1
|
Chen Z, Zeng L, Chen Z, Xu J, Zhang X, Ying H, Zeng Y, Yu F. Combined OLA1 and CLEC3B Gene Is a Prognostic Signature for Hepatocellular Carcinoma and Impact Tumor Progression. Technol Cancer Res Treat 2024; 23:15330338241241935. [PMID: 38564315 PMCID: PMC11007312 DOI: 10.1177/15330338241241935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC), partly because of its complexity and high heterogeneity, has a poor prognosis and an extremely high mortality rate. In this study, mRNA sequencing expression profiles and relevant clinical data of HCC patients were gathered from different public databases. Kaplan-Meier survival curves as well as ROC curves validated that OLA1|CLEC3B was an independent predictor with better predictive capability of HCC prognosis compared to OLA1 and CLEC3B separately. Further, the cell transfection experiment verified that knockdown of OLA1 inhibited cell proliferation, facilitated apoptosis, and improved sensitivity of HCC cells to gemcitabine. In this study, the prognostic model of HCC composed of OLA1/CLEC3B genes was constructed and verified, and the prediction ability was favorable. A higher level of OLA1 along with a lower level of CEC3B is a sign of poor prognosis in HCC. We revealed a novel gene pair OLA1|CLEC3B overexpressed in HCC patients, which may serve as a promising independent predictor of HCC survival and an approach for innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zhoufeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuwei Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuoyan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiya Ying
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Naryzhny S, Ronzhina N, Zorina E, Kabachenko F, Klopov N, Zgoda V. Construction of 2DE Patterns of Plasma Proteins: Aspect of Potential Tumor Markers. Int J Mol Sci 2022; 23:ijms231911113. [PMID: 36232415 PMCID: PMC9569744 DOI: 10.3390/ijms231911113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The use of tumor markers aids in the early detection of cancer recurrence and prognosis. There is a hope that they might also be useful in screening tests for the early detection of cancer. Here, the question of finding ideal tumor markers, which should be sensitive, specific, and reliable, is an acute issue. Human plasma is one of the most popular samples as it is commonly collected in the clinic and provides noninvasive, rapid analysis for any type of disease including cancer. Many efforts have been applied in searching for “ideal” tumor markers, digging very deep into plasma proteomes. The situation in this area can be improved in two ways—by attempting to find an ideal single tumor marker or by generating panels of different markers. In both cases, proteomics certainly plays a major role. There is a line of evidence that the most abundant, so-called “classical plasma proteins”, may be used to generate a tumor biomarker profile. To be comprehensive these profiles should have information not only about protein levels but also proteoform distribution for each protein. Initially, the profile of these proteins in norm should be generated. In our work, we collected bibliographic information about the connection of cancers with levels of “classical plasma proteins”. Additionally, we presented the proteoform profiles (2DE patterns) of these proteins in norm generated by two-dimensional electrophoresis with mass spectrometry and immunodetection. As a next step, similar profiles representing protein perturbations in plasma produced in the case of different cancers will be generated. Additionally, based on this information, different test systems can be developed.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
- Correspondence: ; Tel.: +7-911-176-4453
| | - Natalia Ronzhina
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Elena Zorina
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| | - Fedor Kabachenko
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Nikolay Klopov
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| |
Collapse
|
3
|
Mukherjee A, Pednekar CB, Kolke SS, Kattimani M, Duraisamy S, Burli AR, Gupta S, Srivastava S. Insights on Proteomics-Driven Body Fluid-Based Biomarkers of Cervical Cancer. Proteomes 2022; 10:proteomes10020013. [PMID: 35645371 PMCID: PMC9149910 DOI: 10.3390/proteomes10020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Cervical cancer is one of the top malignancies in women around the globe, which still holds its place despite being preventable at early stages. Gynecological conditions, even maladies like cervical cancer, still experience scrutiny from society owing to prevalent taboo and invasive screening methods, especially in developing economies. Additionally, current diagnoses lack specificity and sensitivity, which prolong diagnosis until it is too late. Advances in omics-based technologies aid in discovering differential multi-omics profiles between healthy individuals and cancer patients, which could be utilized for the discovery of body fluid-based