1
|
Guan D, Huang P, Liu X, Li Q, Zhang X, Liu N, Wang Y, Wan Y, Chai J, Cai S, Chen R, Ye Z. Deficiency of myeloid NPC1 exacerbates liver injury and fibrosis by impairing macrophage efferocytosis. J Adv Res 2024:S2090-1232(24)00539-3. [PMID: 39547438 DOI: 10.1016/j.jare.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
INTRODUCTION Niemann-Pick C1 (NPC1), a lysosomal cholesterol transport protein, is required for efficient efferocytosis. Patients with Npc1 mutation are frequently accompanied with hepatic symptoms, including hepatomegaly, elevated liver transaminases, or even acute liver failure, but the pathogenic mechanism remains unknown. OBJECTIVES Our work aims to characterize the functional role of myeloid NPC1 in liver injury and elucidate its underlying mechanism. METHODS Analyses of injured livers from patients with liver diseases and mouse models were conducted to examine NPC1 expression. Myeloid cell-specific Npc1 knockout mice were constructed to determine the functional role of macrophage NPC1 in liver injury. Isolated macrophages were subjected to in vitro mechanistical assays. RESULTS We found that NPC1 is mainly expressed in hepatic macrophages. Its mRNA and protein expression are significantly elevated in injured livers from both patients and mouse models. Tissue-specific deletion of myeloid Npc1 increased liver inflammation, levels of serum liver function enzymes, and liver fibrosis in mouse models of liver injury induced by carbon tetrachloride (CCl4) injection and methionine-and-choline-deficient (MCD) diets. Further analyses indicate that Npc1 deficiency in mouse models of liver injury resulted in increased levels of serum HMGB1 and mitochondrial DNA, promoted hepatic macrophage proinflammatory activation, M1 polarization, led to overproduction of hepatic inflammatory cytokines/chemokines, e.g. CCL2 and STING/NFκB pathway activation. In vitro mechanistical studies reveal that Npc1-deficient macrophages exhibited inefficient efferocytosis, partly due to impaired cargo degradation. CONCLUSIONS These findings indicate that elevated expression of myeloid NPC1 in liver diseases protects liver from injury by promoting macrophage efferocytosis of damaged cells. Dysfunction of NPC1 aggravates liver injury, suggesting that NPC1 may be a potential therapeutic target for treating liver diseases.
Collapse
Affiliation(s)
- Dongwei Guan
- Laboratory Animal Research Center, School of Medicine, Chongqing University, Chongqing 400044, China.
| | - Pengju Huang
- Laboratory Animal Research Center, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Xinlei Liu
- Laboratory Animal Research Center, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Qing Li
- Laboratory Animal Research Center, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Nan Liu
- Department of Urology Oncological Surgery, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yong Wang
- Department of Laboratory Animal Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shiying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rui Chen
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Zhijia Ye
- Laboratory Animal Research Center, School of Medicine, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Pandini C, Rey F, Cereda C, Carelli S, Gandellini P. Study of lncRNAs in Pediatric Neurological Diseases: Methods, Analysis of the State-of-Art and Possible Therapeutic Implications. Pharmaceuticals (Basel) 2023; 16:1616. [PMID: 38004481 PMCID: PMC10675345 DOI: 10.3390/ph16111616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, and their roles in pediatric neurological diseases are increasingly being explored. This review provides an overview of lncRNA implications in the central nervous system, both in its physiological state and when a pathological condition is present. We describe the role of lncRNAs in neural development, highlighting their significance in processes such as neural stem cell proliferation, differentiation, and synaptogenesis. Dysregulation of specific lncRNAs is associated with multiple pediatric neurological diseases, such as neurodevelopmental or neurodegenerative disorders and brain tumors. The collected evidence indicates that there is a need for further research to uncover the full spectrum of lncRNA involvement in pediatric neurological diseases and brain tumors. While challenges exist, ongoing advancements in technology and our understanding of lncRNA biology offer hope for future breakthroughs in the field of pediatric neurology, leveraging lncRNAs as potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Cecilia Pandini
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Federica Rey
- Pediatric Clinical Research Center “Fondazione Romeo ed Enrica Invernizzi”, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (F.R.); (S.C.)
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, 20157 Milan, Italy;
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, 20157 Milan, Italy;
| | - Stephana Carelli
- Pediatric Clinical Research Center “Fondazione Romeo ed Enrica Invernizzi”, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (F.R.); (S.C.)
