1
|
Meng X, Li D, Kan R, Xiang Y, Pan L, Guo Y, Yu P, Luo P, Zou H, Huang L, Zhu Y, Mao B, He Y, Xie L, Xu J, Liu X, Li W, Chen Y, Zhu S, Yang Y, Yu X. Inhibition of ANGPTL8 protects against diabetes-associated cognitive dysfunction by reducing synaptic loss via the PirB signaling pathway. J Neuroinflammation 2024; 21:192. [PMID: 39095838 PMCID: PMC11297729 DOI: 10.1186/s12974-024-03183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2D) is associated with an increased risk of cognitive dysfunction. Angiopoietin-like protein 8 (ANGPTL8) is an important regulator in T2D, but the role of ANGPTL8 in diabetes-associated cognitive dysfunction remains unknown. Here, we explored the role of ANGPTL8 in diabetes-associated cognitive dysfunction through its interaction with paired immunoglobulin-like receptor B (PirB) in the central nervous system. METHODS The levels of ANGPTL8 in type 2 diabetic patients with cognitive dysfunction and control individuals were measured. Mouse models of diabetes-associated cognitive dysfunction were constructed to investigate the role of ANGPTL8 in cognitive function. The cognitive function of the mice was assessed by the Barnes Maze test and the novel object recognition test, and levels of ANGPTL8, synaptic and axonal markers, and pro-inflammatory cytokines were measured. Primary neurons and microglia were treated with recombinant ANGPTL8 protein (rA8), and subsequent changes were examined. In addition, the changes induced by ANGPTL8 were validated after blocking PirB and its downstream pathways. Finally, mice with central nervous system-specific knockout of Angptl8 and PirB-/- mice were generated, and relevant in vivo experiments were performed. RESULTS Here, we demonstrated that in the diabetic brain, ANGPTL8 was secreted by neurons into the hippocampus, resulting in neuroinflammation and impairment of synaptic plasticity. Moreover, neuron-specific Angptl8 knockout prevented diabetes-associated cognitive dysfunction and neuroinflammation. Mechanistically, ANGPTL8 acted in parallel to neurons and microglia via its receptor PirB, manifesting as downregulation of synaptic and axonal markers in neurons and upregulation of proinflammatory cytokine expression in microglia. In vivo, PirB-/- mice exhibited resistance to ANGPTL8-induced neuroinflammation and synaptic damage. CONCLUSION Taken together, our findings reveal the role of ANGPTL8 in the pathogenesis of diabetes-associated cognitive dysfunction and identify the ANGPTL8-PirB signaling pathway as a potential target for the management of this condition.
Collapse
Affiliation(s)
- Xiaoyu Meng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Danpei Li
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Ranran Kan
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Yuxi Xiang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Limeng Pan
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Yaming Guo
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Peng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Peiqiong Luo
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Huajie Zou
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Li Huang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Yurong Zhu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Beibei Mao
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Yi He
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Lei Xie
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Jialu Xu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Xiaoyan Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Li
- Computer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China.
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Yang XY, Yang CJ, Wang XF, Zhang L, Shi ZY, Jiang DC, Li MZ. Berberine improves cognitive impairment by alleviating brain atrophy and promoting white matter reorganization in diabetic db/db mice: a magnetic resonance imaging-based study. Metab Brain Dis 2024; 39:941-952. [PMID: 38801506 DOI: 10.1007/s11011-024-01361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Diabetic cognitive impairment is a common complication in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid that has been shown to have neuroprotective effects against diabetes. This study aimed to investigate the effect of BBR on the gray and white matter of the brain by using magnetic resonance imaging (MRI) and to explore the underlying mechanisms. The study used diabetic db/db mice and administered BBR (50 and 100 mg/kg) intragastrically for twelve weeks. Morris water maze was applied to examine cognitive function. T2-weighted imaging (T2WI) was performed to assess brain atrophy, and diffusion tensor imaging (DTI) combined with fiber tracking was conducted to monitor the structural integrity of the white matter, followed by histological immunostaining. Furthermore, the protein expressions of the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT)/ glycogen synthase kinase-3β (GSK-3β) were detected. The results revealed that BBR significantly improved the spatial learning and memory of the db/db mice. T2WI exhibited ameliorated brain atrophy in the BBR-treated db/db mice, as evidenced by reduced ventricular volume accompanied by increased hippocampal volumes. DTI combined with fiber tracking revealed that BBR increased FA, fiber density and length in the corpus callosum/external capsule of the db/db mice. These imaging findings were confirmed by histological immunostaining. Notably, BBR significantly enhanced the protein levels of phosphorylated AKT at Ser473 and GSK-3β at Ser9. Collectively, this study demonstrated that BBR significantly improved the cognitive function of the diabetic db/db mice through ameliorating brain atrophy and promoting white matter reorganization via AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Xin-Yu Yang
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Chun-Jing Yang
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Xiao-Fang Wang
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Lei Zhang
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Zheng-Yuan Shi
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China
| | - De-Chun Jiang
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China.
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China.
| | - Man-Zhong Li
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, No.10 Tieyi Road, Haidian District, Beijing, 100038, China.
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China.
| |
Collapse
|
3
|
Ghaderi S, Gholipour P, Komaki A, Shahidi S, Seif F, Bahrami-Tapehebur M, Salehi I, Zarei M, Sarihi A, Rashno M. Underlying mechanisms behind the neuroprotective effect of vanillic acid against diabetes-associated cognitive decline: An in vivo study in a rat model. Phytother Res 2024; 38:1262-1277. [PMID: 38185917 DOI: 10.1002/ptr.8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Hippocampal synaptic dysfunction, oxidative stress, neuroinflammation, and neuronal loss play critical roles in the pathophysiology of diabetes-associated cognitive decline (DACD). The study aimed to investigate the effects of vanillic acid (VA), a phenolic compound, against DACD and explore the potential underlying mechanisms. Following confirmation of diabetes, rats were treated with VA (50 mg/kg/day; P.O.) or insulin (6 IU/rat/day; S.C.) for 8 consecutive weeks. The cognitive performance of the rats was evaluated using passive-avoidance and water-maze tasks. Long-term potentiation (LTP) was induced at hippocampal dentate gyrus (DG) synapses in response to high-frequency stimulation (HFS) applied to the perforant pathway (PP) to evaluate synaptic plasticity. Oxidative stress factors, inflammatory markers, and histological changes were evaluated in the rat hippocampus. This study showed that streptozotocin (STZ)-induced diabetes caused cognitive decline that was associated with inhibition of LTP induction, suppression of enzymatic antioxidant activities, enhanced lipid peroxidation, elevated levels of inflammatory proteins, and neuronal loss. Interestingly, chronic treatment with VA alleviated blood glucose levels, improved cognitive decline, ameliorated LTP impairment, modulated oxidative-antioxidative status, inhibited inflammatory response, and prevented neuronal loss in diabetic rats at a level comparable to insulin therapy. The results suggest that the antihyperglycemic, antioxidative, anti-inflammatory, and neuroplastic properties of VA may be the mechanisms behind its neuroprotective effect against DACD.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parsa Gholipour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faezeh Seif
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Mohammad Bahrami-Tapehebur
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|
4
|
Djurišić M. Immune receptors and aging brain. Biosci Rep 2024; 44:BSR20222267. [PMID: 38299364 PMCID: PMC10866841 DOI: 10.1042/bsr20222267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Aging brings about a myriad of degenerative processes throughout the body. A decrease in cognitive abilities is one of the hallmark phenotypes of aging, underpinned by neuroinflammation and neurodegeneration occurring in the brain. This review focuses on the role of different immune receptors expressed in cells of the central and peripheral nervous systems. We will discuss how immune receptors in the brain act as sentinels and effectors of the age-dependent shift in ligand composition. Within this 'old-age-ligand soup,' some immune receptors contribute directly to excessive synaptic weakening from within the neuronal compartment, while others amplify the damaging inflammatory environment in the brain. Ultimately, chronic inflammation sets up a positive feedback loop that increases the impact of immune ligand-receptor interactions in the brain, leading to permanent synaptic and neuronal loss.
Collapse
Affiliation(s)
- Maja Djurišić
- Departments of Biology, Neurobiology, and Bio-X, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
5
|
Nibuya M, Kezuka D, Kanno Y, Wakamatsu S, Suzuki E. Behavioral stress and antidepressant treatments altered hippocampal expression of Nogo signal-related proteins in rats. J Psychiatr Res 2024; 170:207-216. [PMID: 38157668 DOI: 10.1016/j.jpsychires.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Some immune molecules including neurite outgrowth inhibitor (Nogo) ligands and their receptor(Nogo receptor-1: NgR1)are expressed at the neuronal synaptic sites. Paired immunoglobulin-like receptor B (PirB) is another Nogo receptor that also binds to major histocompatibility complex I and β-amyloid and suppresses dendritic immune cell functions and neuronal plasticity in the central nervous system. Augmenting structural and functional neural plasticity by manipulating the Nogo signaling pathway is a novel promising strategy for treating brain ischemia and degenerative processes such as Alzheimer's disease. In recent decades psychiatric research using experimental animals has focused on the attenuation of neural plasticity by stress loadings and on the enhanced resilience by psychopharmacological treatments. In the present study, we examined possible expressional alterations in Nogo signal-related proteins in the rat hippocampus after behavioral stress loadings and antidepressant treatments. To validate the effectiveness of the procedures, previously reported increase in brain-derived neurotrophic factor (BDNF) by ECS or ketamine administration and decrease of BDNF by stress loadings are also shown in the present study. Significant increases in hippocampal NgR1 and PirB expression were observed following chronic variable stress, and a significant increase in NgR1 expression was observed under a single prolonged stress paradigm. These results indicate a possible contribution of enhanced Nogo signaling to the attenuation of neural plasticity in response to stressful experiences. Additionally, the suppression of hippocampal NgR1 expression using electroconvulsive seizure treatment and administration of subanesthetic dose of ketamine supported the increased neural plasticity induced by the antidepressant treatments.
