1
|
Wang Q, Yu ZH, Nie L, Wang FX, Mu G, Lu B. Assessing the impact of gut microbiota and metabolic products on acute lung injury following intestinal ischemia-reperfusion injury: harmful or helpful? Front Cell Infect Microbiol 2024; 14:1491639. [PMID: 39687547 PMCID: PMC11647003 DOI: 10.3389/fcimb.2024.1491639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common and clinically significant form of tissue damage encountered in medical practice. This pathological process has been thoroughly investigated across a variety of clinical settings, including, but not limited to, sepsis, organ transplantation, shock, myocardial infarction, cerebral ischemia, and stroke. Intestinal IRI, in particular, is increasingly recognized as a significant clinical entity due to marked changes in the gut microbiota and their metabolic products, often described as the body's "second genome." These changes in intestinal IRI lead to profound alterations in the gut microbiota and their metabolic outputs, impacting not only the pathology of intestinal IRI itself but also influencing the function of other organs through various mechanisms. Notable among these are brain, liver, and kidney injuries, with acute lung injury being especially significant. This review seeks to explore in depth the roles and mechanisms of the gut microbiota and their metabolic products in the progression of acute lung injury initiated by intestinal IRI, aiming to provide a theoretical basis and directions for future research into the treatment of related conditions.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Anesthesiology, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| | - Zi-Hang Yu
- Department of Anesthesiology, Fushun County People’s Hospital, Zigong, Sichuan, China
| | - Liang Nie
- Department of Anesthesiology, Fushun County People’s Hospital, Zigong, Sichuan, China
| | - Fei-Xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Guo Mu
- Department of Anesthesiology, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| | - Bin Lu
- Department of Anesthesiology, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| |
Collapse
|
2
|
Seo GM, Lee H, Kang YJ, Kim D, Sung JH. Development of in vitro model of exosome transport in microfluidic gut-brain axis-on-a-chip. LAB ON A CHIP 2024; 24:4581-4593. [PMID: 39230477 DOI: 10.1039/d4lc00490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The gut communicates with the brain in a variety of ways known as the gut-brain axis (GBA), which is known to affect neurophysiological functions as well as neuronal disorders. Exosomes capable of passing through the blood-brain-barrier (BBB) have received attention as a mediator of gut-brain signaling and drug delivery vehicles. In conventional well plate-based experiments, it is difficult to observe the exosome movement in real time. Here, we developed a microfluidic-based GBA chip for co-culturing gut epithelial cells and neuronal cells and simultaneously observing exosome transport. The GBA-chip is aimed to mimic the in vivo situation of convective flow in blood vessels and convective and diffusive transport in the tissue interstitium. Here, fluorescence-labeled exosome was produced by transfection of HEK-293T cells with CD63-GFP plasmid. We observed in real time the secretion of CD63-GFP-exosomes by the transfected HEK-293T cells in the chip, and transport of the exosomes to neuronal cells and analyzed the dynamics of GFP-exosome movement. Our model is expected to enhance understanding of the roles of exosome in GBA.
Collapse
Affiliation(s)
- Gwang Myeong Seo
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea.
| | - Hongki Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| | - Yeon Jae Kang
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea.
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea.
| |
Collapse
|
3
|
Fang X, Zhou D, Wang X, Ma Y, Zhong G, Jing S, Huang S, Wang Q. Exosomes: A Cellular Communication Medium That Has Multiple Effects On Brain Diseases. Mol Neurobiol 2024; 61:6864-6892. [PMID: 38356095 DOI: 10.1007/s12035-024-03957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Exosomes, as membranous vesicles generated by multiple cell types and secreted to extracellular space, play a crucial role in a range of brain injury-related brain disorders by transporting diverse proteins, RNA, DNA fragments, and other functional substances. The nervous system's pathogenic mechanisms are complicated, involving pathological processes like as inflammation, apoptosis, oxidative stress, and autophagy, all of which result in blood-brain barrier damage, cognitive impairment, and even loss of normal motor function. Exosomes have been linked to the incidence and progression of brain disorders in recent research. As a result, a thorough knowledge of the interaction between exosomes and brain diseases may lead to the development of more effective therapeutic techniques that may be implemented in the clinic. The potential role of exosomes in brain diseases and the crosstalk between exosomes and other pathogenic processes were discussed in this paper. Simultaneously, we noted the delicate events in which exosomes as a media allow the brain to communicate with other tissues and organs in physiology and disease, and compiled a list of natural compounds that modulate exosomes, in order to further improve our understanding of exosomes and propose new ideas for treating brain disorders.
