1
|
Gilbert E, Žagar A, López-Darias M, Megía-Palma R, Lister KA, Jones MD, Carretero MA, Serén N, Beltran-Alvarez P, Valero KCW. Environmental factors influence cross-talk between a heat shock protein and an oxidative stress protein modification in the lizard Gallotia galloti. PLoS One 2024; 19:e0300111. [PMID: 38470891 DOI: 10.1371/journal.pone.0300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Better understanding how organisms respond to their abiotic environment, especially at the biochemical level, is critical in predicting population trajectories under climate change. In this study, we measured constitutive stress biomarkers and protein post-translational modifications associated with oxidative stress in Gallotia galloti, an insular lizard species inhabiting highly heterogeneous environments on Tenerife. Tenerife is a small volcanic island in a relatively isolated archipelago off the West coast of Africa. We found that expression of GRP94, a molecular chaperone protein, and levels of protein carbonylation, a marker of cellular stress, change across different environments, depending on solar radiation-related variables and topology. Here, we report in a wild animal population, cross-talk between the baseline levels of the heat shock protein-like GRP94 and oxidative damage (protein carbonylation), which are influenced by a range of available temperatures, quantified through modelled operative temperature. This suggests a dynamic trade-off between cellular homeostasis and oxidative damage in lizards adapted to this thermally and topologically heterogeneous environment.
Collapse
Affiliation(s)
- Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, United Kingdom
- Energy and Environment Institute, The University of Hull, Hull, United Kingdom
| | - Anamarija Žagar
- National Institute of Biology, Ljubljana, Slovenia
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
| | - Marta López-Darias
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Rodrigo Megía-Palma
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- Universidad de Alcalá (UAH), Biomedicine and Biotechnology, Alcalá de Henares, Madrid, Spain
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Karen A Lister
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom
| | - Max Dolton Jones
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States of America
| | - Miguel A Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nina Serén
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro Beltran-Alvarez
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom
| | - Katharina C Wollenberg Valero
- School of Natural Sciences, The University of Hull, Hull, United Kingdom
- School of Biology and Environmental Science, University College Dublin, Belfield Campus, Dublin, Ireland
| |
Collapse
|
2
|
Jordán F. The network perspective: Vertical connections linking organizational levels. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
De la Fuente IM, Martínez L, Carrasco-Pujante J, Fedetz M, López JI, Malaina I. Self-Organization and Information Processing: From Basic Enzymatic Activities to Complex Adaptive Cellular Behavior. Front Genet 2021; 12:644615. [PMID: 34093645 PMCID: PMC8176287 DOI: 10.3389/fgene.2021.644615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
One of the main aims of current biology is to understand the origin of the molecular organization that underlies the complex dynamic architecture of cellular life. Here, we present an overview of the main sources of biomolecular order and complexity spanning from the most elementary levels of molecular activity to the emergence of cellular systemic behaviors. First, we have addressed the dissipative self-organization, the principal source of molecular order in the cell. Intensive studies over the last four decades have demonstrated that self-organization is central to understand enzyme activity under cellular conditions, functional coordination between enzymatic reactions, the emergence of dissipative metabolic networks (DMN), and molecular rhythms. The second fundamental source of order is molecular information processing. Studies on effective connectivity based on transfer entropy (TE) have made possible the quantification in bits of biomolecular information flows in DMN. This information processing enables efficient self-regulatory control of metabolism. As a consequence of both main sources of order, systemic functional structures emerge in the cell; in fact, quantitative analyses with DMN have revealed that the basic units of life display a global enzymatic structure that seems to be an essential characteristic of the systemic functional metabolism. This global metabolic structure has been verified experimentally in both prokaryotic and eukaryotic cells. Here, we also discuss how the study of systemic DMN, using Artificial Intelligence and advanced tools of Statistic Mechanics, has shown the emergence of Hopfield-like dynamics characterized by exhibiting associative memory. We have recently confirmed this thesis by testing associative conditioning behavior in individual amoeba cells. In these Pavlovian-like experiments, several hundreds of cells could learn new systemic migratory behaviors and remember them over long periods relative to their cell cycle, forgetting them later. Such associative process seems to correspond to an epigenetic memory. The cellular capacity of learning new adaptive systemic behaviors represents a fundamental evolutionary mechanism for cell adaptation.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Murcia, Spain
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Basque Center of Applied Mathematics (BCAM), Bilbao, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC, Granada, Spain
| | - José I. López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
4
|
Clark MS, Peck LS, Thyrring J. Resilience in Greenland intertidal Mytilus: The hidden stress defense. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144366. [PMID: 33434840 DOI: 10.1016/j.scitotenv.2020.144366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 05/20/2023]
Abstract
