1
|
Kharkongor R, Stephen J, Khan U, Radhakrishnan R. Exposure to an enriched environment and fucoidan supplementation ameliorate learning and memory function in rats subjected to global cerebral ischemia. Neurosci Lett 2025; 847:138094. [PMID: 39736397 DOI: 10.1016/j.neulet.2024.138094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025]
Abstract
An enriched environment (EE) constitutes a proficient strategy that instigates social, cognitive, and motor faculties, fostering healing and heightening learning and memory function after ischemia, while fucoidan derived from brown seaweed encompasses a diverse array of bioactivities and is known to possess neuroprotective properties. This study aims to investigate the effectiveness of combining fucoidan and EE in a rat model of vascular dementia to overcome cognitive challenges. The rats were randomly assigned as Sham, Lesion - 4-vessel occlusion (4VO) i.e., transient global cerebral ischemia (tGCI), 4VO + F50mg/kg, 4VO + EE, and 4VO + F50mg/kg + EE. At the end of the study periods, the rats were exposed to the Novel object task, T-maze, and the Morris water maze. The profile of hippocampal pyramidal neurons and their dendrites was assessed through the CFV, and Golgi cox stained brain sections. Neuroinflammatory markers (IL-1β, IL-6, NF-κB, TNF-α) and synaptogenic markers (BDNF, SYP, PSD-95) were evaluated through western blot analysis. The levels of oxidative stress marker (LPO) and antioxidants (SOD, CAT, GSH, GST, GPX) in the hippocampus were quantified through biochemical assay. The findings revealed that the cognitive deficits were significantly reduced in both the 4VO + F50mg/kg and 4VO + F50mg/kg + EE treatment groups and inflammatory markers were reduced with increased antioxidant levels and synaptogenic markers when compared with the lesion group. However, through this study, the combination therapy involving fucoidan and exposure to an EE was proven effective in preserving neural integrity and restoring cognitive function against the damage caused by oxidative stress and inflammation following tGCI.
Collapse
Affiliation(s)
- Ronyson Kharkongor
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - JenishaChris Stephen
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - UlfathTasneem Khan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Rameshkumar Radhakrishnan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India.
| |
Collapse
|
2
|
Ribeiro de Novais Júnior L, Vicente da Silva T, da Silva LM, Metzker de Andrade F, da Silva AR, Meneguzzo V, de Souza Ramos S, Michielin Lopes C, Bernardo Saturnino A, Inserra A, de Bitencourt RM. Repeated Administration of a Full-Spectrum Cannabidiol Product, Not a Cannabidiol Isolate, Reverses the Lipopolysaccharide-Induced Depressive-Like Behavior and Hypolocomotion in a Rat Model of Low-Grade Subchronic Inflammation. Cannabis Cannabinoid Res 2024. [PMID: 39347620 DOI: 10.1089/can.2024.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Background: Mounting evidence suggests that the phytocannabinoid cannabidiol (CBD) holds promise as an antidepressant agent in conditions underlined by inflammation. Full-spectrum CBD extracts might provide greater behavioral efficacy than CBD-only isolates and might require lower doses to achieve the same outcomes due to the presence of other cannabinoids, terpenes, and flavonoids. However, investigations in this area remain limited. Methods: We evaluated the behavioral response to the administration for 7 days of 15 and 30 mg/kg of a CBD isolate and a full-spectrum CBD product in a rat model of subchronic lipopolysaccharide (LPS, 0.5 mg/kg/day/7 days, intraperitoneal)-induced depressive-like and sickness behavior. The forced swim test was used to assess depressive-like behavior, the open field test (OFT) to assess locomotion, and the elevated plus maze to assess anxiety-like behavior. Results: The full-spectrum CBD extract at both doses, but not the CBD isolate, reversed the LPS-induced depressive-like behavior in the forced swim test. Moreover, the full-spectrum CBD extract at the higher dose but not the CBD isolate restored the subchronic LPS-induced hypolocomotion in the OFT. Repeated administration of both formulations elicited an anxiogenic-like trend in the elevated plus maze. Conclusion: Full-spectrum CBD products might have greater therapeutic efficacy in resolving inflammation-induced depressive and sickness behavior compared to a CBD-only isolate.