Collapse
Affiliation(s)
- Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Dishu Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510405, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510405, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shangwen Jing
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
4
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
5
|
Gao L, Zhang AP, Fu L, Li QW, Qin XM, Zhao J. Huangqin decoction attenuates spared nerve injury (SNI)-induced neuropathic pain by modulating microglial M1/M2 polarization partially mediated by intestinal nicotinamide metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155594. [PMID: 38614040 DOI: 10.1016/j.phymed.2024.155594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND The incidence of neuropathic pain is progressively increasing over time. The activation of M1-type microglia plays a crucial role in the initiation and progression of neuropathic pain. Huangqin Decoction (HQD) is traditionally used to alleviate dysentery and abdominal pain. However, it remains unclear whether HQD can effectively mitigate neuropathic pain and the underlying mechanisms. PURPOSE The present study aims to investigate the impact of HQD on neuropathic pain induced by spared nerve injury (SNI) in mice, and to elucidate whether the analgesic effect of HQD is associated with microglia polarization. METHODS The analgesic effect of HQD on SNI mice was investigated through assessments of mechanical pain threshold, thermal pain threshold, cold pain threshold, and motor ability. We elucidated the molecular mechanisms of HQD in alleviating SNI-induced neuropathic pain by focusing on microglia polarization and intestinal metabolite abnormalities. The expression levels of markers associated with microglia polarization (Iba-1, CD68, CD206, iNOS) was detected by immunofluorescence and Western blot, and the levels of inflammatory factors (IL-4, IL-10, IL-6, TNF-α) were assessed by ELISA. UPLC-QTOF-MS metabolomics was utilized to identify differential metabolites in the intestines of SNI mice. We screened the differential metabolites related to microglial polarization by correlation analysis, subsequently nicotinamide was selected for validation in LPS-induced BV-2 cells. RESULTS Our findings demonstrated that HQD (20 g/kg) significantly enhanced the mechanical pain threshold, thermal pain threshold, and cold pain threshold, and protected the injured DRG neurons of SNI mice. Moreover, HQD (20 g/kg) obviously suppressed the expression of microglia M1 polarization markers (Iba-1, CD68, iNOS, IL-6, TNF-α), and promoted the expression of microglia M2 polarization markers (CD206, IL-10, IL-4) in the spinal cord of SNI mice. Additionally, HQD (20 g/kg) prominently ameliorated intestinal barrier damage by upregulating Claudin 1 and Occludin expression in the colon of SNI mice. Furthermore, HQD (20 g/kg) rectified 19 metabolite abnormalities in the intestine. Notably, nicotinamide (100 μM), an amide derivative with anti-inflammatory property, effectively suppresses microglia activation and polarization in LPS-induced BV-2 cells by downregulating IL-6 level and CD68 expression while upregulating IL-4 level and CD206 expression. CONCLUSION In summary, HQD alleviates neuropathic pain in SNI mice by regulating the activation and polarization of microglia, partially mediated through intestinal nicotinamide metabolism.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China.
| | - Ai-Ping Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China
| | - Lei Fu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China
| | - Qian-Wen Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China
| | - Jing Zhao
- Wolfson Institute for Biomedical Research, University College London, UK, London.
