch-up growth effect. By week 16, female and male IUME rats showed reduced tibia length (P<0.05) and fat mass. IUME increases the mean arterial pressure and the depressor response to mecamylamine (5 mg/kg per day, IP) induced by IUME were abolished by a chronic treatment with an alpha-adrenergic receptor blocker (prazosin; 1 mg/kg per day, IP). Although circulating levels of angiotensin peptides were similar between groups, IUME exacerbated maximal ex vivo Ang (angiotensin) II-induced vasoconstriction (P<0.05) and induced endothelial dysfunction in a sex-specific manner (P<0.05). Proenkephalin, an endogenous opioid peptide that lowers blood pressure and sympathetic-mediated vasoconstriction, showed reduced mRNA expression in the heart, aorta, and kidneys from morphine versus vehicle group (P<0.05). CONCLUSIONS Among the effects of IUME, neurogenic hypertension, vascular dysfunction, and metabolic dysfunction could be associated with the dysregulation of the endogenous opioid system.
Collapse
Affiliation(s)
- Nermin Ahmed
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Alana Kassis
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Jena Malone
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Jodie Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Esraa Zamzami
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - An-Hsuan Lin
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Scott M. Gordon
- SAHA Cardiovascular Center, University of Kentucky, Lexington, KY 40536
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Ming Gong
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Michael Bardo
- Department of Psychology, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536
| | - Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
- SAHA Cardiovascular Center, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
3
|
Malone SG, Shaykin JD, Stairs DJ, Bardo MT. Neurobehavioral effects of environmental enrichment and drug abuse vulnerability: An updated review. Pharmacol Biochem Behav 2022; 221:173471. [PMID: 36228739 DOI: 10.1016/j.pbb.2022.173471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Environmental enrichment consisting of social peers and novel objects is known to alter neurobiological functioning and have an influence on the behavioral effects of drugs of abuse in preclinical rodent models. An earlier review from our laboratory (Stairs and Bardo, 2009) provided an overview of enrichment-specific changes in addiction-like behaviors and neurobiology. The current review updates the literature in this extensive field. Key findings from this updated review indicate that enrichment produces positive outcomes in drug abuse vulnerability beyond just psychostimulants. Additionally, recent studies indicate that enrichment activates key genes involved in cell proliferation and protein synthesis in nucleus accumbens and enhances growth factors in hippocampus and neurotransmitter signaling pathways in prefrontal cortex, amygdala, and hypothalamus. Remaining gaps in the literature and future directions for environmental enrichment and drug abuse research are identified.
Collapse
Affiliation(s)
- Samantha G Malone
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Jakob D Shaykin
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Dustin J Stairs
- Department of Psychological Science, Creighton University, Hixson-Lied Science Building, 2500 California Plaza, Omaha, NE, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA.
| |
Collapse
|
4
|
Mieske P, Hobbiesiefken U, Fischer-Tenhagen C, Heinl C, Hohlbaum K, Kahnau P, Meier J, Wilzopolski J, Butzke D, Rudeck J, Lewejohann L, Diederich K. Bored at home?—A systematic review on the effect of environmental enrichment on the welfare of laboratory rats and mice. Front Vet Sci 2022; 9:899219. [PMID: 36061113 PMCID: PMC9435384 DOI: 10.3389/fvets.2022.899219] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Boredom is an emotional state that occurs when an individual has nothing to do, is not interested in the surrounding, and feels dreary and in a monotony. While this condition is usually defined for humans, it may very well describe the lives of many laboratory animals housed in small, barren cages. To make the cages less monotonous, environmental enrichment is often proposed. Although housing in a stimulating environment is still used predominantly as a luxury good and for treatment in preclinical research, enrichment is increasingly recognized to improve animal welfare. To gain insight into how stimulating environments influence the welfare of laboratory rodents, we conducted a systematic review of studies that analyzed the effect of enriched environment on behavioral parameters of animal well–being. Remarkably, a considerable number of these parameters can be associated with symptoms of boredom. Our findings show that a stimulating living environment is essential for the development of natural behavior and animal welfare of laboratory rats and mice alike, regardless of age and sex. Conversely, confinement and under-stimulation has potentially detrimental effects on the mental and physical health of laboratory rodents. We show that boredom in experimental animals is measurable and does not have to be accepted as inevitable.