Collapse
Affiliation(s)
| | - Tiago Vicente da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Larissa Mendes da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | | | - Alisson Reuel da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Vicente Meneguzzo
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Suelen de Souza Ramos
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Cyntia Michielin Lopes
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Artur Bernardo Saturnino
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Antonio Inserra
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Santa Catarina, Brazil
- Department of Psychiatry, McGill University, Montreal, Canada
| | | |
Collapse
|
3
|
de Oliveira RMW, Kohara NA, Milani H. Cannabidiol in experimental cerebral ischemia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:95-120. [PMID: 39029992 DOI: 10.1016/bs.irn.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The absence of blood flow in cerebral ischemic conditions triggers a multitude of intricate pathophysiological mechanisms, including excitotoxicity, oxidative stress, neuroinflammation, disruption of the blood-brain barrier and white matter disarrangement. Despite numerous experimental studies conducted in preclinical settings, existing treatments for cerebral ischemia (CI), such as mechanical and pharmacological therapies, remain constrained and often entail significant side effects. Therefore, there is an imperative to explore innovative strategies for addressing CI outcomes. Cannabidiol (CBD), the most abundant non-psychotomimetic compound derived from Cannabis sativa, is a pleiotropic substance that interacts with diverse molecular targets and has the potential to influence various pathophysiological processes, thereby contributing to enhanced outcomes in CI. This chapter provides a comprehensive overview of the primary effects of CBD in in vitro and diverse animal models of CI and delves into some of its plausible mechanisms of neuroprotection.
Collapse
Affiliation(s)
| | - Nathalia Akemi Kohara
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
4
|
Jung HY, Kwon HJ, Kim W, Yoo DY, Kang MS, Choi JH, Moon SM, Kim DW, Hwang IK. Extracts from Dendropanax morbifera leaves ameliorates cerebral ischemia-induced hippocampal damage by reducing oxidative damage in gerbil. J Stroke Cerebrovasc Dis 2024; 33:107483. [PMID: 37976794 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
AIM In this study, we investigated the effects of Dendropanax morbifera extract (DME) on neuroprotection against ischemic damage in gerbils. METHODS DME (100 or 300 mg/kg) was orally administered to gerbils for three weeks, and 2 h after the last DME treatment, transient forebrain ischemia in the common carotid arteries was induced for 5 min. The forebrain ischemia-related cognitive impairments were assessed by spontaneous motor activity and passive avoidance test one and four days after ischemia, respectively. In addition, surviving and degenerating neurons were morphologically confirmed by neuronal nuclei immunohistochemical staining and Fluoro-Jade C staining, respectively, four days after ischemia. Changes of glial morphology were visualized by immunohistochemical staining for each marker such as glial fibrillary acidic protein and ionized calcium-binding protein. Oxidative stress was determined by measurements of dihydroethidium, O2· (formation of formazan) and malondialdehyde two days after ischemia. In addition, glutathione redox system such as reduced glutathione, oxidized glutathione levels, glutathione peroxidase, and glutathione reductase activities were measured two days after ischemia. RESULTS Spontaneous motor activity monitoring and passive avoidance tests showed that treatment with 300 mg/kg DME, but not 100 mg/kg, significantly alleviated ischemia-induced memory impairments. In addition, approximately 67 % of mature neurons survived and 29.3 % neurons were degenerated in hippocampal CA1 region four days after ischemia, and ischemia-induced morphological changes in astrocytes and microglia were decreased in the CA1 region after 300 mg/kg DME treatment. Furthermore, treatment with 300 mg/kg DME significantly ameliorated ischemia-induced oxidative stress, such as superoxide formation and lipid peroxidation, two days after ischemia. In addition, ischemia-induced reduction of the glutathione redox system in the hippocampus, assessed two days after the ischemia, was ameliorated by treatment with 300 mg/kg DME. These suggest that DME can potentially reduce ischemia-induced neuronal damage through its antioxidant properties.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul 05030, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; Department of Anatomy & Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Min Soo Kang
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07441, Republic of Korea; Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea.