The Arctic is experiencing particularly rapid rates of warming, consequently invasive boreal species are now able to survive the less extreme Arctic winter temperatures. Whilst persistence of intertidal and terrestrial species in the Arctic is primarily determined by their ability to tolerate the freezing winters, air temperatures in the Arctic summer can reach 36 °C in the intertidal, which is beyond the upper thermal limits of many marine species. This is normally lethal for the conspicuous ecosystem engineer Mytilus edulis. Transcriptomic analyses were undertaken on both in situ collected and experimentally warmed animals to understand whether M. edulis is able to tolerate these very high summer temperatures. Surprisingly there was no significant enrichment for Gene Ontology terms (GO) when comparing the inner and outer fjord intertidal animals with outer fjord subtidal (control) animals, representing animals collected at 27 °C, 19 °C and 3 °C respectively. This lack of differentiation indicated a wide acclimation ability in this species. Conversely, significant enrichment for processes such as signal transduction, cytoskeleton and cellular protein modification was identified in the expression profiles of the 22 °C and 32 °C experimentally heated animals. This difference in gene expression between in situ collected and experimentally warmed animals was almost certainly due to the former being acclimated to a fluctuating, but predictable, temperature regime, which has increased their thermal tolerances. Interestingly, there was no evidence for enrichment of the classical cellular stress response in any of the animals sampled. Identification of a massive expansion of the HSPA12 heat shock protein 70 kDa gene family presented the possibility of these genes acting as intertidal regulators underpinning thermal resilience. This expansion has resulted in a modified cellular stress response, as an evolutionary adaptation to the rigour of the invasive intertidal life style. Thus, M. edulis appear to have considerable capacity to withstand the current rates of Arctic warming, and the very large attendant thermal variation.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Jakob Thyrring
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK; Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., V6T 1Z4 Vancouver, British Columbia, Canada; Department of Bioscience - Marine Ecology, Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark
| |
Collapse
|
5
|
Yan P, Wang T, Guzman ML, Peter RI, Chiosis G. Chaperome Networks - Redundancy and Implications for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:87-99. [PMID: 32297213 PMCID: PMC7279512 DOI: 10.1007/978-3-030-40204-4_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The chaperome is a large family of proteins composed of chaperones, co-chaperones and a multitude of other factors. Elegant studies in yeast and other organisms have paved the road to how we currently understand the complex organization of this large family into protein networks. The goal of this chapter is to provide an overview of chaperome networks in cancer cells, with a focus on two cellular states defined by chaperome network organization. One state characterized by chaperome networks working in isolation and with little overlap, contains global chaperome networks resembling those of normal, non-transformed, cells. We propose that in this state, redundancy in chaperome networks results in a tumor type unamenable for single-agent chaperome therapy. The second state comprises chaperome networks interconnected in response to cellular stress, such as MYC hyperactivation. This is a state where no redundant pathways can be deployed, and is a state of vulnerability, amenable for chaperome therapy. We conclude by proposing a change in how we discover and implement chaperome inhibitor strategies, and suggest an approach to chaperome therapy where the properties of chaperome networks, rather than genetics or client proteins, are used in chaperome inhibitor implementation.
Collapse
Affiliation(s)
- Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monica L Guzman
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Radu I Peter
- Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Draceni Y, Pechmann S. Pervasive convergent evolution and extreme phenotypes define chaperone requirements of protein homeostasis. Proc Natl Acad Sci U S A 2019; 116:20009-20014. [PMID: 31527276 PMCID: PMC6778244 DOI: 10.1073/pnas.1904611116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Maintaining protein homeostasis is an essential requirement for cell and organismal viability. An elaborate regulatory system within cells, the protein homeostasis network, safeguards that proteins are correctly folded and functional. At the heart of this regulatory system lies a class of specialized protein quality control enzymes called chaperones that are tasked with assisting proteins in their folding, avoiding aggregation and degradation. Failure and decline of protein homeostasis are directly associated with conditions of aging and aging-related neurodegeneration. However, it is not clear what tips the balance of protein homeostasis and leads to onset of aging and diseases. Here, using a comparative genomics approach we report general principles of maintaining protein homeostasis across the eukaryotic tree of life. Expanding a previous study of 16 eukaryotes to the quantitative analysis of 216 eukaryotic genomes, we find a strong correlation between the composition of eukaryotic chaperone networks and genome complexity that is distinct for different species kingdoms. Organisms with pronounced phenotypes clearly buck this trend. Northobranchius furzeri, the shortest-lived vertebrate and a widely used model for fragile protein homeostasis, is found to be chaperone limited while Heterocephalus glaber as the longest-lived rodent and thus an especially robust organism is characterized by above-average numbers of chaperones. Strikingly, the relative size of chaperone networks is found to generally correlate with longevity in Metazoa. Our results thus indicate that the balance in protein homeostasis may be a key variable in explaining organismal robustness.
