1
|
Kiełbowski K, Żychowska J, Bakinowska E, Pawlik A. Non-Coding RNA Involved in the Pathogenesis of Atherosclerosis-A Narrative Review. Diagnostics (Basel) 2024; 14:1981. [PMID: 39272765 PMCID: PMC11394555 DOI: 10.3390/diagnostics14171981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Atherosclerosis is a highly prevalent condition associated with lipid accumulation in the intima layer of arterial blood vessels. The development of atherosclerotic plaques is associated with the incidence of major cardiovascular events, such as acute coronary syndrome or ischemic stroke. Due to the significant prevalence of atherosclerosis and its subclinical progression, it is associated with severe and potentially lethal complications. The pathogenesis of atherosclerosis is complex and not entirely known. The identification of novel non-invasive diagnostic markers and treatment methods that could suppress the progression of this condition is highly required. Non-coding RNA (ncRNA) involves several subclasses of RNA molecules. microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) differently regulate gene expression. Importantly, these molecules are frequently dysregulated under pathological conditions, which is associated with enhanced or suppressed expression of their target genes. In this review, we aim to discuss the involvement of ncRNA in crucial mechanisms implicated in the pathogenesis of atherosclerosis. We summarize current evidence on the potential use of these molecules as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Justyna Żychowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Tapia A, Liu X, Malhi NK, Yuan D, Chen M, Southerland KW, Luo Y, Chen ZB. Role of long noncoding RNAs in diabetes-associated peripheral arterial disease. Cardiovasc Diabetol 2024; 23:274. [PMID: 39049097 PMCID: PMC11271017 DOI: 10.1186/s12933-024-02327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that heightens the risks of many vascular complications, including peripheral arterial disease (PAD). Various types of cells, including but not limited to endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages (MΦs), play crucial roles in the pathogenesis of DM-PAD. Long non-coding RNAs (lncRNAs) are epigenetic regulators that play important roles in cellular function, and their dysregulation in DM can contribute to PAD. This review focuses on the developing field of lncRNAs and their emerging roles in linking DM and PAD. We review the studies investigating the role of lncRNAs in crucial cellular processes contributing to DM-PAD, including those in ECs, VSMCs, and MΦ. By examining the intricate molecular landscape governed by lncRNAs in these relevant cell types, we hope to shed light on the roles of lncRNAs in EC dysfunction, inflammatory responses, and vascular remodeling contributing to DM-PAD. Additionally, we provide an overview of the research approach and methodologies, from identifying disease-relevant lncRNAs to characterizing their molecular and cellular functions in the context of DM-PAD. We also discuss the potential of leveraging lncRNAs in the diagnosis and therapeutics for DM-PAD. Collectively, this review provides a summary of lncRNA-regulated cell functions contributing to DM-PAD and highlights the translational potential of leveraging lncRNA biology to tackle this increasingly prevalent and complex disease.
Collapse
Affiliation(s)
- Alonso Tapia
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Xuejing Liu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Muxi Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Kevin W Southerland
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA.