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Van Halm-Lutterodt N, Albright JA, Storlie NR, Mesregah MK, Ansari K, Balmaceno-Criss M, Daher M, Bartels-Mensah M, Xu Y, Diebo BG, Hai Y, Chandler DR, Daniels AH. Cannabis use Disorder and Complications After Anterior Cervical Diskectomy and Fusion. World Neurosurg 2024; 181:e1001-e1011. [PMID: 37956902 DOI: 10.1016/j.wneu.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVE The aim of this study, a retrospective database analysis, was to assess the impact of baseline cannabis use disorder (CUD) on perioperative complication outcomes in patients undergoing primary 1- to 2-level anterior cervical diskectomy and fusion (ACDF) surgery. METHODS The PearlDiver Database was queried from January 2010 to December 2021 for patients who underwent primary 1- to 2-level ACDF surgery for degenerative spine disease. Patients with CUD diagnosis 6 months before the index ACDF surgery (i.e., CUD) were propensity matched with patients without CUD (i.e., control in a ratio of 1:1, employing age, gender, and Charlson Comorbidity Index as matching covariates). Univariate and multivariable analysis models with adjustment of confounding variables were used to evaluate the risk of CUD on perioperative complications between the propensity-matched cohorts. RESULTS The 1:1 matched cohort included 838 patients in each group. Following multivariate analysis, CUD was demonstrated to be associated with an increased incidence of hospital readmission at 90 days (odds ratio [OR] = 2.64, 95% confidence interval: [1.19 to 6.78], [P = 0.027]) and revision surgery at 1 year postoperative (OR = 3.36, 95% confidence interval: [1.17 to 14.18], [P = 0.049]). CUD was additionally associated with reduced risk of overall medical complications at both 6 months and 1 year postoperative (OR = 0.55, [P = 0.021], and OR = 0.54, [P = 0.015], respectively). CONCLUSIONS These findings indicate that isolated baseline CUD is associated with an increased risk of hospital readmission at 90 days postoperative and cervical spine reoperation at 1 year after primary 1- to 2-level ACDF surgery with a decrease in overall medical complications, cardiac arrhythmias, and acute renal failure.
Collapse
Affiliation(s)
- Nicholas Van Halm-Lutterodt
- Department of Orthopedics Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA; School of Public Health and Professional Studies, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA; Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Neurological Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Orthopedics Surgery, Keck Medical Center of the University of Southern California, Los Angeles, California, USA
| | - J Alex Albright
- The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | | | - Mohamed Kamal Mesregah
- Department of Orthopedic Surgery, Menoufia University Faculty of Medicine, Shebin El-Kom, Egypt
| | - Kashif Ansari
- Department of Orthopedics Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA; Department of Economics, Brown University, Providence, Rhode Island, USA
| | - Mariah Balmaceno-Criss
- Department of Orthopedics Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA; The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Mohammad Daher
- Department of Orthopedics Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA
| | - Mercy Bartels-Mensah
- Department of Clinical Sciences, University of Debrecen School of Medicine, Debrecen, Hungary
| | - Yulun Xu
- Department of Neurological Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bassel G Diebo
- Department of Orthopedics Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - David Ray Chandler
- School of Public Health and Professional Studies, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA; Andrews Institute of Orthopedics and Sports Medicine, Gulf Breeze, Florida, USA
| | - Alan H Daniels
- Department of Orthopedics Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
6
|
Bomfim AJDL, Zuze SMF, Fabrício DDM, Pessoa RMDP, Crippa JAS, Chagas MHN. Effects of the Acute and Chronic Administration of Cannabidiol on Cognition in Humans and Animals: A Systematic Review. Cannabis Cannabinoid Res 2023; 8:955-973. [PMID: 37792394 DOI: 10.1089/can.2023.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Introduction: The effects of cannabidiol (CBD) on cognition has been investigated in recent years to determine the therapeutic potential of this cannabinoid for a broad gamut of medical conditions, including neuropsychiatric disorders. The aim of the present study was to perform a systematic review of studies that analyzed the effects of the acute and chronic administration of CBD on cognition in humans and animals both to assess the cognitive safety of CBD and to determine a beneficial potential of CBD on cognition. Methods: The PubMed, Web of Science, PsycINFO, and Scopus databases were searched in December of 2022 for relevant articles using the following combinations of keywords: ("cannabidiol" OR "CBD") AND ("cognition" OR "processing cognitive" OR "memory" OR "language" OR "attention" OR "executive function" OR "social cognition" OR "perceptual motor ability" OR "processing speed"). Results: Fifty-nine articles were included in the present review (36 preclinical and 23 clinical trials). CBD seems not to have any negative effect on cognitive processing in rats. The clinical trials confirmed these findings in humans. One study found that repeated dosing with CBD may improve cognitive in people who use cannabis heavily but not individuals with neuropsychiatric disorders. Considering the context of neuropsychiatric disorders in animal models, CBD seems to reverse the harm caused by the experimental paradigms, such that the performance of these animals becomes similar to that of control animals. Conclusions: The results demonstrate that the chronic and acute administration of CBD seems not to impair cognition in humans without neuropsychiatric disorders. In addition, preclinical studies report promising results regarding the effects of CBD on the cognitive processing of animals. Future double-blind, placebo-controlled, randomized clinical trials with larger, less selective samples, with standardized tests, and using different doses of CBD in outpatients are of particular interest to elucidate the cognitive effects of CBD.