| |
Collapse
|
6
|
Song S, Li R, Wu C, Dong J, Wang P. EFFECTS OF HYPERBARIC OXYGEN THERAPY ON INTESTINAL ISCHEMIA-REPERFUSION AND ITS MECHANISM. Shock 2024; 61:650-659. [PMID: 38113056 DOI: 10.1097/shk.0000000000002287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
ABSTRACT Ischemia can cause reversible or irreversible cell or tissue damage, and reperfusion after ischemia not only has no therapeutic effect but also aggravates cell damage. Notably, gut tissue is highly susceptible to ischemia-reperfusion (IR) injury under many adverse health conditions. Intestinal IR (IIR) is an important pathophysiological process in critical clinical diseases. Therefore, it is necessary to identify better therapeutic methods for relieving intestinal ischemia and hypoxia. Hyperbaric oxygenation refers to the intermittent inhalation of 100% oxygen in an environment greater than 1 atm pressure, which can better increase the oxygen level in the tissue and change the inflammatory pathway. Currently, it can have a positive effect on hypoxia and ischemic diseases. Related studies have suggested that hyperbaric oxygen can significantly reduce ischemia-hypoxic injury to the brain, spinal cord, kidney, and myocardium. This article reviews the pathogenesis of IR and the current treatment measures, and further points out that hyperbaric oxygen has a better effect in IR. We found that not only improved hypoxia but also regulated IR induced injury in a certain way. From the perspective of clinical application, these changes and the application of hyperbaric oxygen therapy have important implications for treatment, especially IIR.
Collapse
Affiliation(s)
- Shurui Song
- Department of Emergency Surgery, The Affiliated Hospital of Qing Dao University, Qing Dao, PR China
| | - Ruojing Li
- Department of Emergency Surgery, The Affiliated Hospital of Qing Dao University, Qing Dao, PR China
| | - Changliang Wu
- Department of Emergency Surgery, The Affiliated Hospital of Qing Dao University, Qing Dao, PR China
| | | | - Peige Wang
- Department of Emergency Surgery, The Affiliated Hospital of Qing Dao University, Qing Dao, PR China
| |
Collapse
|
7
|
Gao X, Lin C, Feng Y, You Y, Jin Z, Li M, Zhou Y, Chen K. Akkermansia muciniphila-derived small extracellular vesicles attenuate intestinal ischemia-reperfusion-induced postoperative cognitive dysfunction by suppressing microglia activation via the TLR2/4 signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119630. [PMID: 37967793 DOI: 10.1016/j.bbamcr.2023.119630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Akkermansia muciniphila (AKK) bacteria improve the functions of theere intestinal and blood-brain barriers (BBB) via their extracellular vesicles (AmEvs). However, their role in postoperative cognitive dysfunction (POCD) and its underlying mechanisms remain unclear. To investigate, we used C57BL/6 J mice divided into five groups: Sham, POCD, POCD+Akk, POCD+Evs, and POCD+Evs + PLX5622. POCD was induced through intestinal ischemia-reperfusion (I/R). The mice's cognitive function was assessed using behavioral tests, and possible mechanisms were explored by examining gut and BBB permeability, inflammation, and microglial function. Toll-like receptor (TLR) 2/4 pathway-related proteins were also investigated both in vitro and in vivo. PLX5622 chow was employed to eliminate microglial cells. Our findings revealed a negative correlation between AKK abundance and POCD symptoms. Supplementation with either AKK or AmEvs improved cognitive function, improved the performance of the intestinal barrier and BBB, and decreased inflammation and microglial activation in POCD mice compared to controls. Moreover, AmEvs treatment inhibited TLR2/4 signaling in the brains of POCD mice and LPS-treated microglial cells. In microglial-ablated POCD mice, however, AmEvs failed to protect BBB integrity. Overall, AmEvs is a potential therapeutic strategy for managing POCD by enhancing gut and BBB integrity and inhibiting microglial-mediated TLR2/4 signaling.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, Fuzhou, 350000, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
| | - Chuantao Lin
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, Fuzhou, 350000, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
| | - Yebin Feng
- Department of Science and Education, Fujian Maternity and Child Health Hospital, Fuzhou, 350000, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