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
3
|
Ren Y, Zhao X. Bone marrow mesenchymal stem cells-derived exosomal lncRNA GAS5 mitigates heart failure by inhibiting UL3/Hippo pathway-mediated ferroptosis. Eur J Med Res 2024; 29:303. [PMID: 38812041 PMCID: PMC11137962 DOI: 10.1186/s40001-024-01880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Exosomes (Exos) are involved in the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) on heart failure (HF). We investigated the molecular mechanisms underlying the involvement of BMSC-Exos in ferroptosis on HF. METHODS A rat model of HF and cellular model of hypoxia were established. BMSC-Exos were injected into model rats or co-cultured with model cells. In model rats, the cardiac function (echocardiography), oxidative stress (commercial kits), pathological damage (HE staining), fibrosis (MASSON staining), iron deposition (Prussian blue staining), and cell apoptosis (TUNEL staining) were examined. Viability (cell counting kit-8; CCK-8), cell cycle (flow cytometry), oxidative stress, and Fe2+ levels were detected in the model cells. GAS5, UL3, YAP, and TAZ expression were detected using qRT-PCR, western blotting, and immunohistochemistry analyses. RESULTS BMSC-Exos restored cardiac function and inhibited oxidative stress, apoptosis, pathological damage, fibrosis, and iron deposition in myocardial tissues of HF rats. In hypoxic cells, BMSC-Exos increased cell viability, decreased the number of G1 phase cells, decreased Fe2+ levels, and inhibited oxidative stress. Ferrostatin-1 (a ferroptosis inhibitor) exhibited a synergistic effect with BMSC-Exos. Additionally, GAS5 was upregulated in BMSC-Exos, further upregulating its target UL3 and Hippo pathway effectors (YAP and TAZ). The relieving effects of BMSC-Exos on HF or hypoxia-induced injury were enhanced by GAS5 overexpression, but weakened by UL3 silencing or verteporfin (a YAP inhibitor). CONCLUSIONS GAS5-harbouring BMSC-Exos inhibited ferroptosis by regulating the UL3/Hippo pathway, contributing to HF remission in vivo and in vitro.
Collapse
Affiliation(s)
- Yu Ren
- Department of Scientific Research, Inner Mongolia People's Hospital, Hohhot, 010017, China
| | - Xingsheng Zhao
- Department of Cardiology, Inner Mongolia People's Hospital, No.20 Zhao Wuda Road, Hohhot, 010017, China.
| |
Collapse
|
4
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
5
|
Xie X, Wang S, Rao J, Xue J, Lin K, Lin N, Li K, Wu S, Liang W, Guo Y. Comprehensive Analysis of Differentially Expressed lncRNAs in the Perivascular Adipose Tissue of Patients with Coronary Heart Disease. Rev Cardiovasc Med 2022; 23:341. [PMID: 39077137 PMCID: PMC11267359 DOI: 10.31083/j.rcm2310341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 07/31/2024] Open
Abstract
Background Coronary heart disease is a highly prevalent inflammatory disease caused by coronary atherosclerosis. Numerous studies have revealed that perivascular adipose tissue is closely associated with atherosclerosis. Here, we conducted a comprehensive analysis of long non-coding RNAs and mRNAs differentially expressed in perivascular adipose tissue in patients with coronary heart disease. Methods We conducted Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the differentially expressed genes. Furthermore, single sample gene set enrichment analysis, immune infiltration analysis, and co-expression analysis of differentially expressed long non-coding RNAs and immune gene sets were performed. Finally, the starBase and miRTarBase databases were used to construct a competing endogenous RNA network. Results The results show that aortic perivascular adipose tissue has higher inflammation and immune infiltration levels in patients with coronary heart disease. Dysregulated long non-coding RNAs may be related to immunity, inflammation, and hypoxia. Conclusions The findings of this study provide new insights into atherosclerosis and coronary heart disease.