Collapse
Affiliation(s)
- Masashi Nibuya
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan.
| | - Dai Kezuka
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Yoshihiko Kanno
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Shunosuke Wakamatsu
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Eiji Suzuki
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| |
Collapse
|
6
|
Zhao P, Zhang J, Kuai J, Li L, Li X, Feng N, Du H, Li C, Wang Q, Deng B. TAT-PEP Alleviated Cognitive Impairment by Alleviating Neuronal Mitochondria Damage and Apoptosis After Cerebral Ischemic Reperfusion Injury. Mol Neurobiol 2023; 60:5655-5671. [PMID: 37335462 PMCID: PMC10471703 DOI: 10.1007/s12035-023-03404-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/27/2023] [Indexed: 06/21/2023]
Abstract
Paired immunoglobulin-like receptor B (PirB) was identified as a myelin-associated inhibitory protein (MAIP) receptor that plays a critical role in axonal regeneration, synaptic plasticity and neuronal survival after stroke. In our previous study, a transactivator of transcription-PirB extracellular peptide (TAT-PEP) was generated that can block the interactions between MAIs and PirB. We found that TAT-PEP treatment improved axonal regeneration, CST projection and long-term neurobehavioural recovery after stroke through its effects on PirB-mediated downstream signalling. However, the effect of TAT-PEP on the recovery of cognitive function and the survival of neurons also needs to be investigated. In this study, we investigated whether pirb RNAi could alleviate neuronal injury by inhibiting the expression of PirB following exposure to oxygen-glucose deprivation (OGD) in vitro. In addition, TAT-PEP treatment attenuated the volume of the brain infarct and promoted the recovery of neurobehavioural function and cognitive function. This study also found that TAT-PEP exerts neuroprotection by reducing neuronal degeneration and apoptosis after ischemia-reperfusion injury. In addition, TAT-PEP improved neuron survival and reduced lactate dehydrogenase (LDH) release in vitro. Results also showed that TAT-PEP reduced malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) activity and reduced reactive oxygen species (ROS) accumulation in OGD-injured neurons. The possible mechanism was that TAT-PEP could contribute to the damage of neuronal mitochondria and affect the expression of cleaved caspase 3, Bax and Bcl-2. Our results suggest that PirB overexpression in neurons after ischaemic-reperfusion injury induces neuronal mitochondrial damage, oxidative stress and apoptosis. This study also suggests that TAT-PEP may be a potent neuroprotectant with therapeutic potential for stroke by reducing neuronal oxidative stress, mitochondrial damage, degeneration and apoptosis in ischemic stroke.
Collapse
Affiliation(s)
- Pin Zhao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Department of Anesthesiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, People's Republic of China
| | - Jiapo Zhang
- Department of Emergency Medicine, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
| | - JianKe Kuai
- Department of Anesthesiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, People's Republic of China
| | - Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Xuying Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Namin Feng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hailiang Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chen Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Bin Deng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
7
|
Li MZ, Zhang L, Shi ZY, Jiang DC, Yang XY. Magnetic resonance imaging detects cerebral gray and white matter injury correlated with cognitive impairments in diabetic db/db mice. Behav Brain Res 2023; 451:114510. [PMID: 37244436 DOI: 10.1016/j.bbr.2023.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Type-2 diabetes not only causes gray matter injury but also induces widespread white matter damages, which may contribute the cognitive impairments. This study aimed to assess the structural alterations of the gray and white matter in 20-week-old diabetic db/db mice using magnetic resonance imaging including T2-weighted imaging (T2WI) and diffusion tensor imaging (DTI), and to correlate them with the cognitive performance detected by Morris water maze (MWM). The results revealed impaired spatial learning and memory in db/db mice. T2WI detected severe brain atrophy involving the hippocampus and cortex after diabetes. DTI showed reduced fractional anisotropy (FA) in the cortex, hippocampus, corpus callosum/external capsule, and increased radial diffusivity in the corpus callosum/external capsule of the db/db mice. The immunostaining confirmed the MRI findings showing decreased cell density in the cortex, hippocampus, and reduced integrated optical density of Luxol fast blue staining in the corpus callosum/external capsule. The correlational analysis revealed that the T2WI-derived tissue atrophy and DTI-derived FA in the relevant gray matter and white matter significantly correlated with the behavior performance in the MWM test. Collectively, the present in vivo MRI detected varying degrees of structural abnormalities in the gray and white matter of db/db mice, which might be favorable predictors of diabetic cognitive dysfunction. Our findings might provide new clues for identifying gray and white matter damages associated with cognitive decline, which is imperative for the evaluation of potential pharmacological therapies in preclinical phase.
Collapse
Affiliation(s)
- Man-Zhong Li
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing 100038, China
| | - Lei Zhang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing 100038, China
| | - Zheng-Yuan Shi
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing 100038, China
| | - De-Chun Jiang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing 100038, China.
| | - Xin-Yu Yang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China; Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing 100038, China.
| |
Collapse
|
8
|
Li L, Mou Y, Zhai Q, Yan C, Zhang X, Du M, Li Y, Wang Q, Xiao Z. PirB negatively regulates the inflammatory activation of astrocytes in a mouse model of sleep deprivation. Neuropharmacology 2023; 235:109571. [PMID: 37146940 DOI: 10.1016/j.neuropharm.2023.109571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Reactive astrocytes play a potential regulatory role in sleep deprivation (SD). Paired immunoglobulin-like receptor B (PirB) is expressed in reactive astrocytes, suggesting that PirB may participate in regulating the inflammatory response of astrocytes. We used lentiviral and adeno-associated viral approaches to interfere with the expression of PirB in vivo and in vitro. C57BL/6 mice were sleep deprived for 7 days and neurological function was measured via behavioral tests. We found that overexpressed PirB in SD mice could decrease the number of neurotoxic reactive astrocytes, alleviate cognitive deficits, and promote reactive astrocytes tended to be neuroprotective state. IL-1α, TNFα, and C1q were used to induce neurotoxic reactive astrocytes in vitro. Overexpression of PirB relieved the toxicity of neurotoxic astrocytes. Silencing PirB expression had the opposite effect and exacerbated the transition of reactive astrocytes to a neurotoxic state in vitro. Moreover, PirB-impaired astrocytes demonstrated STAT3 hyperphosphorylation which could be reversed by stattic (p-STAT3 inhibitor). Furthermore, Golgi-Cox staining confirmed that dendrite morphology defects and synapse-related protein were significantly increased in PirB-overexpressed SD mice. Our data demonstrated that SD induced neurotoxic reactive astrocytes and contributed to neuroinflammation and cognitive deficits. PirB performs a negative regulatory role in neurotoxic reactive astrocytes via the STAT3 signaling pathway in SD.
Collapse
Affiliation(s)
- Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Yan Mou
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Qian Zhai
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xin Zhang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Zhaoyang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| |
Collapse
|
9
|
Identification and Experimental Validation of Marker Genes between Diabetes and Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8122532. [PMID: 35996379 PMCID: PMC9391608 DOI: 10.1155/2022/8122532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022]
Abstract
Currently, Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are widely prevalent in the elderly population, and accumulating evidence implies a strong link between them. For example, patients with T2DM have a higher risk of developing neurocognitive disorders, including AD, but the exact mechanisms are still unclear. This time, by combining bioinformatics analysis and in vivo experimental validation, we attempted to find a common biological link between AD and T2DM. We firstly downloaded the gene expression profiling (AD: GSE122063; T2DM: GSE161355) derived from the temporal cortex. To find the associations, differentially expressed genes (DEGs) of the two datasets were filtered and intersected. Based on them, enrichment analysis was carried out, and the least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms were used to identify the specific genes. After verifying in the external dataset and in the samples from the AD and type 2 diabetes animals, the shared targets of the two diseases were finally determined. Based on them, the ceRNA networks were constructed. Besides, the logistic regression and single-sample gene set enrichment analysis (ssGSEA) were performed. As a result, 62 DEGs were totally identified between AD and T2DM, and the enrichment analysis indicated that they were much related to the function of synaptic vesicle and MAPK signaling pathway. Based on the evidence from external dataset and RT-qPCR, CARTPT, EPHA5, and SERPINA3 were identified as the marker genes in both diseases, and their clinical significance and biological functions were further analyzed. In conclusion, discovering and exploring the marker genes that are dysregulated in both 2 diseases could help us better comprehend the intrinsic relationship between T2DM and AD, which may inspire us to develop new strategies for facing the dilemmas of clinical or basic research in cognitive dysfunction.
Collapse
|