| | - Yi You
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, Fuzhou, 350000, China; College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
| | - Zhe Jin
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Mengyun Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yufeng Zhou
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Kai Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
8
|
Chang H, Chen E, Zhu T, Liu J, Chen C. Communication Regarding the Myocardial Ischemia/Reperfusion and Cognitive Impairment: A Narrative Literature Review. J Alzheimers Dis 2024; 97:1545-1570. [PMID: 38277294 PMCID: PMC10894588 DOI: 10.3233/jad-230886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
Coronary artery disease is a prevalent ischemic disease that results in insufficient blood supply to the heart muscle due to narrowing or occlusion of the coronary arteries. Various reperfusion strategies, including pharmacological thrombolysis and percutaneous coronary intervention, have been developed to enhance blood flow restoration. However, these interventions can lead to myocardial ischemia/reperfusion injury (MI/RI), which can cause unpredictable complications. Recent research has highlighted a compelling association between MI/RI and cognitive function, revealing pathophysiological mechanisms that may explain altered brain cognition. Manifestations in the brain following MI/RI exhibit pathological features resembling those observed in Alzheimer's disease (AD), implying a potential link between MI/RI and the development of AD. The pro-inflammatory state following MI/RI may induce neuroinflammation via systemic inflammation, while impaired cardiac function can result in cerebral under-perfusion. This review delves into the role of extracellular vesicles in transporting deleterious substances from the heart to the brain during conditions of MI/RI, potentially contributing to impaired cognition. Addressing the cognitive consequence of MI/RI, the review also emphasizes potential neuroprotective interventions and pharmacological treatments within the MI/RI model. In conclusion, the review underscores the significant impact of MI/RI on cognitive function, summarizes potential mechanisms of cardio-cerebral communication in the context of MI/RI, and offers ideas and insights for the prevention and treatment of cognitive dysfunction following MI/RI.
Collapse
Affiliation(s)
- Haiqing Chang
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Erya Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Cui Z, Amevor FK, Zhao X, Mou C, Pang J, Peng X, Liu A, Lan X, Liu L. Potential therapeutic effects of milk-derived exosomes on intestinal diseases. J Nanobiotechnology 2023; 21:496. [PMID: 38115131 PMCID: PMC10731872 DOI: 10.1186/s12951-023-02176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 12/21/2023] Open
Abstract
Exosomes are extracellular vesicles with the diameter of 30 ~ 150 nm, and are widely involved in intercellular communication, disease diagnosis and drug delivery carriers for targeted disease therapy. Therapeutic application of exosomes as drug carriers is limited due to the lack of sources and methods for obtaining adequate exosomes. Milk contains abundant exosomes, several studies have shown that milk-derived exosomes play crucial roles in preventing and treating intestinal diseases. In this review, we summarized the biogenesis, secretion and structure, current novel methods used for the extraction and identification of exosomes, as well as discussed the role of milk-derived exosomes in treating intestinal diseases, such as inflammatory bowel disease, necrotizing enterocolitis, colorectal cancer, and intestinal ischemia and reperfusion injury by regulating intestinal immune homeostasis, restoring gut microbiota composition and improving intestinal structure and integrity, alleviating conditions such as oxidative stress, cell apoptosis and inflammation, and reducing mitochondrial reactive oxygen species (ROS) and lysosome accumulation in both humans and animals. In addition, we discussed future prospects for the standardization of milk exosome production platform to obtain higher concentration and purity, and complete exosomes derived from milk. Several in vivo clinical studies are needed to establish milk-derived exosomes as an effective and efficient drug delivery system, and promote its application in the treatment of various diseases in both humans and animals.