Collapse
Affiliation(s)
- Xianwei Xie
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, 350013 Fuzhou, Fujian, China
| | - Sunying Wang
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, 350013 Fuzhou, Fujian, China
| | - Jingyi Rao
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, 350013 Fuzhou, Fujian, China
| | - Jing Xue
- Beijing Tiantan Hospital, China National Clinical Research Center of Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, 100070 Beijing, China
| | - Kaiyang Lin
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, 350013 Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Clinical Medical Research Center for cardiovascular diseases, 350000 Fuzhou, Fujian, China
- Fujian Heart Failure Center Alliance, 350000 Fuzhou, Fujian, China
| | - Na Lin
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, 350013 Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Clinical Medical Research Center for cardiovascular diseases, 350000 Fuzhou, Fujian, China
| | - Ke Li
- Beijing Tiantan Hospital, China National Clinical Research Center of Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, 100070 Beijing, China
| | - Shilun Wu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital Affiliated to Capital Medical University, 100043 Beijing, China
| | - Wenjia Liang
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, 350013 Fuzhou, Fujian, China
| | - Yansong Guo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, 350013 Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Clinical Medical Research Center for cardiovascular diseases, 350000 Fuzhou, Fujian, China
- Fujian Heart Failure Center Alliance, 350000 Fuzhou, Fujian, China
| |
Collapse
|
6
|
Long non-coding RNA GAS5: A potential therapeutic target in the treatment of liver fibrosis? Dig Liver Dis 2022; 54:1287. [PMID: 35508461 DOI: 10.1016/j.dld.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022]
|
7
|
Hu J, Jiang Y, Wu X, Wu Z, Qin J, Zhao Z, Li B, Xu Z, Lu X, Wang X, Liu X. Exosomal miR-17-5p from adipose-derived mesenchymal stem cells inhibits abdominal aortic aneurysm by suppressing TXNIP-NLRP3 inflammasome. Stem Cell Res Ther 2022; 13:349. [PMID: 35883151 PMCID: PMC9327292 DOI: 10.1186/s13287-022-03037-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
Background Preclinical studies have suggested that adipose-derived mesenchymal stem cells (ADSCs) transplantation can suppress abdominal aortic inflammation and aneurysm expansion through paracrine factors. Yet, the mechanism of action is not fully understood. In the present study, we further examined the function and mechanism of ADSC-derived exosomes (ADSC-exos) and their microRNA-17-5p (miR-17-5p) on the abdominal aortic aneurysm (AAA) progression. Methods ADSC-exos were isolated and identified. DiR and PKH67 staining were used to trace ADSC-exo in vivo and in vitro. Raw264.7 cells were applied to perform in vitro experiments, while a murine AAA model induced using angiotensin II (Ang II) was used for in vivo testing. The expression level of miR-17-5p in macrophages and Ang II-treated macrophages after ADSC-exos treatment was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The target relation between miR-17-5p and thioredoxin-interacting protein (TXNIP) was identified by a dual-luciferase reporter gene assay. Artificial activation and block of experiments of miR-17-5p and TXNIP were conducted to clarify their functions in inflammation during AAA progression. The severity of AAA between groups was assessed by maximal aorta diameter, AAA incidence, survival rate, and histological stainings. Besides, inflammasome-related proteins and macrophage pyroptosis were further evaluated using western blot, RT-qPCR, and enzyme-linked immunosorbent assay (ELISA). Results The ADSC-exos were isolated and identified. In vivo testing showed that ADSC-exos were mainly distributed in the liver. Meanwhile, in vitro experiments suggested that ADSC-derived exosomes were taken up by macrophages, while inside, ADSC-exos miR-17-5p decreased a TXNIP induced by Ang II by directly binding to its 3′-untranslated region (3’UTR). Furthermore, overexpression of miR-17-5p enhanced the therapeutic function of ADSC-exos on inflammation during AAA expansion in vivo, while its inhibition reversed this process. Finally, overexpressed TXNIP triggered macrophage pyroptosis and was alleviated by ADSC-derived exosomes in vitro. Conclusion ADSC-exos miR-17-5p regulated AAA progression and inflammation via the TXNIP-NLRP3 signaling pathway, thus providing a novel insight in AAA treatment.
Collapse
Affiliation(s)
- Jiateng Hu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Yihong Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China.