Collapse
Affiliation(s)
- Ana Julia de Lima Bomfim
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Stefany Mirrelle Fávero Zuze
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Daiene de Morais Fabrício
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Rebeca Mendes de Paula Pessoa
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - José Alexandre S Crippa
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcos Hortes N Chagas
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
7
|
Chen L, Sun Y, Li J, Liu S, Ding H, Wang G, Li X. Assessing Cannabidiol as a Therapeutic Agent for Preventing and Alleviating Alzheimer's Disease Neurodegeneration. Cells 2023; 12:2672. [PMID: 38067101 PMCID: PMC10705747 DOI: 10.3390/cells12232672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative condition causing cognitive and memory decline. With small-molecule drugs targeting Aβ proving ineffective, alternative targets are urgently needed. Neuroinflammation, which is central to AD's pathology, results in synaptic and neuronal damage, highlighting the importance of addressing inflammation and conserving neuronal integrity. Cannabidiol (CBD), derived from cannabis, is noted for its neuroprotective and anti-inflammatory properties, having shown efficacy in neuropathic pain management for epilepsy. To investigate the therapeutic efficacy of CBD in AD and to elucidate its underlying mechanisms, we aimed to contribute valuable insights for incorporating AD prevention recommendations into future CBD nutritional guidelines. Aβ1-42 was employed for in vivo or in vitro model establishment, CBD treatment was utilized to assess the therapeutic efficacy of CBD, and RNA-seq analysis was conducted to elucidate the underlying therapeutic mechanism. CBD mitigates Aβ-induced cognitive deficits by modulating microglial activity, promoting neurotrophic factor release, and regulating inflammatory genes. The administration of CBD demonstrated a protective effect against Aβ toxicity both in vitro and in vivo, along with an amelioration of cognitive impairment in mice. These findings support the potential inclusion of CBD in future nutritional guidelines for Alzheimer's disease prevention.
Collapse
Affiliation(s)
- Long Chen
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
| | - Yuan Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
| | - Jinran Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
| | - Sai Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
| | - Hancheng Ding
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
| | - Xinuo Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
| |
Collapse
|
8
|
Zhang J, Lin C, Jin S, Wang H, Wang Y, Du X, Hutchinson MR, Zhao H, Fang L, Wang X. The pharmacology and therapeutic role of cannabidiol in diabetes. EXPLORATION (BEIJING, CHINA) 2023; 3:20230047. [PMID: 37933286 PMCID: PMC10582612 DOI: 10.1002/exp.20230047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 11/08/2023]
Abstract
In recent years, cannabidiol (CBD), a non-psychotropic cannabinoid, has garnered substantial interest in drug development due to its broad pharmacological activity and multi-target effects. Diabetes is a chronic metabolic disease that can damage multiple organs in the body, leading to the development of complications such as abnormal kidney function, vision loss, neuropathy, and cardiovascular disease. CBD has demonstrated significant therapeutic potential in treating diabetes mellitus and its complications owing to its various pharmacological effects. This work summarizes the role of CBD in diabetes and its impact on complications such as cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy. Strategies for discovering molecular targets for CBD in the treatment of diabetes and its complications are also proposed. Moreover, ways to optimize the structure of CBD based on known targets to generate new CBD analogues are explored.