Collapse
Affiliation(s)
- Paul Mieske
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Ute Hobbiesiefken
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Carola Fischer-Tenhagen
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Céline Heinl
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Hohlbaum
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Pia Kahnau
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jennifer Meier
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jenny Wilzopolski
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Daniel Butzke
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Juliane Rudeck
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Lars Lewejohann
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Kai Diederich
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- *Correspondence: Kai Diederich
| |
Collapse
|
5
|
Chen Y, Lei D, Cao H, Niu R, Chen F, Chen L, Zhou J, Hu X, Huang X, Guo L, Sweeney JA, Gong Q. Altered single-subject gray matter structural networks in drug-naïve attention deficit hyperactivity disorder children. Hum Brain Mapp 2022; 43:1256-1264. [PMID: 34797010 PMCID: PMC8837581 DOI: 10.1002/hbm.25718] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Altered topological organization of brain structural covariance networks has been observed in attention deficit hyperactivity disorder (ADHD). However, results have been inconsistent, potentially related to confounding medication effects. In addition, since structural networks are traditionally constructed at the group level, variabilities in individual structural features remain to be well characterized. Structural brain imaging with MRI was performed on 84 drug-naïve children with ADHD and 83 age-matched healthy controls. Single-subject gray matter (GM) networks were obtained based on areal similarities of GM, and network topological properties were analyzed using graph theory. Group differences in each topological metric were compared using nonparametric permutation testing. Compared with healthy subjects, GM networks in ADHD patients demonstrated significantly altered topological characteristics, including higher global and local efficiency and clustering coefficient, and shorter path length. In addition, ADHD patients exhibited abnormal centrality in corticostriatal circuitry including the superior frontal gyrus, orbitofrontal gyrus, medial superior frontal gyrus, precentral gyrus, middle temporal gyrus, and pallidum (all p < .05, false discovery rate [FDR] corrected). Altered global and nodal topological efficiencies were associated with the severity of hyperactivity symptoms and the performance on the Stroop and Wisconsin Card Sorting Test tests (all p < .05, FDR corrected). ADHD combined and inattention subtypes were differentiated by nodal attributes of amygdala (p < .05, FDR corrected). Alterations in GM network topologies were observed in drug-naïve ADHD patients, in particular in frontostriatal loops and amygdala. These alterations may contribute to impaired cognitive functioning and impulsive behavior in ADHD.
Collapse
Affiliation(s)
- Ying Chen
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Department of PsychiatryWest China Hospital of Sichuan UniversityChengduChina
| | - Du Lei
- Department of Psychiatry and Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOhioUSA
| | - Hengyi Cao
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Center for Psychiatric NeuroscienceFeinstein Institute for Medical ResearchManhassetNew YorkUSA
- Division of Psychiatry ResearchZucker Hillside HospitalGlen OaksNew YorkUSA
- Department of PsychiatryUniversity of CincinnatiCincinnatiOhioUSA
| | - Running Niu
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Fuqin Chen
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Lizhou Chen
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Jinbo Zhou
- Department of PsychiatryWest China Hospital of Sichuan UniversityChengduChina
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Lanting Guo
- Department of PsychiatryWest China Hospital of Sichuan UniversityChengduChina
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Department of Psychiatry and Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOhioUSA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceHuaxi Xiamen Hospital of Sichuan UniversityXiamenFujianChina
| |
Collapse
|
6
|
Perlman G, Tanti A, Mechawar N. Parvalbumin interneuron alterations in stress-related mood disorders: A systematic review. Neurobiol Stress 2021; 15:100380. [PMID: 34557569 PMCID: PMC8446799 DOI: 10.1016/j.ynstr.2021.100380] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/23/2022] Open
Abstract
Stress-related psychiatric disorders including depression involve complex cellular and molecular changes in the brain, and GABAergic signaling dysfunction is increasingly implicated in the etiology of mood disorders. Parvalbumin (PV)-expressing neurons are fast-spiking interneurons that, among other roles, coordinate synchronous neuronal firing. Mounting evidence suggests that the PV neuron phenotype is altered by stress and in mood disorders. In this systematic review, we assessed PV interneuron alterations in psychiatric disorders as reported in human postmortem brain studies and animal models of environmental stress. This review aims to 1) comprehensively catalog evidence of PV cell function in mood disorders (humans) and stress models of mood disorders (animals); 2) analyze the strength of evidence of PV interneuron alterations in various brain regions in humans and rodents; 3) determine whether the modulating effect of antidepressant treatment, physical exercise, and environmental enrichment on stress in animals associates with particular effects on PV function; and 4) use this information to guide future research avenues. Its principal findings, derived mainly from rodent studies, are that stress-related changes in PV cells are only reported in a minority of studies, that positive findings are region-, age-, sex-, and stress recency-dependent, and that antidepressants protect from stress-induced apparent PV cell loss. These observations do not currently translate well to humans, although the postmortem literature on the topic remains limited.
Collapse
Affiliation(s)
| | - Arnaud Tanti
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Naguib Mechawar
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| |
Collapse
|
7
|
Tartaglione AM, Farioli Vecchioli S, Giorgi MC, Cutuli D, Calamandrei G. Altered responsiveness to pups in virgin female mice of the BTBR strain: Insights from pattern of c-Fos expression in brain regions involved in maternal behavior. Behav Brain Res 2021; 410:113365. [PMID: 33992667 DOI: 10.1016/j.bbr.2021.113365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022]
Abstract
BTBR is an inbred mouse strain that displays several behavioral alterations resembling the core symptoms of Autism Spectrum Disorder, including deficit in sociability. In the present study, we investigated whether the pup-induced maternal behavior in virgin female mice, a naturally rewarding behavior, is impaired in this strain similarly to social interaction with adult conspecifics. We firstly assessed the maternal responsiveness towards newly born pups expressed by either virgin female mice of the BTBR strain or of the normo-social B6 strain. Next, we examined in both strains the expression of c-Fos as a marker of neuronal activity in selected brain areas involved in the regulation of maternal behavior in rodents including the olfactory bulb, the medial preoptic area and the paraventricular nucleus (PVN). We also examined the effects of pup presentation on oxytocinergic neurons of the PVN, the major brain site of synthesis of oxytocin, which has a pivotal role in facilitation of maternal response and social responsiveness in general. As a final step, we assessed the c-Fos expression pattern comparing the effect of exposure to pups with that induced by exposure to another social stimulus, focusing on other areas implicated in maternal responsiveness as well as in the affective component of social behavior such as pyriform cortex and central and basolateral amygdala. Our data showed that BTBR virgin females are less responsive to presentation of pups in comparison to B6, in parallel with lower activation of brain areas implicated in the maternal and social responsiveness.
Collapse
Affiliation(s)
- A M Tartaglione
- Centre for Behavioral Sciences and Mental Health, National Institute of Health (ISS), Rome, Italy
| | | | - M C Giorgi
- Centre for Behavioral Sciences and Mental Health, National Institute of Health (ISS), Rome, Italy
| | - D Cutuli
- Department of Psychology, University of Rome "Sapienza", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - G Calamandrei
- Centre for Behavioral Sciences and Mental Health, National Institute of Health (ISS), Rome, Italy.
| |
Collapse
|
8
|
Early environmental enrichment and impoverishment differentially affect addiction-related behavioral traits, cocaine-taking, and dopamine D 2/3 receptor signaling in a rat model of vulnerability to drug abuse. Psychopharmacology (Berl) 2021; 238:3543-3557. [PMID: 34463825 PMCID: PMC8629910 DOI: 10.1007/s00213-021-05971-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/23/2021] [Indexed: 11/03/2022]
Abstract
RATIONALE Risk factors for drug addiction include genetics, environment, and behavioral traits such as impulsivity and novelty preference (NP), which have been related to deficits in striatal dopamine (DA) D2/3-receptors (D2/3R) and heightened amphetamine (AMPH)-induced DA release. However, the influence of the early rearing environment on these behavioral and neurochemical variables is not clear. OBJECTIVES We investigated the influence of early rearing environment on striatal D2/3R availabilities and AMPH-induced DA release in relation to impulsivity, NP, and propensity to drug self-administration (SA) in "addiction-prone" Roman high- (RHA) and "addiction-resistant" Roman low-avoidance (RLA) rats. METHODS Animals were reared post-weaning in either environmental enrichment (EE) or impoverishment (EI) and were assessed at adulthood for impulsivity, NP, and propensity to cocaine SA. EE and EI rats were also scanned using single-photon emission computed tomography to concurrently measure in vivo striatal D2/3R availability and AMPH-induced DA release. RESULTS EE vs. EI was associated with heightened impulsivity and a lack of NP in both rat lines. Higher dorsal striatal D2/3R densities were found in RHA EE and higher AMPH-induced DA release in RLA EE. Both impulsivity and NP were negatively correlated to dorsal striatal D2/3R availabilities and positively correlated with AMPH-induced DA release in EI but not in EE. EE vs. EI was related to a faster rate of cocaine intake and elevated active timeout responses in RHAs. CONCLUSION Our results suggest non-monotonic, environment-dependent, relationships between impulsivity, NP, and D2/3R-mediated signaling, and suggest that EI vs. EE may decrease the reinforcing effects of psychostimulants in predisposed individuals.
Collapse
|