| | - Xin Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Vascular Centre of Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Duan L, Liu Y, Li J, Zhang Y, Dong Y, Liu C, Wang J. Panax notoginseng Saponins Alleviate Coronary Artery Disease Through Hypermethylation of the miR-194-MAPK Pathway. Front Pharmacol 2022; 13:829416. [PMID: 35784716 PMCID: PMC9243564 DOI: 10.3389/fphar.2022.829416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background:Panax notoginseng saponins (PNS) may have an inhibitory effect against coronary artery disease (CAD); however, the mechanism is unclear. Recent research has begun to evaluate the role of epigenetics in CAD. Our team found that hypomethylation of miR-194 could be an important mechanism of CAD. Purpose: The aim of this study was to investigate the effect of PNS against CAD and evaluate whether the mechanism is related to methylation of mi-R194. Methods: We conducted a randomized controlled trial with a double-blind placebo design on 84 patients with CAD. Treatment was continued for 4 weeks, and the clinical effect of PNS on CAD was observed. Methylation of miR-194, its promoter, and the key nodes of the MAPK pathway were measured by pyrosequencing and qRT-PCR. We then conducted a pharmacological analysis of the active components of PNS. The effects of PNS on oxidized human umbilical vein endothelial cells and the methylation of miR-194, its promoter, and the key nodes of the MAPK pathway were measured in vitro through methylation-specific PCR (MSPCR), qRT-PCR, Western blot analysis, and annexin V/propidium iodide apoptosis assay. Results: PNS improved symptoms of CAD. High-density lipoprotein and white blood cell count demonstrated significant changes after treatment in the PNS group. No significant difference was observed between miR-194 and mRNA MAPK, FAS, RAS, and FOS in the PNS group after treatment. However, some notable trends were observed in these genes. The targets of PNS were predicted by the pharmacological components. Some targets were found to be differentially expressed genes in CAD sequencing. Six genes, including MAPK1, RAS, and FASL, were common targets of PNS in CAD sequencing. Correlations were observed between genes in the interaction network and clinical parameters. In vitro experiments confirmed that PNS could change the methylation of miR-194, its promoter, and MAPK, FAS, RAS, and FOS. Intervention with PNS is likely to improve apoptosis. Conclusion: We reported the regulation of miR-194 promoter, miR-194, and MAPK methylation by PNS through cell experiments and a randomized controlled trial. PNS can be used for intervention in CAD by targeting the miR-194 promoter-miR-194-MAPK signaling pathway. Clinical Trial Registration: https://www.clinicaltrials.gov/, NCT03083119.
Collapse
|
9
|
TXNIP: A Double-Edged Sword in Disease and Therapeutic Outlook. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7805115. [PMID: 35450411 PMCID: PMC9017576 DOI: 10.1155/2022/7805115] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) was originally named vitamin D3 upregulated protein-1 (VDUP1) because of its ability to bind to thioredoxin (TRX) and inhibit TRX function and expression. TXNIP is an alpha-arrestin protein that is essential for redox homeostasis in the human body. TXNIP may act as a double-edged sword in the cell. The balance of TXNIP is crucial. A study has shown that TXNIP can travel between diverse intracellular locations and bind to different proteins to play different roles under oxidative stress. The primary function of TXNIP is to induce apoptosis or pyroptosis under oxidative stress. TXNIP also inhibits proliferation and migration in cancer cells, although TXNIP levels decrease, and function diminishes in various cancers. In this review, we summarized the main structure, binding proteins, pathways, and the role of TXNIP in diseases, aiming to explore the double-edged sword role of TXNIP, and expect it to be helpful for future treatment using TXNIP as a therapeutic target.