Collapse
Affiliation(s)
- Jin Zhang
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Sha Jin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and EcologyCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenPeople's Republic of China
| | - Mark R. Hutchinson
- Discipline of PhysiologyAdelaide Medical SchoolUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
- ARC Centre for Nanoscale BioPhotonicsUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
| | - Huiying Zhao
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Le Fang
- Department of NeurologyThe China‐Japan Union Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Xiaohui Wang
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
- Beijing National Laboratory for Molecular SciencesBeijingPeople's Republic of China
| |
Collapse
|
9
|
Castelli V, Lavanco G, D’Amico C, Feo S, Tringali G, Kuchar M, Cannizzaro C, Brancato A. CBD enhances the cognitive score of adolescent rats prenatally exposed to THC and fine-tunes relevant effectors of hippocampal plasticity. Front Pharmacol 2023; 14:1237485. [PMID: 37583903 PMCID: PMC10424934 DOI: 10.3389/fphar.2023.1237485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction: An altered neurodevelopmental trajectory associated with prenatal exposure to ∆-9-tetrahydrocannabinol (THC) leads to aberrant cognitive processing through a perturbation in the effectors of hippocampal plasticity in the juvenile offspring. As adolescence presents a unique window of opportunity for "brain reprogramming", we aimed at assessing the role of the non-psychoactive phytocannabinoid cannabidiol (CBD) as a rescue strategy to temper prenatal THC-induced harm. Methods: To this aim, Wistar rats prenatally exposed to THC (2 mg/kg s.c.) or vehicle (gestational days 5-20) were tested for specific indexes of spatial and configural memory in the reinforcement-motivated Can test and in the aversion-driven Barnes maze test during adolescence. Markers of hippocampal excitatory plasticity and endocannabinoid signaling-NMDAR subunits NR1 and 2A-, mGluR5-, and their respective scaffold proteins PSD95- and Homer 1-; CB1R- and the neuromodulatory protein HINT1 mRNA levels were evaluated. CBD (40 mg/kg i.p.) was administered to the adolescent offspring before the cognitive tasks. Results: The present results show that prenatal THC impairs hippocampal memory functions and the underlying synaptic plasticity; CBD is able to mitigate cognitive impairment in both reinforcement- and aversion-related tasks and the neuroadaptation of hippocampal excitatory synapses and CB1R-related signaling. Discussion: While this research shows CBD potential in dampening prenatal THC-induced consequences, we point out the urgency to curb cannabis use during pregnancy in order to avoid detrimental bio-behavioral outcomes in the offspring.
Collapse
Affiliation(s)
- Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Cesare D’Amico
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies and ATEN Center, University of Palermo, Palermo, Italy
| | - Salvatore Feo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies and ATEN Center, University of Palermo, Palermo, Italy
| | - Giuseppe Tringali
- Pharmacology Section, Department of Healthcare Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence “G. D’Alessandro”, University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Aguiar AFL, Campos RMP, Isaac AR, Paes-Colli Y, Carvalho VM, Sampaio LS, de Melo Reis RA. Long-Term Treatment with Cannabidiol-Enriched Cannabis Extract Induces Synaptic Changes in the Adolescent Rat Hippocampus. Int J Mol Sci 2023; 24:11775. [PMID: 37511537 PMCID: PMC10380262 DOI: 10.3390/ijms241411775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The endocannabinoid system (eCS) is widely distributed in mammalian tissues and it is classically formed by cannabinoid receptors, endogenous bioactive lipids and its synthesis and degradation enzymes. Due to the modulatory role of eCS in synaptic activity in the Central Nervous System (CNS), phytocannabinoids have been increasingly used for the treatment of neurological disorders, even though little is known in terms of the long-term effect of these treatments on CNS development, mainly in the timeframe that comprises childhood and adolescence. Furthermore, an increased number of clinical trials using full-spectrum Cannabis extracts has been seen, rather than the isolated form of phytocannabinoids, when exploring the therapeutical benefits of the Cannabis plant. Thus, this study aims to evaluate the effect of cannabidiol (CBD)-enriched Cannabis extract on synaptic components in the hippocampus of rats from adolescence to early adulthood (postnatal day 45 to 60). Oral treatment of healthy male Wistar rats with a CBD-enriched Cannabis extract (3 mg/kg/day CBD) during 15 days did not affect food intake and water balance. There was also no negative impact on locomotor behaviour and cognitive performance. However, the hippocampal protein levels of GluA1 and GFAP were reduced in animals treated with the extract, whilst PSD95 levels were increased, which suggests rearrangement of glutamatergic synapses and modulation of astrocytic features. Microglial complexity was reduced in CA1 and CA3 regions, but no alterations in their phagocytic activity have been identified by Iba-1 and LAMP2 co-localization. Collectively, our data suggest that CBD-enriched Cannabis treatment may be safe and well-tolerated in healthy subjects, besides acting as a neuroprotective agent against hippocampal alterations related to the pathogenesis of excitatory and astrogliosis-mediated disorders in CNS.