biomarkers. Body fluids are a promising potential alternative for early disease detection and counteracting the problems of invasiveness while also serving as a pool of potential biomarkers. In this review, we will provide details of the body fluids-based biomarkers that have been reported in cervical cancer. Here, we have presented our perspective on proteomics for global biomarker discovery by addressing several pertinent problems, including the challenges that are confronted in cervical cancer. Further, we also used bioinformatic methods to undertake a meta-analysis of significantly up-regulated biomolecular profiles in CVF from cervical cancer patients. Our analysis deciphered alterations in the biological pathways in CVF such as immune response, glycolytic processes, regulation of cell death, regulation of structural size, protein polymerization disease, and other pathways that can cumulatively contribute to cervical cancer malignancy. We believe, more extensive research on such biomarkers, will speed up the road to early identification and prevention of cervical cancer in the near future.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India;
| | | | - Siddhant Sujit Kolke
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Megha Kattimani
- Undergraduate Department, Indian Institute of Science, Bengaluru 560012, India;
| | - Subhiksha Duraisamy
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India;
| | - Ananya Raghu Burli
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Sudeep Gupta
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Hospital, Mumbai 400012, India;
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India;
- Correspondence: ; Tel.: +91-22-2576-7779
| |
Collapse
|
4
|
Xie XW, Jiang SS, Li X. CLEC3B as a Potential Prognostic Biomarker in Hepatocellular Carcinoma. Front Mol Biosci 2021; 7:614034. [PMID: 33553242 PMCID: PMC7855974 DOI: 10.3389/fmolb.2020.614034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022] Open
Abstract
C-Type Lectin Domain Family 3 Member B (CLEC3B) encodes proteins associated with tumor invasion and metastasis. However, the interrelation between CLEC3B gene expression, tumor immunity, and prognosis of patients with hepatocellular carcinoma (HCC) is unclear. This study was conducted to investigate the prognostic potential of CLEC3B and its association with tumor tissue infiltration markers. CLEC3B expression was examined using the TIMER and Oncomine databases, with its prognostic potential assessed using the GEPIA and Kaplan–Meier plotter databases. The relationship between CLEC3B and tumor immune cell infiltration biomarkers was analyzed using TIMER. Here, we revealed that CLEC3B expression was decreased in HCC and was correlated with a poor survival rate in patients with HCC. Additionally, the expression of CLEC3B was negatively correlated with differential immune cell infiltration and various immune biomarkers. These results indicate a potential mechanism by which the expression of CLEC3B might adjust tumor immunity by modulating the infiltration of HCC immune cells. Our study demonstrated that CLEC3B could be a potential prognostic biomarker and might be involved in tumor immune cell infiltration in HCC.
Collapse
Affiliation(s)
- Xing-Wei Xie
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shan-Shan Jiang
- Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
5
|
Zhu HF, Zhang XH, Gu CS, Zhong Y, Long T, Ma YD, Hu ZY, Li ZG, Wang XY. Cancer-associated fibroblasts promote colorectal cancer progression by secreting CLEC3B. Cancer Biol Ther 2019; 20:967-978. [PMID: 30894065 DOI: 10.1080/15384047.2019.1591122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nontumour cells in the tumour microenvironment, especially fibroblasts, contribute to tumour progression and metastasis. The occurrence and evolution of colorectal cancer (CRC) is closely related to cancer-associated fibroblasts (CAFs). The aim of this work was to evaluate the effects of the growth factors and cytokines secreted by CAFs on CRC progression. The secreted cytokines were examined in CAFs by Human Cytokine Antibody array. We screened 37 differentially secreted cytokines in the culture supernatants of CAFs and NFs. CLEC3B, attractin, kallikrein 5 and legumain were selected for further verification. CLEC3B was more highly expressed in the stroma of CRC tissues than the other 3 cytokines. Immunohistochemistry revealed that CLEC3B expression was associated with serosal invasion by CRC. Patients with co-expression of CLEC3B and α-SMA had worse survival outcomes than those with only CLEC3B or α-SMA expression. CLEC3B secreted from CAFs may promote tumour migration. Knockdown of endogenous CLEC3B in CAFs markedly decreased CRC cell migration, while recombinant human CLEC3B clearly promoted CRC cell migration and actin remodelling. In conclusion, our findings suggest that CAFs promote the CRC cell migration and skeletal reorganization by secreting CLEC3B. CLEC3B might be a potential therapeutic molecule for CRC treatment.
