1
|
Auger SA, Venkatachalapathy S, Suazo KFG, Wang Y, Sarkis AW, Bernhagen K, Justyna K, Schaefer JV, Wollack JW, Plückthun A, Li L, Distefano MD. Broadening the Utility of Farnesyltransferase-Catalyzed Protein Labeling Using Norbornene-Tetrazine Click Chemistry. Bioconjug Chem 2024; 35:922-933. [PMID: 38654427 PMCID: PMC11619650 DOI: 10.1021/acs.bioconjchem.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bioorthogonal chemistry has gained widespread use in the study of many biological systems of interest, including protein prenylation. Prenylation is a post-translational modification, in which one or two 15- or 20-carbon isoprenoid chains are transferred onto cysteine residues near the C-terminus of a target protein. The three main enzymes─protein farnesyltransferase (FTase), geranylgeranyl transferase I (GGTase I), and geranylgeranyl transferase II (GGTase II)─that catalyze this process have been shown to tolerate numerous structural modifications in the isoprenoid substrate. This feature has previously been exploited to transfer an array of farnesyl diphosphate analogues with a range of functionalities, including an alkyne-containing analogue for copper-catalyzed bioconjugation reactions. Reported here is the synthesis of an analogue of the isoprenoid substrate embedded with norbornene functionality (C10NorOPP) that can be used for an array of applications, ranging from metabolic labeling to selective protein modification. The probe was synthesized in seven steps with an overall yield of 7% and underwent an inverse electron demand Diels-Alder (IEDDA) reaction with tetrazine-containing tags, allowing for copper-free labeling of proteins. The use of C10NorOPP for the study of prenylation was explored in the metabolic labeling of prenylated proteins in HeLa, COS-7, and astrocyte cells. Furthermore, in HeLa cells, these modified prenylated proteins were identified and quantified using label-free quantification (LFQ) proteomics with 25 enriched prenylated proteins. Additionally, the unique chemistry of C10NorOPP was utilized for the construction of a multiprotein-polymer conjugate for the targeted labeling of cancer cells. That construct was prepared using a combination of norbornene-tetrazine conjugation and azide-alkyne cycloaddition, highlighting the utility of the additional degree of orthogonality for the facile assembly of new protein conjugates with novel structures and functions.
Collapse
Affiliation(s)
- Shelby A. Auger
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | | | - Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alexander W. Sarkis
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kaitlyn Bernhagen
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Katarzyna Justyna
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jonas V. Schaefer
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - James W. Wollack
- Department of Chemistry and Biochemistry, St. Catherine University, St. Paul MN, 55105, USA
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
2
|
Gu J, Yan C, Yin S, Wu H, Liu C, Xue A, Lei X, Zhang N, Geng F. Erythrocyte membrane-coated nanocarriers modified by TGN for Alzheimer's disease. J Control Release 2024; 366:448-459. [PMID: 38128884 DOI: 10.1016/j.jconrel.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease, and the main pathological feature was β-amyloid protein (Aβ) deposition. Recently, bioactive materials-based drug delivery system has been widely investigated for the treatment of AD. In this study, we developed a red blood cells (RBC) membrane-coated polycaprolactone (PCL) nanoparticles (NPs) loading with a therapeutic agent for AD, curcumin (Cur). A functional peptide TGNYKALHPHN (TGN) was conjugated to the surface of membrane for blood-brain barrier (BBB) transport (TGN-RBC-NPs-Cur). TGN peptide can be recognized by receptors on the BBB and has great potential for brain transport. To confirm the targeted delivery of Cur to the brain, a cell co-culturing immortalized human cerebral microvascular endothelial cells and human brain astrocytes glioblastoma (hCMEC/D3 and U-118MG) in vitro model was established. As a result, the BBB transporting ratio of TGN-RBC-NPs-FITC was 29.64% at 12 h which was approximately eight-fold than RBC-NPs-FITC. The improvement of drug accumulation in the AD lesion was confirmed by the NPs modified with the BBB-penetrating peptide in the fluorescence imaging and quantitative analysis with UPLC-MS/MS in vivo. The neuroprotective effects were evaluated with new object recognition behavioral test, in vitro AD cell model, dendritic spine stain, GFAP and IBA1 immunofluorescence stain. The spatial learning and memory abilities of the AD model mice treated with TGN-RBC-NPs-Cur were obviously enhanced compared with the AD control mice and were also better than Cur at the same dosage. These results were consistent with the values of protection index of rat adrenal pheochromocytoma cells (PC12 cells) treated by Aβ25-35. TGN-RBC-NPs-Cur increased the dendritic segments densities and restrained activation of microglia and astrocytes of AD mice, as well as reversed cognitive function of AD mice. All of the results demonstrated TGN-RBC-NPs-Cur a promising therapeutic strategy for delaying the progression of AD by designing biomimetic nanosystems to deliver drugs into the brain.