Collapse
Affiliation(s)
- Andrey F L Aguiar
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Raquel M P Campos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Alinny R Isaac
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Yolanda Paes-Colli
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Virgínia M Carvalho
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Luzia S Sampaio
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Ricardo A de Melo Reis
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| |
Collapse
|
11
|
Dong F, Yan W, Meng Q, Song X, Cheng B, Liu Y, Yao R. Ebselen alleviates white matter lesions and improves cognitive deficits by attenuating oxidative stress via Keap1/Nrf2 pathway in chronic cerebral hypoperfusion mice. Behav Brain Res 2023; 448:114444. [PMID: 37098387 DOI: 10.1016/j.bbr.2023.114444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 04/27/2023]
Abstract
Oxidative stress is crucial in cerebral white matter lesions (WMLs) induced by chronic cerebral hypoperfusion. Therefore, ameliorating oxidative damage is considered to be a beneficial strategy for the treatment of WMLs. Ebselen (EbSe), a small lipid organoselenium compound, its lipid peroxidation activity is mediated through the glutathione peroxidase-mimetic properties. This study aimed to investigate the role of EbSe in WMLs after bilateral common carotid artery stenosis (BCAS). The BCAS model can moderately reduce cerebral blood flow, and mimics white matter damage caused by chronic cerebral hypoperfusion or small vessel disease. Laser Speckle Contrast Imaging (LSCI) was used to monitor the cerebral blood flow of mice. The spatial learning and memory were tested by using the eight-arm maze. LFB staining was used to detect demyelination. The expression of MBP, GFAP and Iba1 was assayed by immunofluorescence. The demyelination was assessed by Transmission Electron Microscope (TEM). The activities of MDA, SOD and GSH-Px were detected by assay kits. The mRNA levels of SOD, GSH-Px and HO-1 was detected by realtime PCR. The activation of the Nrf2/ARE pathway and the expression of SOD, GSH-Px and HO-1was assessed by Western blot. EbSe ameliorated cognitive deficits and white matter lesions induced by bilateral common carotid artery stenosis (BCAS). The expression of GFAP and Iba1 was decreased in the corpus callosum of BCAS mice after EbSe treatment. Moreover, EbSe alleviated the level of MDA by elevating the expression and mRNA of SOD, GSH-Px and HO-1 in BCAS mice. Furthermore, EbSe promoted the dissociation of the Keap1/Nrf2 complex, resulting in the accumulation of Nrf2 in the nucleus. This study demonstrates a favorable effect of EbSe on cognitive impairment in a chronic cerebral hypoperfusion model, and the improvement of EbSe's antioxidant property is mediated by Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China; Public Experimental Research Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Weixing Yan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Qiqi Meng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Xueli Song
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Bing Cheng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
12
|
Xu BT, Li MF, Chen KC, Li X, Cai NB, Xu JP, Wang HT. Mitofusin-2 mediates cannabidiol-induced neuroprotection against cerebral ischemia in rats. Acta Pharmacol Sin 2023; 44:499-512. [PMID: 36229600 PMCID: PMC9958179 DOI: 10.1038/s41401-022-01004-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Cannabidiol (CBD) reportedly exerts protective effects against many psychiatric disorders and neurodegenerative diseases, but the mechanisms are poorly understood. In this study, we explored the molecular mechanism of CBD against cerebral ischemia. HT-22 cells or primary cortical neurons were subjected to oxygen-glucose deprivation insult followed by reoxygenation (OGD/R). In both HT-22 cells and primary cortical neurons, CBD pretreatment (0.1, 0.3, 1 μM) dose-dependently attenuated OGD/R-induced cell death and mitochondrial dysfunction, ameliorated OGD/R-induced endoplasmic reticulum (ER) stress, and increased the mitofusin-2 (MFN2) protein level in HT-22 cells and primary cortical neurons. Knockdown of MFN2 abolished the protective effects of CBD. CBD pretreatment also suppressed OGD/R-induced binding of Parkin to MFN2 and subsequent ubiquitination of MFN2. Overexpression of Parkin blocked the effects of CBD in reducing MFN2 ubiquitination and reduced cell viability, whereas overexpressing MFN2 abolished Parkin's detrimental effects. In vivo experiments were conducted on male rats subjected to middle cerebral artery occlusion (MCAO) insult, and administration of CBD (2.5, 5 mg · kg-1, i.p.) dose-dependently reduced the infarct volume and ER stress in the brains. Moreover, the level of MFN2 within the ischemic penumbra of rats was increased by CBD treatment, while the binding of Parkin to MFN2 and the ubiquitination of MFN2 was decreased. Finally, short hairpin RNA against MFN2 reversed CBD's protective effects. Together, these results demonstrate that CBD protects brain neurons against cerebral ischemia by reducing MFN2 degradation via disrupting Parkin's binding to MFN2, indicating that MFN2 is a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Bing-Tian Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Meng-Fan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ke-Chun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xing Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ning-Bo Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiang-Ping Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