Collapse
Affiliation(s)
- Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, P. R. China
| | - Xingtao Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, P. R. China
| | - Chunyan Mou
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Southwest University, Beibei, Chongqing, 400715, P. R. China.
| |
Collapse
|
10
|
Han W, Zhang H, Feng L, Dang R, Wang J, Cui C, Jiang P. The emerging role of exosomes in communication between the periphery and the central nervous system. MedComm (Beijing) 2023; 4:e410. [PMID: 37916034 PMCID: PMC10616655 DOI: 10.1002/mco2.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
Exosomes, membrane-enclosed vesicles, are secreted by all types of cells. Exosomes can transport various molecules, including proteins, lipids, functional mRNAs, and microRNAs, and can be circulated to various recipient cells, leading to the production of local paracrine or distal systemic effects. Numerous studies have proved that exosomes can pass through the blood-brain barrier, thus, enabling the transfer of peripheral substances into the central nervous system (CNS). Consequently, exosomes may be a vital factor in the exchange of information between the periphery and CNS. This review will discuss the structure, biogenesis, and functional characterization of exosomes and summarize the role of peripheral exosomes deriving from tissues like the lung, gut, skeletal muscle, and various stem cell types in communicating with the CNS and influencing the brain's function. Then, we further discuss the potential therapeutic effects of exosomes in brain diseases and the clinical opportunities and challenges. Gaining a clearer insight into the communication between the CNS and the external areas of the body will help us to ascertain the role of the peripheral elements in the maintenance of brain health and illness and will facilitate the design of minimally invasive techniques for diagnosing and treating brain diseases.
Collapse
Affiliation(s)
- Wenxiu Han
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Hailiang Zhang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Lei Feng
- Department of NeurosurgeryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
| | - Ruili Dang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Jing Wang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Changmeng Cui
- Department of NeurosurgeryAffiliated Hospital of Jining Medical UniversityJiningP. R. China
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| |
Collapse
|
11
|
Yadav H, Jaldhi, Bhardwaj R, Anamika, Bakshi A, Gupta S, Maurya SK. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: A comprehensive review. Life Sci 2023; 330:122022. [PMID: 37579835 DOI: 10.1016/j.lfs.2023.122022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Emerging evidence have shown the importance of gut microbiota in regulating brain functions. The diverse molecular mechanisms involved in cross-talk between gut and brain provide insight into importance of this communication in maintenance of brain homeostasis. It has also been observed that disturbed gut microbiota contributes to neurological diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and aging. Recently, gut microbiome-derived exosomes have also been reported to play an essential role in the development and progression of neurodegenerative diseases and could thereby act as a therapeutic target. Further, pharmacological interventions including antibiotics, prebiotics and probiotics can influence gut microbiome-mediated management of neurological diseases. However, extensive research is warranted to better comprehend this interconnection in maintenance of brain homeostasis and its implication in neurological diseases. Thus, the present review is aimed to provide a detailed understanding of gut-brain axis followed by possibilities to target the gut microbiome for improving neurological health.
Collapse
Affiliation(s)
- Himanshi Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Jaldhi
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Rati Bhardwaj
- Department of Biotechnology, Delhi Technical University, Delhi, India
| | - Anamika
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India.