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, 20157 Milan, Italy;
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| |
Collapse
|
3
|
Encarnação M, David H, Coutinho MF, Moreira L, Alves S. MicroRNA Profile, Putative Diagnostic Biomarkers and RNA-Based Therapies in the Inherited Lipid Storage Disease Niemann-Pick Type C. Biomedicines 2023; 11:2615. [PMID: 37892989 PMCID: PMC10604387 DOI: 10.3390/biomedicines11102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Lipids are essential for cellular function and are tightly controlled at the transcriptional and post-transcriptional levels. Dysregulation of these pathways is associated with vascular diseases, diabetes, cancer, and several inherited metabolic disorders. MicroRNAs (miRNAs), in particular, are a family of post-transcriptional gene repressors associated with the regulation of many genes that encode proteins involved in multiple lipid metabolism pathways, thereby influencing their homeostasis. Thus, this class of non-coding RNAs (ncRNAs) has emerged as a promising therapeutic target for the treatment of lipid-related metabolic alterations. Most of these miRNAs act at an intracellular level, but in the past few years, a role for miRNAs as intercellular signaling molecules has also been uncovered since they can be transported in bodily fluids and used as potential biomarkers of lipid metabolic alterations. In this review, we point out the current knowledge on the miRNA signature in a lysosomal storage disorder associated with lipid dysfunction, Niemann-Pick type C, and discuss the potential use of miRNAs as biomarkers and therapeutic targets for RNA-based therapies.
Collapse
Affiliation(s)
- Marisa Encarnação
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; (H.D.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Hugo David
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; (H.D.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; (H.D.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luciana Moreira
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; (H.D.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; (H.D.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
4
|
Quelle-Regaldie A, Gandoy-Fieiras N, Rodríguez-Villamayor P, Maceiras S, Losada AP, Folgueira M, Cabezas-Sáinz P, Barreiro-Iglesias A, Villar-López M, Quiroga-Berdeal MI, Sánchez L, Sobrido MJ. Severe neurometabolic phenotype in npc1−/− zebrafish with a C-terminal mutation. Front Mol Neurosci 2023; 16:1078634. [PMID: 37008782 PMCID: PMC10063808 DOI: 10.3389/fnmol.2023.1078634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Niemann Pick disease type C (NPC) is an autosomal recessive neurodegenerative lysosomal disorder characterized by an accumulation of lipids in different organs. Clinical manifestations can start at any age and include hepatosplenomegaly, intellectual impairment, and cerebellar ataxia. NPC1 is the most common causal gene, with over 460 different mutations with heterogeneous pathological consequences. We generated a zebrafish NPC1 model by CRISPR/Cas9 carrying a homozygous mutation in exon 22, which encodes the end of the cysteine-rich luminal loop of the protein. This is the first zebrafish model with a mutation in this gene region, which is frequently involved in the human disease. We observed a high lethality in npc1 mutants, with all larvae dying before reaching the adult stage. Npc1 mutant larvae were smaller than wild type (wt) and their motor function was impaired. We observed vacuolar aggregations positive to cholesterol and sphingomyelin staining in the liver, intestine, renal tubules and cerebral gray matter of mutant larvae. RNAseq comparison between npc1 mutants and controls showed 284 differentially expressed genes, including genes with functions in neurodevelopment, lipid exchange and metabolism, muscle contraction, cytoskeleton, angiogenesis, and hematopoiesis. Lipidomic analysis revealed significant reduction of cholesteryl esters and increase of sphingomyelin in the mutants. Compared to previously available zebrafish models, our model seems to recapitulate better the early onset forms of the NPC disease. Thus, this new model of NPC will allow future research in the cellular and molecular causes/consequences of the disease and on the search for new treatments.
Collapse
Affiliation(s)
- Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
| | - Nerea Gandoy-Fieiras
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Paula Rodríguez-Villamayor
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Sandra Maceiras
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ana Paula Losada
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Pablo Cabezas-Sáinz
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology, CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Villar-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
| | - María Isabel Quiroga-Berdeal
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Lugo, Spain
- *Correspondence: Laura Sánchez,
| | - María Jesús Sobrido
- Hospital Teresa Herrera, Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain
- María Jesús Sobrido,
| |
Collapse
|
5
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|