Collapse
Affiliation(s)
- Yasmine Draceni
- Département de Biochimie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Sebastian Pechmann
- Département de Biochimie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
7
|
Sleight VA, Peck LS, Dyrynda EA, Smith VJ, Clark MS. Cellular stress responses to chronic heat shock and shell damage in temperate Mya truncata. Cell Stress Chaperones 2018; 23:1003-1017. [PMID: 29754331 PMCID: PMC6111077 DOI: 10.1007/s12192-018-0910-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/06/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
Abstract
Acclimation, via phenotypic flexibility, is a potential means for a fast response to climate change. Understanding the molecular mechanisms underpinning phenotypic flexibility can provide a fine-scale cellular understanding of how organisms acclimate. In the last 30 years, Mya truncata populations around the UK have faced an average increase in sea surface temperature of 0.7 °C and further warming of between 1.5 and 4 °C, in all marine regions adjacent to the UK, is predicted by the end of the century. Hence, data are required on the ability of M. truncata to acclimate to physiological stresses, and most notably, chronic increases in temperature. Animals in the present study were exposed to chronic heat-stress for 2 months prior to shell damage and subsequently, only 3, out of 20 damaged individuals, were able to repair their shells within 2 weeks. Differentially expressed genes (between control and damaged animals) were functionally enriched with processes relating to cellular stress, the immune response and biomineralisation. Comparative transcriptomics highlighted genes, and more broadly molecular mechanisms, that are likely to be pivotal in this lack of acclimation. This study demonstrates that discovery-led transcriptomic profiling of animals during stress-response experiments can shed light on the complexity of biological processes and changes within organisms that can be more difficult to detect at higher levels of biological organisation.
Collapse
Affiliation(s)
- Victoria A Sleight
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
- British Antarctic Survey, Natural Environment Research Council (NERC), High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council (NERC), High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Elisabeth A Dyrynda
- Centre for Marine Biodiversity & Biotechnology, Institute of Life & Earth Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Valerie J Smith
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council (NERC), High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
8
|
Chen BS, Wu WS. Underlying Principles of Natural Selection in Network Evolution: Systems Biology Approach. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Systems biology is a rapidly expanding field that integrates diverse areas of science such as physics, engineering, computer science, mathematics, and biology toward the goal of elucidating the underlying principles of hierarchical metabolic and regulatory systems in the cell, and ultimately leading to predictive understanding of cellular response to perturbations. Because post-genomics research is taking place throughout the tree of life, comparative approaches offer a way for combining data from many organisms to shed light on the evolution and function of biological networks from the gene to the organismal level. Therefore, systems biology can build on decades of theoretical work in evolutionary biology, and at the same time evolutionary biology can use the systems biology approach to go in new uncharted directions. In this study, we present a review of how the post-genomics era is adopting comparative approaches and dynamic system methods to understand the underlying design principles of network evolution and to shape the nascent field of evolutionary systems biology. Finally, the application of evolutionary systems biology to robust biological network designs is also discussed from the synthetic biology perspective.