| |
Collapse
|
12
|
Lin D, Zhang Y, Wang S, Zhang H, Gao C, Lu F, Li M, Chen D, Lin Z, Yang B. Ganoderma lucidum polysaccharide peptides GL-PPSQ 2 alleviate intestinal ischemia-reperfusion injury via inhibiting cytotoxic neutrophil extracellular traps. Int J Biol Macromol 2023:125370. [PMID: 37330081 DOI: 10.1016/j.ijbiomac.2023.125370] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Ganoderma lucidum polysaccharides peptides (GLPP) are the main effective ingredients from G. lucidum (Leyss. ex Fr.) Karst with anti-inflammatory, antioxidant, and immunoregulatory activities. We extracted and characterized a novel GLPP, named GL-PPSQ2, which were found to have 18 amino acids and 48 proteins, connected by O-glycosidic bonds. The monosaccharide composition of GL-PPSQ2 was determined to be composed of fucose, mannose, galactose and glucose with a molar ratio of 1: 1.45:2.37:16.46. By using asymmetric field-flow separation technique, GL-PPSQ2 were found to have a highly branched structure. Moreover, in an intestinal ischemia-reperfusion (I/R) mouse model, GL-PPSQ2 significantly increased the survival rate and alleviated intestinal mucosal hemorrhage, pulmonary permeability, and pulmonary edema. Meanwhile, GL-PPSQ2 significantly promoted intestinal tight junction, decreased inflammation, oxidative stress and cellular apoptosis in the ileum and lung. Analysis with Gene Expression Omnibus series indicates that neutrophil extracellular trap (NET) formation plays an important role in intestinal I/R injury. GL-PPSQ2 remarkedly inhibited NETs-related protein myeloperoxidase (MPO) and citrulline-Histone H3 (citH3) expression. GL-PPSQ2 could alleviate intestinal I/R and its induced lung injury via inhibiting oxidative stress, inflammation, cellular apoptosis, and cytotoxic NETs formation. This study proves that GL-PPSQ2 is a novel drug candidate for preventing and treating intestinal I/R injury.
Collapse
Affiliation(s)
- Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yukun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Saizhen Wang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Cai Gao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Feng Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Dilong Chen
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Zhanxi Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
13
|
Zhang C, Yang X, Jiang T, Yan C, Xu X, Chen Z. Tissue-derived extracellular vesicles: Isolation, purification, and multiple roles in normal and tumor tissues. Life Sci 2023; 321:121624. [PMID: 37001806 DOI: 10.1016/j.lfs.2023.121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/18/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Extracellular vesicles (EVs) are particles released from cells, and their lipid bilayer membrane encloses large amounts of bioactive molecules that endow EVs with intercellular or inter-tissue communicational abilities. Tissue-derived extracellular vesicles (Ti-EVs) are EVs directly separated from the interstitial space of tissue. They could better reflect the actual physiological or pathological state of the tissue microenvironment compared with cell line-derived EVs and biofluid EVs, indicating their potential roles in elucidating the underlying mechanism of pathogenesis and guiding the diagnosis, therapeutic targeting, and cell-free treatment of diseases. However, there have been a relatively limited number of investigations of Ti-EVs. In this review, we have summarized general procedures for Ti-EVs isolation, as well as some caveats with respect to operations after the isolation step, such as purification and storage. In addition, we have also briefly concluded the current research trends on EVs from various normal and tumor tissues, aiming to cast new light on the future research direction of Ti-EVs.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
14
|
Gangadaran P, Madhyastha H, Madhyastha R, Rajendran RL, Nakajima Y, Watanabe N, Velikkakath AKG, Hong CM, Gopi RV, Muthukalianan GK, Valsala Gopalakrishnan A, Jeyaraman M, Ahn BC. The emerging role of exosomes in innate immunity, diagnosis and therapy. Front Immunol 2023; 13:1085057. [PMID: 36726968 PMCID: PMC9885214 DOI: 10.3389/fimmu.2022.1085057] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Exosomes, which are nano-sized transport bio-vehicles, play a pivotal role in maintaining homeostasis by exchanging genetic or metabolic information between different cells. Exosomes can also play a vital role in transferring virulent factors between the host and parasite, thereby regulating host gene expression and the immune interphase. The association of inflammation with disease development and the potential of exosomes to enhance or mitigate inflammatory