Collapse
|
10
|
Jiang Y, Du T. Relation of circulating lncRNA GAS5 and miR-21 with biochemical indexes, stenosis severity, and inflammatory cytokines in coronary heart disease patients. J Clin Lab Anal 2022; 36:e24202. [PMID: 34997773 PMCID: PMC8842157 DOI: 10.1002/jcla.24202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background Long noncoding RNA GAS5 (lnc‐GAS5) and its target microRNA‐21 (miR‐21) regulate blood lipid, macrophages, Th cells, vascular smooth muscle cells to participate in atherosclerosis, and related coronary heart disease (CHD). The study aimed to further explore the linkage of their circulating expressions with common biochemical indexes, stenosis severity and inflammatory cytokines in CHD patients. Methods Ninety‐eight CHD patients and 100 controls confirmed by coronary angiography were enrolled. Plasma samples were collected for lnc‐GAS5 and miR‐21 detection by reverse transcription‐quantitative polymerase chain reaction and inflammatory cytokines determination by enzyme‐linked immunosorbent assay. Results Lnc‐GAS5 was increased in CHD patients compared with controls (2.270 (interquartile range [IQR]: 1.676–3.389) vs. 0.999 ([IQR: 0.602–1.409], p < 0.001), whereas miR‐21 showed opposite tread (0.442 [IQR: 0.318–0.698] vs. 0.997 [IQR: 0.774–1.368], p < 0.001). In aspect of their intercorrelation, lnc‐GAS5 negatively linked with miR‐21 in CHD patients (p < 0.001) instead of controls (p = 0.211). Interestingly, among the common biochemical indexes, lnc‐GAS5 related to decreased high‐density lipoprotein cholesterol (p = 0.008) and increased C‐reactive protein (CRP) (p < 0.001), while miR‐21 correlated with lower total cholesterol (p = 0.024) and CRP (p < 0.001) in CHD patients. As stenosis degree, lnc‐GAS5 positively correlated with Gensini score (p < 0.001), but miR‐21 exhibited negative association (p = 0.003) in CHD patients. In terms of inflammatory cytokines, lnc‐GAS5 positively related to tumor necrosis factor α (TNF‐α) and interleukin (IL)‐17A, while miR‐21 negatively linked with TNF‐α, IL‐1β, IL‐6, and IL‐17 in CHD patients (all p < 0.05). Conclusion Circulating lnc‐GAS5 and its target miR‐21 exhibit potency to serve as biomarkers for CHD management.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Nosocomial Infection Management, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Tian Du
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| |
Collapse
|
11
|
Liu Y, Hu X, Song P, Li H, Li M, Du Y, Li M, Ma Q, Peng L, Song M, Chen X. Influence of GAS5/MicroRNA-223-3p/P2Y12 Axis on Clopidogrel Response in Coronary Artery Disease. J Am Heart Assoc 2021; 10:e021129. [PMID: 34713722 PMCID: PMC8751826 DOI: 10.1161/jaha.121.021129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Dual antiplatelet therapy based on aspirin and P2Y12 receptor antagonists such as clopidogrel is currently the primary treatment for coronary artery disease (CAD). However, a percentage of patients exhibit clopidogrel resistance, in which genetic factors play vital roles. This study aimed to investigate the roles of GAS5 (growth arrest-specific 5) and its rs55829688 polymorphism in clopidogrel response in patients with CAD. Methods and Results A total of 444 patients with CAD receiving dual antiplatelet therapy from 2017 to 2018 were enrolled to evaluate the effect of GAS5 single nucleotide polymorphism rs55829688 on platelet reactivity index. Platelets from 37 patients of these patients were purified with microbeads to detect GAS5 and microRNA-223-3p (miR-223-3p) expression. Platelet-rich plasma was isolated from another 17 healthy volunteers and 46 newly diagnosed patients with CAD to detect GAS5 and miR-223-3p expression. A dual-luciferase reporter assay was performed to explore the interaction between miR-223-3p and GAS5 or P2Y12 3'-UTR in (human embryonic kidney 293 cell line that expresses a mutant version of the SV40 large T antigen) HEK 293T and (megakaryoblastic cell line derived in 1983 from the bone marrow of a chronic myeloid leukemia patient with megakaryoblastic crisis) MEG-01 cells. Loss-of-function and gain-of-function experiments were performed to reveal the regulation of GAS5 toward P2Y12 via miR-223-3p in MEG-01 cells. We observed that rs55829688 CC homozygotes showed significantly decreased platelet reactivity index than TT homozygotes in CYP2C19 poor metabolizers. Platelet GAS5 expression correlated positively with both platelet reactivity index and P2Y12 mRNA expressions, whereas platelet miR-223-3p expression negatively correlated with platelet reactivity index. Meanwhile, a negative correlation between GAS5 and miR-223-3p expressions was observed in platelets. MiR-223-3p mimic reduced while the miR-223-3p inhibitor increased the expression of GAS5 and P2Y12 in MEG-01 cells. Knockdown of GAS5 by siRNA increased miR-223-3p expression and decreased P2Y12 expression, which could be reversed by the miR-223-3p inhibitor. Meanwhile, overexpression of GAS5 reduced miR-223-3p expression and increased P2Y12 expression, which could be reversed by miR-223-3p mimic. Conclusions GAS5 rs55829688 polymorphism might affect clopidogrel response in patients with CAD with the CYP2C19 poor metabolizer genotypes, and GAS5 regulates P2Y12 expression and clopidogrel response by acting as a competitive endogenous RNA for miR-223-3p.
Collapse
Affiliation(s)
- Yan‐Ling Liu
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Institute of Clinical Pharmacology, Central South UniversityHunan Key Laboratory of PharmacogeneticsChangshaHunanChina
| | - Xiao‐Lei Hu
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Institute of Clinical Pharmacology, Central South UniversityHunan Key Laboratory of PharmacogeneticsChangshaHunanChina
| | - Pei‐Yuan Song
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Institute of Clinical Pharmacology, Central South UniversityHunan Key Laboratory of PharmacogeneticsChangshaHunanChina
| | - He Li
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Institute of Clinical Pharmacology, Central South UniversityHunan Key Laboratory of PharmacogeneticsChangshaHunanChina
| | - Mu‐Peng Li
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Institute of Clinical Pharmacology, Central South UniversityHunan Key Laboratory of PharmacogeneticsChangshaHunanChina
| | - Yin‐Xiao Du
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Institute of Clinical Pharmacology, Central South UniversityHunan Key Laboratory of PharmacogeneticsChangshaHunanChina
| | - Mo‐Yun Li
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Institute of Clinical Pharmacology, Central South UniversityHunan Key Laboratory of PharmacogeneticsChangshaHunanChina
| | - Qi‐Lin Ma
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Li‐Ming Peng
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Institute of Clinical Pharmacology, Central South UniversityHunan Key Laboratory of PharmacogeneticsChangshaHunanChina
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ming‐Yu Song
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Institute of Clinical Pharmacology, Central South UniversityHunan Key Laboratory of PharmacogeneticsChangshaHunanChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiao‐Ping Chen
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Institute of Clinical Pharmacology, Central South UniversityHunan Key Laboratory of PharmacogeneticsChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
12
|
Wang Y, Xue M, Xia F, Zhu L, Jia D, Gao Y, Li L, Shi Y, Li Y, Chen S, Xu G, Yuan C. Long noncoding RNA GAS5 in age-related diseases. Curr Med Chem 2021; 29:2863-2877. [PMID: 34711157 DOI: 10.2174/0929867328666211027123932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
Aging refers to a natural process and a universal phenomenon in all cells, tissues, organs and the whole organism. Long non-coding RNAs (lncRNAs) are non-coding RNAs with the length of 200 nucleotides. LncRNA growth arrest-specific 5 (lncRNA GAS5) is often down-regulated in cancer. The accumulation of lncRNA GAS5 has been found to be able to inhibit cancer growth, invasion and metastasis, while enhancing the sensitivity of cells to chemotherapy drugs. LncRNA GAS5 can be a signaling protein, which is specifically transcribed under different triggering conditions. Subsequently, it is involved in signal transmission in numerous pathways as a signal node. LncRNA GAS5, with a close relationship to multiple miRNAs, was suggested to be involved in the signaling pathway under three action modes (i.e., signal, bait and guidance). LncRNA GAS5 was found to be involved in different age-related diseases (e.g., rheumatoid arthritis, type 2 diabetes, atherosclerosis, osteoarthritis, osteoporosis, multiple sclerosis, cancer etc.). This study mainly summarized the regulatory effect exerted by lncRNA GAS5 on age-related diseases.
Collapse
Affiliation(s)
- Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Luoying Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Silong Chen
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Guangfu Xu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| |
Collapse
|