Collapse
Affiliation(s)
- Bor-Sen Chen
- Lab of Control and Systems Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Wei-Sheng Wu
- Lab of Control and Systems Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| |
Collapse
|
9
|
Lee JA, Yerbury JJ, Farrawell N, Shearer RF, Constantinescu P, Hatters DM, Schroder WA, Suhrbier A, Wilson MR, Saunders DN, Ranson M. SerpinB2 (PAI-2) Modulates Proteostasis via Binding Misfolded Proteins and Promotion of Cytoprotective Inclusion Formation. PLoS One 2015; 10:e0130136. [PMID: 26083412 PMCID: PMC4470917 DOI: 10.1371/journal.pone.0130136] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/18/2015] [Indexed: 11/29/2022] Open
Abstract
SerpinB2 (PAI-2), a member of the clade B family of serine protease inhibitors, is one of the most upregulated proteins following cellular stress. Originally described as an inhibitor of urokinase plasminogen activator, its predominant cytoplasmic localisation suggests an intracellular function. SerpinB2 has been reported to display cytoprotective properties in neurons and to interact with intracellular proteins including components of the ubiquitin-proteasome system (UPS). In the current study we explored the potential role of SerpinB2 as a modulator of proteotoxic stress. Initially, we transiently transfected wild-type SerpinB2 and SerpinB2-/- murine embryonic fibroblasts (MEFs) with Huntingtin exon1-polyglutamine (fused C-terminally to mCherry). Inclusion body formation as result of Huntingtin aggregation was evident in the SerpinB2 expressing cells but significantly impaired in the SerpinB2-/- cells, the latter concomitant with loss in cell viability. Importantly, recovery of the wild-type phenotype and cell viability was rescued by retroviral transduction of SerpinB2 expression. SerpinB2 modestly attenuated Huntingtin and amyloid beta fibril formation in vitro and was able to bind preferentially to misfolded proteins. Given the modest chaperone-like activity of SerpinB2 we tested the ability of SerpinB2 to modulate UPS and autophagy activity using a GFP reporter system and autophagy reporter, respectively. Activity of the UPS was reduced and autophagy was dysregulated in SerpinB2-/- compared to wild-type MEFs. Moreover, we observed a non-covalent interaction between ubiquitin and SerpinB2 in cells using GFP-pulldown assays and bimolecular fluorescence complementation. We conclude that SerpinB2 plays an important role in proteostasis as its loss leads to a proteotoxic phenotype associated with an inability to compartmentalize aggregating proteins and a reduced capacity of the UPS.
Collapse
Affiliation(s)
- Jodi A. Lee
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Justin J. Yerbury
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Natalie Farrawell
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Robert F. Shearer
- Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Patrick Constantinescu
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Danny M. Hatters
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Vic., Australia
| | | | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia
| | - Mark R. Wilson
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Darren N. Saunders
- Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- * E-mail: (DNS); (MR)
| | - Marie Ranson
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- * E-mail: (DNS); (MR)
| |
Collapse
|
10
|
De la Fuente IM. Elements of the cellular metabolic structure. Front Mol Biosci 2015; 2:16. [PMID: 25988183 PMCID: PMC4428431 DOI: 10.3389/fmolb.2015.00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/12/2015] [Indexed: 12/19/2022] Open
Abstract
A large number of studies have demonstrated the existence of metabolic covalent modifications in different molecular structures, which are able to store biochemical information that is not encoded by DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes). Recently, the emergence of Hopfield-like attractor dynamics has been observed in self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by specific input stimuli. Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in covalent post-translational modulation, so that determined functional memory can be embedded in multiple stable molecular marks. The metabolic dynamics governed by Hopfield-type attractors (functional processes), as well as the enzymatic covalent modifications of specific molecules (structural dynamic processes) seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory). Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory) and an essentially conservative system (genetic memory). The molecular information of both systems seems to coordinate the physiological development of the whole cell.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra,” Consejo Superior de Investigaciones CientíficasGranada, Spain
- Department of Mathematics, University of the Basque Country, UPV/Euskal Herriko UnibertsitateaLeioa, Spain
| |
Collapse
|
11
|
Meyer B, Martini P, Biscontin A, De Pittà C, Romualdi C, Teschke M, Frickenhaus S, Harms L, Freier U, Jarman S, Kawaguchi S. Pyrosequencing and de novo assembly of Antarctic krill (Euphausia superba) transcriptome to study the adaptability of krill to climate-induced environmental changes. Mol Ecol Resour 2015; 15:1460-71. [PMID: 25818178 PMCID: PMC4672718 DOI: 10.1111/1755-0998.12408] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 11/28/2022]
Abstract
The Antarctic krill, Euphausia superba, has a key position in the Southern Ocean food web by serving as direct link between primary producers and apex predators. The south-west Atlantic sector of the Southern Ocean, where the majority of the krill population is located, is experiencing one of the most profound environmental changes worldwide. Up to now, we have only cursory information about krill’s genomic plasticity to cope with the ongoing environmental changes induced by anthropogenic CO2 emission. The genome of krill is not yet available due to its large size (about 48 Gbp). Here, we present two cDNA normalized libraries from whole krill and krill heads sampled in different seasons that were combined with two data sets of krill transcriptome projects, already published, to produce the first knowledgebase krill ‘master’ transcriptome. The new library produced 25% more E. superba transcripts and now includes nearly all the enzymes involved in the primary oxidative metabolism (Glycolysis, Krebs cycle and oxidative phosphorylation) as well as all genes involved in glycogenesis, glycogen breakdown, gluconeogenesis, fatty acid synthesis and fatty acids β-oxidation. With these features, the ‘master’ transcriptome provides the most complete picture of metabolic pathways in Antarctic krill and will provide a major resource for future physiological and molecular studies. This will be particularly valuable for characterizing the molecular networks that respond to stressors caused by the anthropogenic CO2 emissions and krill’s capacity to cope with the ongoing environmental changes in the Atlantic sector of the Southern Ocean.