pathways support the notion that exosomes have the potential to alter the course of a disease. Clinical trials exploring the role of exosomes in cancer, osteoporosis, and renal, neurological, and pulmonary disorders are currently underway. Notably, the information available on the signatory efficacy of exosomes in immune-related disorders remains elusive and sporadic. In this review, we discuss immune cell-derived exosomes and their application in immunotherapy, including those against autoimmune connective tissue diseases. Further, we have elucidated our views on the major issues in immune-related pathophysiological processes. Therefore, the information presented in this review highlights the role of exosomes as promising strategies and clinical tools for immune regulation.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Radha Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yuichi Nakajima
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nozomi Watanabe
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Anoop Kumar G. Velikkakath
- Center for System Biology and Molecular Medicine, Yenepoya Research center, Yenepoya (Deemed to be University), Mangaluru, Karnataka, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Rahul Velikkakath Gopi
- Department of Tissue Engineering and Regeneration Technologies, Sree Chitra Thirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
15
|
Emerging Roles of Extracellular Vesicles in Alzheimer's Disease: Focus on Synaptic Dysfunction and Vesicle-Neuron Interaction. Cells 2022; 12:cells12010063. [PMID: 36611856 PMCID: PMC9818402 DOI: 10.3390/cells12010063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is considered by many to be a synaptic failure. Synaptic function is in fact deeply affected in the very early disease phases and recognized as the main cause of AD-related cognitive impairment. While the reciprocal involvement of amyloid beta (Aβ) and tau peptides in these processes is under intense investigation, the crucial role of extracellular vesicles (EVs) released by different brain cells as vehicles for these molecules and as mediators of early synaptic alterations is gaining more and more ground in the field. In this review, we will summarize the current literature on the contribution of EVs derived from distinct brain cells to neuronal alterations and build a working model for EV-mediated propagation of synaptic dysfunction in early AD. A deeper understanding of EV-neuron interaction will provide useful targets for the development of novel therapeutic approaches aimed at hampering AD progression.
Collapse
|
16
|
Wan Y, Dong P, Zhu X, Lei Y, Shen J, Liu W, Liu K, Zhang X. Bibliometric and visual analysis of intestinal ischemia reperfusion from 2004 to 2022. Front Med (Lausanne) 2022; 9:963104. [PMID: 36052333 PMCID: PMC9426633 DOI: 10.3389/fmed.2022.963104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Intestinal ischemia/reperfusion (I/R) injury is a common tissue-organ damage occurring in surgical practice. This study aims to comprehensively review the collaboration and impact of countries, institutions, authors, subject areas, journals, keywords, and critical literature on intestinal I/R injury from a bibliometric perspective, and to assess the evolution of clustering of knowledge structures and identify hot trends and emerging topics. Methods Articles and reviews related to intestinal I/R were retrieved through subject search from Web of Science Core Collection. Bibliometric analyses were conducted on Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio). Results A total of 1069 articles and reviews were included from 2004 to 2022. The number of articles on intestinal I/R injury gradually plateaued, but the number of citations increased. These publications were mainly from 985 institutions in 46 countries, led by China and the United States. Liu Kx published the most papers, while Chiu Cj had the largest number of co-citations. Analysis of the journals with the most outputs showed that most journals focused on surgical sciences, cell biology, and immunology. Macroscopic sketch and microscopic characterization of the entire knowledge domain were achieved through co-citation analysis. The roles of cell death, exosomes, intestinal flora, and anesthetics in intestinal I/R injury are the current and developing research focuses. The keywords "dexmedetomidine", "proliferation", and "ferroptosis" may also become new trends and focus of future research. Conclusion This study comprehensively reviews the research on intestinal I/R injury using bibliometric and visualization methods, and will help scholars better understand the dynamic evolution of intestinal I/R injury and provide directions for future research.