Collapse
Affiliation(s)
- Hui-Fang Zhu
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China.,b Department of Pathology, School of Basic Medical Sciences , Southern Medical University , Guangzhou , Guangdong 510515, China.,c Key Laboratory of Molecular Tumor Pathology of Guangdong Province , Guangzhou , GuangDong , China
| | - Xu-Hui Zhang
- d Department of Oncology , Guangdong Second Provincial General Hospital , Guangzhou , China
| | - Chuan-Sha Gu
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China.,b Department of Pathology, School of Basic Medical Sciences , Southern Medical University , Guangzhou , Guangdong 510515, China.,c Key Laboratory of Molecular Tumor Pathology of Guangdong Province , Guangzhou , GuangDong , China
| | - Yan Zhong
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China
| | - Ting Long
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China
| | - Yi-Dan Ma
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China
| | - Zhi-Yan Hu
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China.,b Department of Pathology, School of Basic Medical Sciences , Southern Medical University , Guangzhou , Guangdong 510515, China.,c Key Laboratory of Molecular Tumor Pathology of Guangdong Province , Guangzhou , GuangDong , China
| | - Zu-Guo Li
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China.,b Department of Pathology, School of Basic Medical Sciences , Southern Medical University , Guangzhou , Guangdong 510515, China.,c Key Laboratory of Molecular Tumor Pathology of Guangdong Province , Guangzhou , GuangDong , China
| | - Xiao-Yan Wang
- a Department of Pathology, Nanfang Hospital , Southern Medical University , Guangzhou , Guangdong 510515, China.,b Department of Pathology, School of Basic Medical Sciences , Southern Medical University , Guangzhou , Guangdong 510515, China.,c Key Laboratory of Molecular Tumor Pathology of Guangdong Province , Guangzhou , GuangDong , China
| |
Collapse
|
6
|
邱 峰, 陈 富, 刘 冬, 徐 建, 何 静, 肖 菊, 操 龙, 黄 宪. [LC-MS/MS-based screening of new protein biomarkers for cervical precancerous lesions and cervical cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:13-22. [PMID: 30692061 PMCID: PMC6765587 DOI: 10.12122/j.issn.1673-4254.2019.01.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To screen potential plasma protein biomarkers for the progression of cervical precancerous lesions into cervical carcinoma and analyze their functions. METHODS Plasma samples obtained from healthy control subjects, patients with low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), cervical cancer (CC), and patients with CC after treatment were enriched for low-abundance proteins for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The MS data of the samples were analyzed using Discoverer 2.2 software, and the differential proteins (peptide coverage ≥20%, unique peptides≥2) were screened by comparison of LSIL, HSIL and CC groups against the control group followed by verification using target proteomics technology. Protein function enrichment and coexpression analyses were carried out to explore the role of the differentially expressed proteins as potential biomarkers and their pathological mechanisms. RESULTS Compared with the control group, both LSIL group and HSIL group showed 9 differential proteins; 5 differentially expressed proteins were identified in CC group. The proteins ORM2 and HPR showed obvious differential expressions in LSIL and HSIL groups compared with the control group, and could serve as potential biomarkers for the progression of cervical carcinoma. The expression of F9 increased consistently with the lesion progression from LSIL to HSIL and CC, suggesting its value as a potential biomarker for the progression of cervical cancer. CFI and AFM protein levels were obviously decreased in treated patients with CC compared with the patients before treatment, indicating their predictive value for the therapeutic efficacy. Protein function enrichment analysis showed that all these differentially expressed proteins were associated with the complement system and the coagulation cascades pathway. CONCLUSIONS We identified 5 new protein biomarkers (F9, CFI, AFM, HPR, and ORM2) for cervical precancerous lesions and for prognostic evaluation of CC, and combined detection of these biomarkers may help in the evaluation of the development and progression of CC and also in improving the diagnostic sensitivity and specificity of cervical lesions.
Collapse
Affiliation(s)
- 峰 邱
- 南方医科大学南海医院全科医学中心,广东 佛山 528244General Practice Center, Nanhai Hospital, Southern Medical University, Foshan 528244, China
| | - 富 陈
- 广东省中医院检验科,广东 广州 510120Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - 冬冬 刘
- 广东省中医院检验科,广东 广州 510120Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - 建华 徐
- 广东省中医院检验科,广东 广州 510120Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - 静玲 何
- 广东省中医院妇科,广东 广州 510120Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - 菊姣 肖
- 南方医科大学南海医院全科医学中心,广东 佛山 528244General Practice Center, Nanhai Hospital, Southern Medical University, Foshan 528244, China
| | - 龙斌 操
- 南方医科大学南海医院医学检验科,广东 佛山 528244Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 528244, China
| | - 宪章 黄
- 广东省中医院检验科,广东 广州 510120Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
7
|
Kontostathi G, Zoidakis J, Anagnou NP, Pappa KI, Vlahou A, Makridakis M. Proteomics approaches in cervical cancer: focus on the discovery of biomarkers for diagnosis and drug treatment monitoring. Expert Rev Proteomics 2017; 13:731-45. [PMID: 27398979 DOI: 10.1080/14789450.2016.1210514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The HPV virus accounts for the majority of cervical cancer cases. Although a diagnostic tool (Pap Test) is widely available, cervical cancer incidence still remains high worldwide, and especially in developing countries, attributed to a large extent to suboptimal sensitivities of the Pap test and unavailability of the test in developing countries. AREAS COVERED Proteomics approaches have been used in order to understand the HPV virus correlation to cervical cancer pathology, as well as to discover putative biomarkers for early cervical cancer diagnosis and drug mode of action. Expert commentary: The present review summarizes the latest in vitro and in vivo proteomic studies for the discovery of putative cervical cancer biomarkers and the evaluation of available drugs and treatments.
Collapse
Affiliation(s)
- Georgia Kontostathi
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece.,b Laboratory of Biology , University of Athens School of Medicine , Athens , Greece
| | - