1
|
Guo Q, Liu Q, Zhou S, Lin Y, Lv A, Zhang L, Li L, Huang F. Apelin regulates mitochondrial dynamics by inhibiting Mst1-JNK-Drp1 signaling pathway to reduce neuronal apoptosis after spinal cord injury. Neurochem Int 2024; 180:105885. [PMID: 39433147 DOI: 10.1016/j.neuint.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
In the secondary injury stage of spinal cord injury, mitochondrial dysfunction leads to decreased ATP production, increased ROS production, and activation of the mitochondria-mediated apoptosis signaling pathway. This ultimately intensifies neuronal death and promotes the progression of the injury. Apelin, a peptide produced by the APLN gene, has demonstrated promise in the treatment of spinal cord injury. The aim of this study was to investigate how Apelin protects neurons after spinal cord injury by influencing the mitochondrial dynamics. The results showed that Apelin has the ability to reduce mitochondrial fission, enhance the mitochondrial membrane potential, improve antioxidant capacity, facilitate the clearance of excess ROS, and ultimately decrease apoptosis in PC12 cells. Moreover, Apelin is overexpressed in neurons in the damaged part of the spinal cord, contributing to reduce mitochondrial fission, improve antioxidant capacity, increase ATP production, decrease apoptosis, promote spinal cord morphological repair, maintain the number of nissl bodies, and enhance signal transduction in the descending spinal cord pathway. Apelin exerts its protective effect by inhibiting the Mst1-JNK-Drp1 signaling pathway. In summary, our study further improved the effect of Apelin in the treatment of spinal cord injury, revealed the mechanism of Apelin in protecting damaged neurons after spinal cord injury by maintaining mitochondrial homeostasis, and provided a new therapeutic mechanism for Apelin in spinal cord injury.
Collapse
Affiliation(s)
- Qixuan Guo
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Qing Liu
- Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong, 250021, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Shuai Zhou
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Yabin Lin
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Ang Lv
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Luping Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Liming Li
- Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Fei Huang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
| |
Collapse
|
2
|
Yang Y, Sun L, Liu X, Liu W, Zhang Z, Zhou X, Zhao X, Zheng R, Zhang Y, Guo W, Wang X, Li X, Pang J, Li F, Tao Y, Shi D, Shen W, Wang L, Zang J, Li S. Neurotransmitters: Impressive regulators of tumor progression. Biomed Pharmacother 2024; 176:116844. [PMID: 38823279 DOI: 10.1016/j.biopha.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
In contemporary times, tumors have emerged as the primary cause of mortality in the global population. Ongoing research has shed light on the significance of neurotransmitters in the regulation of tumors. It has been established that neurotransmitters play a pivotal role in tumor cell angiogenesis by triggering the transformation of stromal cells into tumor cells, modulating receptors on tumor stem cells, and even inducing immunosuppression. These actions ultimately foster the proliferation and metastasis of tumor cells. Several major neurotransmitters have been found to exert modulatory effects on tumor cells, including the ability to restrict emergency hematopoiesis and bind to receptors on the postsynaptic membrane, thereby inhibiting malignant progression. The abnormal secretion of neurotransmitters is closely associated with tumor progression, suggesting that focusing on neurotransmitters may yield unexpected breakthroughs in tumor therapy. This article presents an analysis and outlook on the potential of targeting neurotransmitters in tumor therapy.
Collapse
Affiliation(s)
- Yumei Yang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Lei Sun
- Department of Critical Care Medicine, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China
| | - Xuerou Liu
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Wei Liu
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Zhen Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xingqi Zhou
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xinli Zhao
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Ruijie Zheng
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Yongjun Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Wanqing Guo
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xiaoli Wang
- College of Pharmacy, Anhui University of Traditional Chinese Medicine, China
| | - Xian Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Jinlong Pang
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Feng Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Yu Tao
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Dongmin Shi
- Department of Day Surgery Ward, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China
| | - Wenyi Shen
- Department of Respiratory and Critical Care Medicine, Lianshui County People's Hospital, Jiangsu, China
| | - Liping Wang
- Department of Day Surgery Ward, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China
| | - Jialan Zang
- Department of Day Surgery Ward, The First Hospital of Harbin, No 151, Diduan Street, Daoli District, Harbin, China.