Collapse
Affiliation(s)
- Yantong Wan
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Xiaobing Zhu
- Department of Anesthesiology, Hospital of Traditional Chinese Medicine of Zhongshan City, Zhongshan, China
| | - Yuqiong Lei
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Weifeng Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Kexuan Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiyang Zhang
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Li G, Zhou J, Wei J, Liu B. Dexmedetomidine Ameliorated Cognitive Dysfunction Induced by Intestinal Ischemia Reperfusion in Mice with Possible Relation to the Anti-inflammatory Effect Through the Locus Coeruleus Norepinephrine System. Neurochem Res 2022; 47:3440-3453. [PMID: 35945306 PMCID: PMC9546995 DOI: 10.1007/s11064-022-03706-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Cognitive impairment is a common central nervous system complication that occurs following surgery or organs damage outside the nervous system. Neuroinflammation plays a key role in the molecular mechanisms of cognitive impairment. Dexmedetomidine alleviates neuroinflammation and reduces cognitive dysfunction incidence; however, the mechanism by which dexmedetomidine alleviates cognitive dysfunction remains unclear. This study evaluated the effect of dexmedetomidine on attenuation of early cognitive impairment induced by intestinal ischemia–reperfusion in mice and examined whether the locus coeruleus norepinephrine (LCNE) system participates in the anti-inflammatory effect of dexmedetomidine. The superior mesenteric artery was clamped for 45 min to induce intestinal ischemia reperfusion injury. Dexmedetomidine alone or combined with DSP-4, a selective locus coeruleus noradrenergic neurotoxin, was used for pretreatment. Postoperative cognition was assessed using the Morris water maze. Serum and hippocampal levels of IL-1β, TNF-α, norepinephrine (NE), and malondialdehyde (MDA) were assessed by enzyme-linked immunosorbent assay. Immunofluorescence, immunohistochemistry, and hematoxylin and eosin staining were used to evaluate the expression of tyrosine hydroxylase (TH) in the locus coeruleus, hippocampal microglia, and intestinal injury. Pretreatment with dexmedetomidine alleviated intestinal injury and decreased the serum and hippocampal levels of NE, IL-1β, TNF-α, and MDA at 24 h after intestinal ischemia reperfusion, decreased TH-positive neurons in the locus coeruleus, and ameliorated cognitive impairment. Similarly, DSP-4 pre-treatment alleviated neuroinflammation and improved cognitive function. Furthermore, α2-adrenergic receptor antagonist atipamezole or yohimbine administration diminished the neuroprotective effects and improved cognitive function with dexmedetomidine. Therefore, dexmedetomidine attenuated early cognitive dysfunction induced by intestinal ischemia–reperfusion injury in mice, which may be related to its anti-inflammatory effects through the LCNE system.
Collapse
Affiliation(s)
- Gang Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Zhou
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jicheng Wei
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Organ-on-a-Chip for Studying Gut-Brain Interaction Mediated by Extracellular Vesicles in the Gut Microenvironment. Int J Mol Sci 2021; 22:ijms222413513. [PMID: 34948310 PMCID: PMC8707342 DOI: 10.3390/ijms222413513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are a group of membrane vesicles that play important roles in cell-to-cell and interspecies/interkingdom communications by modulating the pathophysiological conditions of recipient cells. Recent evidence has implied their potential roles in the gut–brain axis (GBA), which is a complex bidirectional communication system between the gut environment and brain pathophysiology. Despite the evidence, the roles of EVs in the gut microenvironment in the GBA are less highlighted. Moreover, there are critical challenges in the current GBA models and analyzing techniques for EVs, which may hinder the research. Currently, advances in organ-on-a-chip (OOC) technologies have provided a promising solution. Here, we review the potential effects of EVs occurring in the gut environment on brain physiology and behavior and discuss how to apply OOCs to research the GBA mediated by EVs in the gut microenvironment.
Collapse
|
19
|
Effects of exosomal miRNAs in the diagnosis and treatment of Alzheimer's disease. Mech Ageing Dev 2021; 200:111593. [PMID: 34756925 DOI: 10.1016/j.mad.2021.111593] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Exosomes are extracellular vesicles secreted by a variety of cells, and they participate in intercellular communication by transferring microRNA (miRNA) and other substances. Among the various internal and external factors involved in the occurrence and development of AD, exosome-derived miRNAs have become essential in the pathogenesis and treatment of AD. As nanocarriers of miRNA, exosomes are expected to become an important tool in the pathogenesis, diagnosis, and treatment of AD. This article reviews the roles of exosomal miRNAs in the pathophysiological process, diagnostic biomarkers and treatment of AD.
Collapse
|