Collapse
Affiliation(s)
- B Meyer
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.,Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111, Oldenburg, Germany
| | - P Martini
- Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi, 58/B, 35131, Padova, Italy
| | - A Biscontin
- Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi, 58/B, 35131, Padova, Italy
| | - C De Pittà
- Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi, 58/B, 35131, Padova, Italy
| | - C Romualdi
- Dipartimento di Biologia, Università degli Studi di Padova, via U. Bassi, 58/B, 35131, Padova, Italy
| | - M Teschke
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - S Frickenhaus
- Section Scientific Computing, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.,Hochschule Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | - L Harms
- Section Scientific Computing, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - U Freier
- SC-Scientific Consulting, Münchener Str. 41a, D-41472, Neuss, Germany
| | - S Jarman
- Australian Antarctic Division, Kingston, Tas., 7050, Australia
| | - S Kawaguchi
- Australian Antarctic Division, Kingston, Tas., 7050, Australia
| |
Collapse
|
12
|
Balogh G, Péter M, Glatz A, Gombos I, Török Z, Horváth I, Harwood JL, Vígh L. Key role of lipids in heat stress management. FEBS Lett 2013; 587:1970-80. [PMID: 23684645 DOI: 10.1016/j.febslet.2013.05.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
Heat stress is a common and, therefore, an important environmental impact on cells and organisms. While much attention has been paid to severe heat stress, moderate temperature elevations are also important. Here we discuss temperature sensing and how responses to heat stress are not necessarily dependent on denatured proteins. Indeed, it is clear that membrane lipids have a pivotal function. Details of membrane lipid changes and the associated production of signalling metabolites are described and suggestions made as to how the interconnected signalling network could be modified for helpful intervention in disease.
Collapse
Affiliation(s)
- Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mihalik Á, Csermely P. Heat shock partially dissociates the overlapping modules of the yeast protein-protein interaction network: a systems level model of adaptation. PLoS Comput Biol 2011; 7:e1002187. [PMID: 22022244 PMCID: PMC3192799 DOI: 10.1371/journal.pcbi.1002187] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 07/24/2011] [Indexed: 11/18/2022] Open
Abstract
Network analysis became a powerful tool giving new insights to the understanding of cellular behavior. Heat shock, the archetype of stress responses, is a well-characterized and simple model of cellular dynamics. S. cerevisiae is an appropriate model organism, since both its protein-protein interaction network (interactome) and stress response at the gene expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of modules after heat shock. The observed changes resemble to a 'stratus-cumulus' type transition of the interactome structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds, whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general, system-level adaptation mechanism to environmental changes.