Collapse
Affiliation(s)
- Jinlian Gu
- School of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Chang Yan
- School of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Shun Yin
- School of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Hao Wu
- School of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Chi Liu
- School of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Ao Xue
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150004, China
| | - Xia Lei
- Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu 214071, China.
| | - Ning Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150004, China; Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu 214071, China.
| | - Fang Geng
- School of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| |
Collapse
|
3
|
Suazo KF, Bělíček J, Schey GL, Auger SA, Petre AM, Li L, Błażewska KM, Kopečný D, Distefano MD. Thinking outside the CaaX-box: an unusual reversible prenylation on ALDH9A1. RSC Chem Biol 2023; 4:913-925. [PMID: 37920391 PMCID: PMC10619140 DOI: 10.1039/d3cb00089c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/15/2023] [Indexed: 11/04/2023] Open
Abstract
Protein lipidation is a post-translational modification that confers hydrophobicity on protein substrates to control their cellular localization, mediate protein trafficking, and regulate protein function. In particular, protein prenylation is a C-terminal modification on proteins bearing canonical motifs catalyzed by prenyltransferases. Prenylated proteins have been of interest due to their numerous associations with various diseases. Chemical proteomic approaches have been pursued over the last decade to define prenylated proteomes (prenylome) and probe their responses to perturbations in various cellular systems. Here, we describe the discovery of prenylation of a non-canonical prenylated protein, ALDH9A1, which lacks any apparent prenylation motif. This enzyme was initially identified through chemical proteomic profiling of prenylomes in various cell lines. Metabolic labeling with an isoprenoid probe using overexpressed ALDH9A1 revealed that this enzyme can be prenylated inside cells but does not respond to inhibition by prenyltransferase inhibitors. Site-directed mutagenesis of the key residues involved in ALDH9A1 activity indicates that the catalytic C288 bears the isoprenoid modification likely through an NAD+-dependent mechanism. Furthermore, the isoprenoid modification is also susceptible to hydrolysis, indicating a reversible modification. We hypothesize that this modification originates from endogenous farnesal or geranygeranial, the established degradation products of prenylated proteins and results in a thioester form that accumulates. This novel reversible prenoyl modification on ALDH9A1 expands the current paradigm of protein prenylation by illustrating a potentially new type of protein-lipid modification that may also serve as a novel mechanism for controlling enzyme function.
Collapse
Affiliation(s)
- Kiall F Suazo
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
| | - Jakub Bělíček
- Department of Experimental Biology, Faculty of Science, Palacký University CZ-78371 Czech Republic
| | - Garrett L Schey
- Department of Medicinal Chemistry, University of Minnesota Minneapolis MN 55455 USA
| | - Shelby A Auger
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
| | - Alexandru M Petre
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota Minneapolis MN 55455 USA
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology Łódź Poland
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University CZ-78371 Czech Republic
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
4
|
Bei J, Miranda-Morales EG, Gan Q, Qiu Y, Husseinzadeh S, Liew JY, Chang Q, Krishnan B, Gaitas A, Yuan S, Felicella M, Qiu WQ, Fang X, Gong B. Circulating exosomes from Alzheimer's disease suppress VE-cadherin expression and induce barrier dysfunction in recipient brain microvascular endothelial cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535441. [PMID: 37066187 PMCID: PMC10103966 DOI: 10.1101/2023.04.03.535441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Blood-brain barrier (BBB) breakdown is a component of the progression and pathology of Alzheimer's disease (AD). BBB dysfunction is primarily caused by reduced or disorganized tight junction or adherens junction proteins of brain microvascular endothelial cell (BMEC). While there is growing evidence of tight junction disruption in BMECs in AD, the functional role of adherens junctions during BBB dysfunction in AD remains unknown. Exosomes secreted from senescent cells have unique characteristics and contribute to modulating the phenotype of recipient cells. However, it remains unknown if and how these exosomes cause BMEC dysfunction in AD. Objectives This study aimed to investigate the potential roles of AD circulating exosomes and their RNA cargos in brain endothelial dysfunction in AD. Methods We isolated exosomes from sera of five cases of AD compared with age- and sex-matched cognitively normal controls using size-exclusion chromatography technology. We validated the qualities and particle sizes of isolated exosomes with nanoparticle tracking analysis and atomic force microscopy. We measured the biomechanical natures of the endothelial barrier of BMECs, the lateral binding forces between live BMECs, using fluidic force miscopy. We visualized the paracellular expressions of the key adherens junction protein VE-cadherin in BMEC cultures and a 3D BBB model that employs primary human BMECs and pericytes with immunostaining and evaluated them using confocal microscopy. We also examined the VE-cadherin signal in brain tissues from five cases of AD and five age- and sex-matched cognitively normal controls. Results We found that circulating exosomes from AD patients suppress the paracellular expression levels of VE-cadherin and impair the barrier function of recipient BMECs. Immunostaining analysis showed that AD circulating exosomes damage VE-cadherin integrity in a 3D model of microvascular tubule formation. We found that circulating exosomes in AD weaken the BBB depending on the RNA cargos. In parallel, we observed that microvascular VE-cadherin expression is diminished in AD brains compared to normal controls. Conclusion Using in vitro and ex vivo models, our study illustrates that circulating exosomes from AD patients play a significant role in mediating the damage effect on adherens junction of recipient BMEC of the BBB in an exosomal RNA-dependent manner. This suggests a novel mechanism of peripheral senescent exosomes for AD risk.
Collapse
|
5
|
Qu W, Jeong A, Zhong R, Thieschafer JS, Gram A, Li L. Deletion of Small GTPase H-Ras Rescues Memory Deficits and Reduces Amyloid Plaque-Associated Dendritic Spine Loss in Transgenic Alzheimer's Mice. Mol Neurobiol 2023; 60:495-511. [PMID: 36287323 PMCID: PMC10771223 DOI: 10.1007/s12035-022-03082-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disorder, affecting millions of lives without a cure. While the molecular mechanism of AD remains obscure, emerging evidence suggests that small GTPases, a group of GTP-binding proteins that regulate a plethora of essential cellular events, modulate the pathogenic process of AD. Among those, the small GTPase H-Ras, extensively studied in cancer, regulates synaptic function, and both upstream and downstream signaling pathways of H-Ras have been implicated in AD. However, the role of H-Ras per se in AD pathogenesis had not been explored previously. In the present study, the impact of Hras deletion on cognitive function and amyloid pathology was investigated in transgenic APP/PS1 mice of AD. Behavioral assessments showed that the absence of Hras rescued spatial memory deficit in APP/PS1 mice at 9 months of age. The pathological evaluation demonstrated that Hras deletion reduced cortical amyloid deposition and astrogliosis. Furthermore, Hras deficiency protected against amyloid plaque-associated loss of dendritic spines in APP/PS1 mice. Intriguingly, canonical signaling pathways downstream of H-Ras were not affected by the absence of Hras in the brain. Unbiased transcriptomic analysis revealed that lack of H-Ras affected the expression of select genes in the brain of AD mice and identified a novel connection between H-Ras and Annexin A4, a calcium-dependent phospholipid-binding protein that has been shown to regulate membrane repair, neuroinflammation, and calcium homeostasis. Taken together, these data indicate that H-Ras modifies the pathogenic process of AD and may serve as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Rui Zhong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Josslen S Thieschafer
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrea Gram
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ling Li
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Bei J, Miranda-Morales EG, Gan Q, Qiu Y, Husseinzadeh S, Liew JY, Chang Q, Krishnan B, Gaitas A, Yuan S, Felicella M, Qiu WQ, Fang X, Gong B. Circulating Exosomes from Alzheimer's Disease Suppress Vascular Endothelial-Cadherin Expression and Induce Barrier Dysfunction in Recipient Brain Microvascular Endothelial Cell. J Alzheimers Dis 2023; 95:869-885. [PMID: 37661885 DOI: 10.3233/jad-230347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Blood-brain barrier (BBB) breakdown is a crucial aspect of Alzheimer's disease (AD) progression. Dysfunction in BBB is primarily caused by impaired tight junction and adherens junction proteins in brain microvascular endothelial cells (BMECs). The role of adherens junctions in AD-related BBB dysfunction remains unclear. Exosomes from senescent cells have unique characteristics and contribute to modulating the phenotype of recipient cells. However, it remains unknown if and how these exosomes cause BMEC dysfunction in AD. OBJECTIVE This study aimed to investigate the impact of AD circulating exosomes on brain endothelial dysfunction. METHODS Exosomes were isolated from sera of AD patients and age- and sex-matched cognitively normal controls using size-exclusion chromatography. The study measured the biomechanical nature of BMECs' endothelial barrier, the lateral binding forces between live BMECs. Paracellular expressions of the key adherens junction protein vascular endothelial (VE)-cadherin were visualized in BMEC cultures and a 3D BBB model using human BMECs and pericytes. VE-cadherin signals were also examined in brain tissues from AD patients and normal controls. RESULTS Circulating exosomes from AD patients reduced VE-cadherin expression levels and impaired barrier function in recipient BMECs. Immunostaining analysis demonstrated that AD exosomes damaged VE-cadherin integrity in a 3D microvascular tubule formation model. The study found that AD exosomes weakened BBB integrity depending on their RNA content. Additionally, diminished microvascular VE-cadherin expression was observed in AD brains compared to controls. CONCLUSION These findings highlight the significant role of circulating exosomes from AD patients in damaging adherens junctions of recipient BMECs, dependent on exosomal RNA.
Collapse
Affiliation(s)
- Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ernesto G Miranda-Morales
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Qini Gan
- Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sorosh Husseinzadeh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Yi Liew
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Balaji Krishnan
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subo Yuan
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michelle Felicella
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wei Qiao Qiu
- Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Xiang Fang
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
7
|
Nan X, Sun Q, Xu X, Yang Y, Zhen Y, Zhang Y, Zhou H, Fang H. Forsythoside B ameliorates diabetic cognitive dysfunction by inhibiting hippocampal neuroinflammation and reducing synaptic dysfunction in ovariectomized mice. Front Aging Neurosci 2022; 14:974690. [PMID: 36389075 PMCID: PMC9650402 DOI: 10.3389/fnagi.2022.974690] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/07/2022] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Diabetes-associated cognitive impairment (DACI) is a common complication of diabetes, and studies have shown that DACI is more severe in postmenopausal patients with diabetes. Forsythoside B (FTS⋅B) can inhibit inflammation and reduce synaptic dysfunction, which can improve cognitive function. However, it has not been confirmed whether FTS⋅B has a reversing or retarding effect on postmenopausal diabetic encephalopathy. METHODS Seven days after bilateral ovariectomy (OVX) or sham surgery, adult female C57 mice (n = 15/group) received intraperitoneal injection of streptozotocin (60 mg/kg/day/L) and citrate buffer for 5 consecutive days to induce diabetes mellitus (DM). Fourteen days later, ovariectomized diabetic mice were given intraperitoneal injection of FTS⋅B (100, 150 mg/kg/day/L) and subcutaneous injection of 17β-estradiol (1 mg/kg) for 8 weeks [OVX + DM + low-FTS⋅B group (L-F), OVX + DM + high-FTS⋅B group (H-F), and OVX + DM + 17β-estradiol (ER)]. In addition, the following control groups were defined: Sham, OVX, DM, and OVX + DM (O + D). Fasting plasma glucose, body weight and blood insulin levels were determined in each group of mice. Next, their cognitive function was tested through behavioral experiments. Hematoxylin & eosin (H&E) and Nissl staining were used to detect the morphological changes in the hippocampus. The aggregation of amyloid beta (Aβ) and the hyperaggregation of p-tau were assessed by immunohistochemistry. Interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), brain-derived neurotrophic factor (BDNF), post-synaptic density-95 (PSD-95), synaptophysin, and synapsin-1 expression in the hippocampus was detected by real-time polymerase chain reaction (RT-PCR) and western blot analysis. RESULTS FTS⋅B can decrease fasting glucose and blood insulin level. Behavioral results showed that cognitive decline was the most severe in the O + D group, and the ER, L-F, and H-F groups revised the cognitive decline. Compared to the O + D group, more normal morphology, which has obvious nucleoli and clear nuclear membrane, was observed by H&E and Nissl staining in the ER, L-F, and H-F groups. FTS⋅B alleviated DACI by reducing the aggregation of Aβ and the hyperaggregation of p-tau in the hippocampus. Moreover, the protein and mRNA expression showed that FTS⋅B not only inhibited inflammation by decreasing IL-1β, IL-6, and TNF-α but also modulated synaptic plasticity by increasing BDNF, PSD-95, synaptophysin, and synapsin-1. CONCLUSION These results suggest that FTS⋅B may be a novel therapeutic target for postmenopausal diabetic encephalopathy treatment.
Collapse
Affiliation(s)
- Xinyu Nan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Sun
- Department of Orthopedics, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaoyu Xu
- Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Ying Yang
- Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Yanfeng Zhen
- Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Yameng Zhang
- Department of Internal Medicine, North China University of Science and Technology, Tangshan, Hebei, China
| | - Haixia Zhou
- Department of Internal Medicine, North China University of Science and Technology, Tangshan, Hebei, China
| | - Hui Fang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Tangshan Gongren Hospital, Tangshan, Hebei, China
| |
Collapse
|
8
|
Jeong A, Auger SA, Maity S, Fredriksen K, Zhong R, Li L, Distefano MD. In Vivo Prenylomic Profiling in the Brain of a Transgenic Mouse Model of Alzheimer's Disease Reveals Increased Prenylation of a Key Set of Proteins. ACS Chem Biol 2022; 17:2863-2876. [PMID: 36109170 PMCID: PMC9799064 DOI: 10.1021/acschembio.2c00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dysregulation of protein prenylation has been implicated in many diseases, including Alzheimer's disease (AD). Prenylomic analysis, the combination of metabolic incorporation of an isoprenoid analogue (C15AlkOPP) into prenylated proteins with a bottom-up proteomic analysis, has allowed the identification of prenylated proteins in various cellular models. Here, transgenic AD mice were administered with C15AlkOPP through intracerebroventricular (ICV) infusion over 13 days. Using prenylomic analysis, 36 prenylated proteins were enriched in the brains of AD mice. Importantly, the prenylated forms of 15 proteins were consistently upregulated in AD mice compared to nontransgenic wild-type controls. These results highlight the power of this in vivo metabolic labeling approach to identify multiple post-translationally modified proteins that may serve as potential therapeutic targets for a disease that has proved refractory to treatment thus far. Moreover, this method should be applicable to many other types of protein modifications, significantly broadening its scope.
Collapse
Affiliation(s)
- Angela Jeong
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | | - Sanjay Maity
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | | - Rui Zhong
- University of Minnesota, Minneapolis, MN, 55455 USA
| | - Ling Li
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | |
Collapse
|
9
|
Cuddy LK, Alia AO, Salvo MA, Chandra S, Grammatopoulos TN, Justman CJ, Lansbury PT, Mazzulli JR, Vassar R. Farnesyltransferase inhibitor LNK-754 attenuates axonal dystrophy and reduces amyloid pathology in mice. Mol Neurodegener 2022; 17:54. [PMID: 35987691 PMCID: PMC9392365 DOI: 10.1186/s13024-022-00561-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/11/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Amyloid plaque deposition and axonal degeneration are early events in AD pathogenesis. Aβ disrupts microtubules in presynaptic dystrophic neurites, resulting in the accumulation of impaired endolysosomal and autophagic organelles transporting β-site amyloid precursor protein cleaving enzyme (BACE1). Consequently, dystrophic neurites generate Aβ42 and significantly contribute to plaque deposition. Farnesyltransferase inhibitors (FTIs) have recently been investigated for repositioning toward the treatment of neurodegenerative disorders and block the action of farnesyltransferase (FTase) to catalyze farnesylation, a post-translational modification that regulates proteins involved in lysosome function and microtubule stability. In postmortem AD brains, FTase and its downstream signaling are upregulated. However, the impact of FTIs on amyloid pathology and dystrophic neurites is unknown. METHODS We tested the effects of the FTIs LNK-754 and lonafarnib in the 5XFAD mouse model of amyloid pathology. RESULTS In 2-month-old 5XFAD mice treated chronically for 3 months, LNK-754 reduced amyloid plaque burden, tau hyperphosphorylation, and attenuated the accumulation of BACE1 and LAMP1 in dystrophic neurites. In 5-month-old 5XFAD mice treated acutely for 3 weeks, LNK-754 reduced dystrophic neurite size and LysoTracker-Green accumulation in the absence of effects on Aβ deposits. Acute treatment with LNK-754 improved memory and learning deficits in hAPP/PS1 amyloid mice. In contrast to LNK-754, lonafarnib treatment was less effective at reducing plaques, tau hyperphosphorylation and dystrophic neurites, which could have resulted from reduced potency against FTase compared to LNK-754. We investigated the effects of FTIs on axonal trafficking of endolysosomal organelles and found that lonafarnib and LNK-754 enhanced retrograde axonal transport in primary neurons, indicating FTIs could support the maturation of axonal late endosomes into lysosomes. Furthermore, FTI treatment increased levels of LAMP1 in mouse primary neurons and in the brains of 5XFAD mice, demonstrating that FTIs stimulated the biogenesis of endolysosomal organelles. CONCLUSIONS We show new data to suggest that LNK-754 promoted the axonal trafficking and function of endolysosomal compartments, which we hypothesize decreased axonal dystrophy, reduced BACE1 accumulation and inhibited amyloid deposition in 5XFAD mice. Our results agree with previous work identifying FTase as a therapeutic target for treating proteinopathies and could have important therapeutic implications in treating AD.