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China.
| |
Collapse
|
3
|
Shen G, Zhou Z, Guo Y, Li L, Zeng J, Wang J, Zhao J. Cholinergic signaling of muscarinic receptors directly involves in the neuroprotection of muscone by inducing Ca 2+ antagonism and maintaining mitochondrial function. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117192. [PMID: 37734472 DOI: 10.1016/j.jep.2023.117192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Musk, a traditional Chinese medicine, is broadly used in inducing resuscitation and refreshing the mind, activating blood and alleviating pain. It is commonly used for the treatment of ischemic stroke, and muscone is its core medicinal component. AIM OF THE STUDY The aim of this study was to explore whether muscone ameliorates neuronal damage through cholinergic signaling of muscarinic receptors. MATERIALS AND METHODS The effects of muscone were tested in a rat model of middle cerebral artery occlusion (MCAO) as well as injured neurons induced by oxygen-glucose deprivation (OGD) in PC12 cells. Cell counting kit 8 (CCK8) assay was used to measure the cell viability, and the production of lactate dehydrogenase (LDH) and adenosine-triphosphate (ATP) were examined by kit. 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA), tetramethylrhodamine ethyl ester (TMRE) and Fluo-4 acetoxymethyl ester (Fluo-4 AM) staining were used to demonstrate effect of muscone on the reactive oxygen species (ROS) level, mitochondria membrane potential (MMP) and intracellular Ca2+ measurement in cells respectively, in which all of those staining was visualized by laser confocal microscope. For in vivo experiments, rats' cerebral blood flow was measured using laser Doppler blood flowmetry to evaluate the MCAO model, and a modified neurological severity score (mNSS) was used to assess the recovery of neurological function. Calculate infarct rate was measured by 2,3,5-Triphenyl Tetrazolium Chloride (TTC) staining. Except DCFH-DA and Fluo-4 AM staining, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazolylcarbocyanine iodide (JC-1) staining was used to observe intracellular Ca2+ measurement in brain cells. Protein levels in cells and tissues were detected by Western blot. RESULTS Pretreatment with muscone significantly improved the cell viability, lactic acid production, mitochondrial membrane potential collapse and function, Ca2+ overload, ROS generation, and cell apoptosis in OGD PC12 cells. Muscone also regulated PI3K, ERK and AKT signal pathways by activating cholinergic signaling of muscarinic receptors in PC12 cells induced with OGD. More importantly, the blocking of cholinergic signaling of muscarinic receptors by atropine significantly reduces the neuroprotective effects of muscone, including the cell viability, Ca2+ efflux, and mitochondrial repair. Furthermore, muscone was found to effectively alleviate mitochondrial dysfunction and elevated levels of ROS induced by the MCAO in the brain tissue. Notably, this beneficial effect of muscone was attenuated by atropine but not by (+)-Sparteine. CONCLUSIONS Our study indicates that muscone exerts its neuroprotective effects by activating muscarinic receptors of cholinergic signaling, thus providing a promising therapeutic target for the treatment of OGD-induced nerve injury in stroke. The findings suggest that these treatments may hold potential benefits for stroke patients.
Collapse
Affiliation(s)
- Gang Shen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China; Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Zongyuan Zhou
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yanlei Guo
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Jianbo Wang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China.
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China.
| |
Collapse
|
4
|
Sabbir MG. Cholinergic Receptor Muscarinic 1 Co-Localized with Mitochondria in Cultured Dorsal Root Ganglion Neurons, and Its Deletion Disrupted Mitochondrial Ultrastructure in Peripheral Neurons: Implications in Alzheimer's Disease. J Alzheimers Dis 2024; 98:247-264. [PMID: 38427478 DOI: 10.3233/jad-230883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Loss of Cholinergic Receptor Muscarinic 1 (CHRM1) has been linked to the pathogenesis of Alzheimer's disease (AD). Our recent study found significantly lower CHRM1 protein levels in AD patient cortices, linked to reduced survival. Furthermore, using knockout mice (Chrm1-/-) we demonstrated that deletion of Chrm1 alters cortical mitochondrial structure and function, directly establishing a connection between its loss and mitochondrial dysfunction in the context of AD. While CHRM1's role in the brain has been extensively investigated, its impact on peripheral neurons in AD remains a crucial area of research, especially considering reported declines in peripheral nerve conduction among AD patients. Objective The objective was to characterize Chrm1 localization and mitochondrial deficits in Chrm1-/- dorsal root ganglion (DRG) neurons. Methods Recombinant proteins tagged with Green or Red Fluorescent Protein (GFP/RFP) were transiently expressed to investigate the localization of Chrm1 and mitochondria, as well as mitochondrial movement in the neurites of cultured primary mouse DRG neurons, using confocal time-lapse live cell imaging. Transmission electron microscopy was performed to examine the ultrastructure of mitochondria in both wild-type and Chrm1-/- DRGs. Results Fluorescence imaging revealed colocalization and comigration of N-terminal GFP-tagged Chrm1 and mitochondrial localization signal peptide-tagged RFP-labelled mitochondria in the DRGs neurons. A spectrum of mitochondrial structural abnormalities, including disruption and loss of cristae was observed in 87% neurons in Chrm1-/- DRGs. Conclusions This study suggests that Chrm1 may be localized in the neuronal mitochondria and loss of Chrm1 in peripheral neurons causes sever mitochondrial structural aberrations resembling AD pathology.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Department of Psychology and Neuroscience, Collegeof Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
- Alzo Biosciences Inc., San Diego, CA, USA
| |
Collapse
|