Collapse
Affiliation(s)
- Ágoston Mihalik
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Peter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
14
|
Clark MS, Thorne MAS, Toullec JY, Meng Y, Guan LL, Peck LS, Moore S. Antarctic krill 454 pyrosequencing reveals chaperone and stress transcriptome. PLoS One 2011; 6:e15919. [PMID: 21253607 PMCID: PMC3017093 DOI: 10.1371/journal.pone.0015919] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/07/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The Antarctic krill Euphausia superba is a keystone species in the Antarctic food chain. Not only is it a significant grazer of phytoplankton, but it is also a major food item for charismatic megafauna such as whales and seals and an important Southern Ocean fisheries crop. Ecological data suggest that this species is being affected by climate change and this will have considerable consequences for the balance of the Southern Ocean ecosystem. Hence, understanding how this organism functions is a priority area and will provide fundamental data for life history studies, energy budget calculations and food web models. METHODOLOGY/PRINCIPAL FINDINGS The assembly of the 454 transcriptome of E. superba resulted in 22,177 contigs with an average size of 492bp (ranging between 137 and 8515bp). In depth analysis of the data revealed an extensive catalogue of the cellular chaperone systems and the major antioxidant proteins. Full length sequences were characterised for the chaperones HSP70, HSP90 and the super-oxide dismutase antioxidants, with the discovery of potentially novel duplications of these genes. The sequence data contained 41,470 microsatellites and 17,776 Single Nucleotide Polymorphisms (SNPs/INDELS), providing a resource for population and also gene function studies. CONCLUSIONS This paper details the first 454 generated data for a pelagic Antarctic species or any pelagic crustacean globally. The classical "stress proteins", such as HSP70, HSP90, ferritin and GST were all highly expressed. These genes were shown to be over expressed in the transcriptomes of Antarctic notothenioid fish and hypothesized as adaptations to living in the cold, with the associated problems of decreased protein folding efficiency and increased vulnerability to damage by reactive oxygen species. Hence, these data will provide a major resource for future physiological work on krill, but in particular a suite of "stress" genes for studies understanding marine ectotherms' capacities to cope with environmental change.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Hyperthermia has been known to induce malformations in numerous animal models as well being associated with human abnormalities. This was apparent particularly when the hyperthermia exposure was during the early stages of neural development. Although it was recognized relatively early that these exposures induced cell death, the specific molecular mechanism of how a brief heat exposure was translated in to specific cellular functions remains largely unknown. While our understanding of the events that govern how cells react to heat, or stresses in general, has increased, there is much that remains undiscovered. In this brief review, animal and clinical observations are outlined as are some of the scientific explorations that were undertaken to characterize, define, and better understand the morphological, biochemical, and molecular effects of hyperthermia on the developing embryo.
Collapse
Affiliation(s)
- Gregory D Bennett
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5805, USA.
| |
Collapse
|
16
|
Clark MS, Peck LS. Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress Chaperones 2009; 14:649-60. [PMID: 19404777 PMCID: PMC2866954 DOI: 10.1007/s12192-009-0117-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/06/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022] Open
Abstract
The Antarctic limpet, Nacella concinna, exhibits the classical heat shock response, with up-regulation of duplicated forms of the inducible heat shock protein 70 (HSP70) gene in response to experimental manipulation of seawater temperatures. However, this response only occurs in the laboratory at temperatures well in excess of any experienced in the field. Subsequent environmental sampling of inter-tidal animals also showed up-regulation of these genes, but at temperature thresholds much lower than those required to elicit a response in the laboratory. It was hypothesised that this was a reflection of the complexity of the stresses encountered in the inter-tidal region. Here, we describe a further series of experiments comprising both laboratory manipulation and environmental sampling of N. concinna. We investigate the expression of HSP70 gene family members (HSP70A, HSP70B, GRP78 and HSC70) in response to a further suite of environmental stressors: seasonal and experimental cold, freshwater, desiccation, chronic heat and periodic emersion. Lowered temperatures (-1.9 degrees C and -1.6 degrees C), generally produced a down-regulation of all HSP70 family members, with some up-regulation of HSC70 when emerging from the winter period and increasing sea temperatures. There was no significant response to freshwater immersion. In response to acute and chronic heat treatments plus simulated tidal cycles, the data showed a clear pattern. HSP70A showed a strong but very short-term response to heat whilst the duplicated HSP70B also showed heat to be a trigger, but had a more sustained response to complex stresses. GRP78 expression indicates that it was acting as a generalised stress response under the experimental conditions described here. HSC70 was the major chaperone invoked in response to long-term stresses of varying types. These results provide intriguing clues not only to the complexity of HSP70 gene expression in response to environmental change but also insights into the stress response of a non-model species.
Collapse
Affiliation(s)
- Melody S Clark
- Biological Sciences Division, British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK.
| | | |
Collapse
|
17
|
Gonçalves JP, Grãos M, Valente AX. POLAR MAPPER: a computational tool for integrated visualization of protein interaction networks and mRNA expression data. J R Soc Interface 2009; 6:881-96. [PMID: 19091689 PMCID: PMC2684442 DOI: 10.1098/rsif.2008.0407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 11/04/2008] [Indexed: 11/25/2022] Open
Abstract
Polar Mapper is a computational application for exposing the architecture of protein interaction networks. It facilitates the system-level analysis of mRNA expression data in the context of the underlying protein interaction network. Preliminary analysis of a human protein interaction network and comparison of the yeast oxidative stress and heat shock gene expression responses are addressed as case studies.
Collapse
Affiliation(s)
- Joana P. Gonçalves
- Unidade de Sistemas Biológicos, Biocant, 3060-197 Cantanhede, Portugal
- KDBIO Group, INESC-ID, 1000-029 Lisbon, Portugal
- IST, Technical University of Lisbon, 1169-047 Lisbon, Portugal
| | - Mário Grãos
- Unidade de Biologia Celular, Biocant, 3060-197 Cantanhede, Portugal
| | - André X.C.N. Valente
- Unidade de Sistemas Biológicos, Biocant, 3060-197 Cantanhede, Portugal
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
18
|
Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg). BMC Genomics 2009; 10:328. [PMID: 19622137 PMCID: PMC2726227 DOI: 10.1186/1471-2164-10-328] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 07/21/2009] [Indexed: 01/24/2023] Open
Abstract
Background Insects provide tractable models for enhancing our understanding of the physiological and cellular processes that enable survival at extreme low temperatures. They possess three main strategies to survive the cold: freeze tolerance, freeze avoidance or cryoprotective dehydration, of which the latter method is exploited by our model species, the Arctic springtail Megaphorura arctica, formerly Onychiurus arcticus (Tullberg 1876). The physiological mechanisms underlying cryoprotective dehydration have been well characterised in M. arctica and to date this process has been described in only a few other species: the Antarctic nematode Panagrolaimus davidi, an enchytraied worm, the larvae of the Antarctic midge Belgica antarctica and the cocoons of the earthworm Dendrobaena octaedra. There are no in-depth molecular studies on the underlying cold survival mechanisms in any species. Results A cDNA microarray was generated using 6,912 M. arctica clones printed in duplicate. Analysis of clones up-regulated during dehydration procedures (using both cold- and salt-induced dehydration) has identified a number of significant cellular processes, namely the production and mobilisation of trehalose, protection of cellular systems via small heat shock proteins and tissue/cellular remodelling during the dehydration process. Energy production, initiation of protein translation and cell division, plus potential tissue repair processes dominate genes identified during recovery. Heat map analysis identified a duplication of the trehalose-6-phosphate synthase (TPS) gene in M. arctica and also 53 clones co-regulated with TPS, including a number of membrane associated and cell signalling proteins. Q-PCR on selected candidate genes has also contributed to our understanding with glutathione-S-transferase identified as the major antioxdidant enzyme protecting the cells during these stressful procedures, and a number of protein kinase signalling molecules involved in recovery. Conclusion Microarray analysis has proved to be a powerful technique for understanding the processes and genes involved in cryoprotective dehydration, beyond the few candidate genes identified in the current literature. Dehydration is associated with the mobilisation of trehalose, cell protection and tissue remodelling. Energy production, leading to protein production, and cell division characterise the recovery process. Novel membrane proteins, along with aquaporins and desaturases, have been identified as promising candidates for future functional analyses to better understand membrane remodelling during cellular dehydration.
Collapse
|
19
|
Prinsloo E, Setati MM, Longshaw VM, Blatch GL. Chaperoning stem cells: a role for heat shock proteins in the modulation of stem cell self-renewal and differentiation? Bioessays 2009; 31:370-7. [DOI: 10.1002/bies.200800158] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Clark MS, Peck LS. HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: A mini-review. Mar Genomics 2009; 2:11-8. [DOI: 10.1016/j.margen.2009.03.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 02/03/2009] [Accepted: 03/02/2009] [Indexed: 11/25/2022]
|
21
|
Functional organization of the yeast proteome by a yeast interactome map. Proc Natl Acad Sci U S A 2009; 106:1490-5. [PMID: 19164585 DOI: 10.1073/pnas.0808624106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is hoped that comprehensive mapping of protein physical interactions will facilitate insights regarding both fundamental cell biology processes and the pathology of diseases. To fulfill this hope, good solutions to 2 issues will be essential: (i) how to obtain reliable interaction data in a high-throughput setting and (ii) how to structure interaction data in a meaningful form, amenable to and valuable for further biological research. In this article, we structure an interactome in terms of predicted permanent protein complexes and predicted transient, nongeneric interactions between these complexes. The interactome is generated by means of an associated computational algorithm, from raw high-throughput affinity purification/mass spectrometric interaction data. We apply our technique to the construction of an interactome for Saccharomyces cerevisiae, showing that it yields reliability typical of low-throughput experiments from high-throughput data. We discuss biological insights raised by this interactome including, via homology, a few related to human disease.
Collapse
|
22
|
Hegyi H, Tompa P. Intrinsically disordered proteins display no preference for chaperone binding in vivo. PLoS Comput Biol 2008; 4:e1000017. [PMID: 18369417 PMCID: PMC2265518 DOI: 10.1371/journal.pcbi.1000017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 01/31/2008] [Indexed: 01/09/2023] Open
Abstract
Intrinsically disordered/unstructured proteins (IDPs) are extremely sensitive to proteolysis in vitro, but show no enhanced degradation rates in vivo. Their existence and functioning may be explained if IDPs are preferentially associated with chaperones in the cell, which may offer protection against degradation by proteases. To test this inference, we took pairwise interaction data from high-throughput interaction studies and analyzed to see if predicted disorder correlates with the tendency of chaperone binding by proteins. Our major finding is that disorder predicted by the IUPred algorithm actually shows negative correlation with chaperone binding in E. coli, S. cerevisiae, and metazoa species. Since predicted disorder positively correlates with the tendency of partner binding in the interactome, the difference between the disorder of chaperone-binding and non-binding proteins is even more pronounced if normalized to their overall tendency to be involved in pairwise protein–protein interactions. We argue that chaperone binding is primarily required for folding of globular proteins, as reflected in an increased preference for chaperones of proteins in which at least one Pfam domain exists. In terms of the functional consequences of chaperone binding of mostly disordered proteins, we suggest that its primary reason is not the assistance of folding, but promotion of assembly with partners. In support of this conclusion, we show that IDPs that bind chaperones also tend to bind other proteins. Intrinsically disordered/unstructured proteins (IDPs) defy the classical structure–function paradigm because they exist and function without a well-defined 3-D structure. These proteins are extremely sensitive to degradation in the test tube, but show no enhanced degradation rates in the cell. To resolve this apparent contradiction, we tested whether IDPs are protected by interaction with accessory proteins, chaperones, often implicated in guarding other proteins in the cell. Our major finding is that disorder predicted by the IUPred algorithm actually shows negative correlation with chaperone binding in various species. To explain this finding, we argue that IDPs are protected in the cell from proteases by their special amino acid composition, and also by the tight regulation of intracellular proteases. Thus, the primary reason for their chaperone binding is not protection from degradation, but promotion of assembly with partners.
Collapse
Affiliation(s)
- Hedi Hegyi
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|
23
|
Palotai R, Szalay MS, Csermely P. Chaperones as integrators of cellular networks: Changes of cellular integrity in stress and diseases. IUBMB Life 2007; 60:10-8. [DOI: 10.1002/iub.8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Abstract
Heat shock induced gene expression and other cellular responses help limit the damage caused by stress and thus facilitate cellular recovery. Cellular damage also triggers apoptotic cell death through several pathways. This paper briefly reviews interactions of the major heat shock proteins with components of the apoptotic pathways. Hsp90, which acts as a chaperone for unstable signal transducers to keep them poised for activation, interacts with RIP and Akt and promotes NF-kappa B mediated inhibition of apoptosis; in addition it also blocks some steps in the apoptotic pathways. Hsp70 is mostly anti-apoptotic and acts at several levels like inhibition of translocation of Bax into mitochondria, release of cytochrome c from mitochondria,formation of apoptosome and inhibition of activation of initiator caspases. Hsp70 also modulates JNK,NF-kappa B and Akt signaling pathways in the apoptotic cascade. In contrast, Hsp60 has both anti-and pro-apoptotic roles. Cytosolic Hsp60 prevents translocation of the pro-apoptotic protein Bax into mitochondria and thus promotes cell survival but it also promotes maturation of procaspase-3,essential for caspase mediated cell death. Our recent in vivo studies show that RNAi for the Hsp60D in Drosophila melanogaster prevents induced apoptosis. Hsp27 exerts its anti-apoptotic influence by inhibiting cytochrome c and TNF-mediated cell death. alpha beta crystallin suppresses caspase-8 and cytochrome c mediated activation of caspase-3. Studies in our laboratory also reveal that absence or reduced levels of the developmentally active as well as stress induced non-coding hsr omega transcripts, which are known to sequester diverse hnRNPs and related nuclear RNA-binding proteins,block induced apoptosis in Drosophila. Modulation of the apoptotic pathways by Hsps reflects their roles as "weak links" between various "hubs" in cellular networks. On the other hand, non-coding RNAs, by virtue of their potential to bind with multiple proteins,can act as "hubs" in these networks. In view of the integrative nature of living systems, it is not surprising that stress-induced genes,generally believed to primarily function in cell survival pathways, inhibit or even promote cell death pathways at multiple levels to ensure homeostasis at cell and/or organism level. The heat shock genes obviously do much more than merely help cells survive stress.
Collapse
Affiliation(s)
- Richa Arya
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|