Collapse
Affiliation(s)
- Leah K. Cuddy
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Alia O. Alia
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Miranda A. Salvo
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Sidhanth Chandra
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | | | | | - Peter T. Lansbury
- Bial Biotech, Cambridge, MA 02139 USA
- Department of Neurology, Harvard Medical School, Cambridge, MA 02139 USA
| | - Joseph R. Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Robert Vassar
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
10
|
Chen Z, Wu M, Lai Q, Zhou W, Wen X, Yin X. Epigenetic regulation of synaptic disorder in Alzheimer’s disease. Front Neurosci 2022; 16:888014. [PMID: 35992921 PMCID: PMC9382295 DOI: 10.3389/fnins.2022.888014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/15/2022] [Indexed: 01/15/2023] Open
Abstract
Synapses are critical structures involved in neurotransmission and neuroplasticity. Their activity depends on their complete structure and function, which are the basis of learning, memory, and cognitive function. Alzheimer’s disease (AD) is neuropathologically characterized by synaptic loss, synaptic disorder, and plasticity impairment. AD pathogenesis is characterized by complex interactions between genetic and environmental factors. Changes in various receptors on the postsynaptic membrane, synaptic components, and dendritic spines lead to synaptic disorder. Changes in epigenetic regulation, including DNA methylation, RNA interference, and histone modification, are closely related to AD. These can affect neuronal and synaptic functions by regulating the structure and expression of neuronal genes. Some drugs have ameliorated synaptic and neural dysfunction in AD models via epigenetic regulation. We reviewed the recent progress on pathological changes and epigenetic mechanisms of synaptic dysregulation in AD to provide a new perspective on this disease.
Collapse
Affiliation(s)
- Zhiying Chen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Moxin Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Qin Lai
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Weixin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Xiaoqing Wen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
- *Correspondence: Xiaoping Yin,
| |
Collapse
|
11
|
Weber AJ, Adamson AB, Greathouse KM, Andrade JP, Freeman CD, Seo JV, Rae RJ, Walker CK, Herskowitz JH. Conditional deletion of ROCK2 induces anxiety-like behaviors and alters dendritic spine density and morphology on CA1 pyramidal neurons. Mol Brain 2021; 14:169. [PMID: 34794469 PMCID: PMC8600782 DOI: 10.1186/s13041-021-00878-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Rho-associated kinase isoform 2 (ROCK2) is an attractive drug target for several neurologic disorders. A critical barrier to ROCK2-based research and therapeutics is the lack of a mouse model that enables investigation of ROCK2 with spatial and temporal control of gene expression. To overcome this, we generated ROCK2fl/fl mice. Mice expressing Cre recombinase in forebrain excitatory neurons (CaMKII-Cre) were crossed with ROCK2fl/fl mice (Cre/ROCK2fl/fl), and the contribution of ROCK2 in behavior as well as dendritic spine morphology in the hippocampus, medial prefrontal cortex (mPFC), and basolateral amygdala (BLA) was examined. Cre/ROCK2fl/fl mice spent reduced time in the open arms of the elevated plus maze and increased time in the dark of the light-dark box test compared to littermate controls. These results indicated that Cre/ROCK2fl/fl mice exhibited anxiety-like behaviors. To examine dendritic spine morphology, individual pyramidal neurons in CA1 hippocampus, mPFC, and the BLA were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and neuronal 3D reconstructions for morphometry analysis. In dorsal CA1, Cre/ROCK2fl/fl mice displayed significantly increased thin spine density on basal dendrites and reduced mean spine head volume across all spine types on apical dendrites. In ventral CA1, Cre/ROCK2fl/fl mice exhibited significantly increased spine length on apical dendrites. Spine density and morphology were comparable in the mPFC and BLA between both genotypes. These findings suggest that neuronal ROCK2 mediates spine density and morphology in a compartmentalized manner among CA1 pyramidal cells, and that in the absence of ROCK2 these mechanisms may contribute to anxiety-like behaviors.