| | - Hai-Tao Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
| |
Collapse
|
13
|
Sciaccaluga M, Ruffolo G, Palma E, Costa C. Traditional and Innovative Anti-seizure Medications Targeting Key Physiopathological Mechanisms: Focus on Neurodevelopment and Neurodegeneration. Curr Neuropharmacol 2023; 21:1736-1754. [PMID: 37143270 PMCID: PMC10514539 DOI: 10.2174/1570159x21666230504160948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Despite the wide range of compounds currently available to treat epilepsy, there is still no drug that directly tackles the physiopathological mechanisms underlying its development. Indeed, antiseizure medications attempt to prevent seizures but are inefficacious in counteracting or rescuing the physiopathological phenomena that underlie their onset and recurrence, and hence do not cure epilepsy. Classically, the altered excitation/inhibition balance is postulated as the mechanism underlying epileptogenesis and seizure generation. This oversimplification, however, does not account for deficits in homeostatic plasticity resulting from either insufficient or excessive compensatory mechanisms in response to a change in network activity. In this respect, both neurodevelopmental epilepsies and those associated with neurodegeneration may share common underlying mechanisms that still need to be fully elucidated. The understanding of these molecular mechanisms shed light on the identification of new classes of drugs able not only to suppress seizures, but also to present potential antiepileptogenic effects or "disease-modifying" properties.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Section of Neurology, S.M. della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, Perugia, 06129, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome, Sapienza, Rome, 00185, Italy
- IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome, Sapienza, Rome, 00185, Italy
- IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Cinzia Costa
- Section of Neurology, S.M. della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, Perugia, 06129, Italy
| |
Collapse
|
14
|
Meyer E, Rieder P, Gobbo D, Candido G, Scheller A, de Oliveira RMW, Kirchhoff F. Cannabidiol Exerts a Neuroprotective and Glia-Balancing Effect in the Subacute Phase of Stroke. Int J Mol Sci 2022; 23:12886. [PMID: 36361675 PMCID: PMC9659180 DOI: 10.3390/ijms232112886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
Pharmacological agents limiting secondary tissue loss and improving functional outcomes after stroke are still limited. Cannabidiol (CBD), the major non-psychoactive component of Cannabis sativa, has been proposed as a neuroprotective agent against experimental cerebral ischemia. The effects of CBD mostly relate to the modulation of neuroinflammation, including glial activation. To investigate the effects of CBD on glial cells after focal ischemia in vivo, we performed time-lapse imaging of microglia and astroglial Ca2+ signaling in the somatosensory cortex in the subacute phase of stroke by in vivo two-photon laser-scanning microscopy using transgenic mice with microglial EGFP expression and astrocyte-specific expression of the genetically encoded Ca2+ sensor GCaMP3. CBD (10 mg/kg, intraperitoneally) prevented ischemia-induced neurological impairment, reducing the neurological deficit score from 2.0 ± 1.2 to 0.8 ± 0.8, and protected against neurodegeneration, as shown by the reduction (more than 70%) in Fluoro-Jade C staining (18.8 ± 7.5 to 5.3 ± 0.3). CBD reduced ischemia-induced microglial activation assessed by changes in soma area and total branch length, and exerted a balancing effect on astroglial Ca2+ signals. Our findings indicate that the neuroprotective effects of CBD may occur in the subacute phase of ischemia, and reinforce its strong anti-inflammatory property. Nevertheless, its mechanism of action on glial cells still requires further studies.
Collapse
Affiliation(s)
- Erika Meyer
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
- Laboratory of Brain Ischemia and Neuroprotection, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020900, Brazil
| | - Phillip Rieder
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| | - Gabriella Candido
- Laboratory of Brain Ischemia and Neuroprotection, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020900, Brazil
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| | - Rúbia Maria Weffort de Oliveira
- Laboratory of Brain Ischemia and Neuroprotection, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020900, Brazil
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, D-66421 Homburg, Germany
| |
Collapse
|