Collapse
Affiliation(s)
- Audrey J Weber
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Ashley B Adamson
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Kelsey M Greathouse
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Julia P Andrade
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Cameron D Freeman
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Jung Vin Seo
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Rosaria J Rae
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Courtney K Walker
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Jeremy H Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|
12
|
Jeong A, Cheng S, Zhong R, Bennett DA, Bergö MO, Li L. Protein farnesylation is upregulated in Alzheimer's human brains and neuron-specific suppression of farnesyltransferase mitigates pathogenic processes in Alzheimer's model mice. Acta Neuropathol Commun 2021; 9:129. [PMID: 34315531 PMCID: PMC8314463 DOI: 10.1186/s40478-021-01231-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/10/2022] Open
Abstract
The pathogenic mechanisms underlying the development of Alzheimer's disease (AD) remain elusive and to date there are no effective prevention or treatment for AD. Farnesyltransferase (FT) catalyzes a key posttranslational modification process called farnesylation, in which the isoprenoid farnesyl pyrophosphate is attached to target proteins, facilitating their membrane localization and their interactions with downstream effectors. Farnesylated proteins, including the Ras superfamily of small GTPases, are involved in regulating diverse physiological and pathological processes. Emerging evidence suggests that isoprenoids and farnesylated proteins may play an important role in the pathogenesis of AD. However, the dynamics of FT and protein farnesylation in human brains and the specific role of neuronal FT in the pathogenic progression of AD are not known. Here, using postmortem brain tissue from individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI), or Alzheimer's dementia, we found that the levels of FT and membrane-associated H-Ras, an exclusively farnesylated protein, and its downstream effector ERK were markedly increased in AD and MCI compared with NCI. To elucidate the specific role of neuronal FT in AD pathogenesis, we generated the transgenic AD model APP/PS1 mice with forebrain neuron-specific FT knockout, followed by a battery of behavioral assessments, biochemical assays, and unbiased transcriptomic analysis. Our results showed that the neuronal FT deletion mitigates memory impairment and amyloid neuropathology in APP/PS1 mice through suppressing amyloid generation and reversing the pathogenic hyperactivation of mTORC1 signaling. These findings suggest that aberrant upregulation of protein farnesylation is an early driving force in the pathogenic cascade of AD and that targeting FT or its downstream signaling pathways presents a viable therapeutic strategy against AD.
Collapse
|
13
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
14
|
Suazo KF, Jeong A, Ahmadi M, Brown C, Qu W, Li L, Distefano MD. Metabolic labeling with an alkyne probe reveals similarities and differences in the prenylomes of several brain-derived cell lines and primary cells. Sci Rep 2021; 11:4367. [PMID: 33623102 PMCID: PMC7902609 DOI: 10.1038/s41598-021-83666-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Protein prenylation involves the attachment of one or two isoprenoid group(s) onto cysteine residues positioned near the C-terminus. This modification is essential for many signal transduction processes. In this work, the use of the probe C15AlkOPP for metabolic labeling and identification of prenylated proteins in a variety of cell lines and primary cells is explored. Using a single isoprenoid analogue, 78 prenylated protein groups from the three classes of prenylation substrates were identified including three novel prenylation substrates in a single experiment. Applying this method to three brain-related cell lines including neurons, microglia, and astrocytes showed substantial overlap (25%) in the prenylated proteins identified. In addition, some unique prenylated proteins were identified in each type. Eight proteins were observed exclusively in neurons, five were observed exclusively in astrocytes and three were observed exclusively in microglia, suggesting their unique roles in these cells. Furthermore, inhibition of farnesylation in primary astrocytes revealed the differential responses of farnesylated proteins to an FTI. Importantly, these results provide a list of 19 prenylated proteins common to all the cell lines studied here that can be monitored using the C15AlkOPP probe as well as a number of proteins that were observed in only certain cell lines. Taken together, these results suggest that this chemical proteomic approach should be useful in monitoring the levels and exploring the underlying role(s) of prenylated proteins in various diseases.
Collapse
Affiliation(s)
- Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mina Ahmadi
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Caroline Brown
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|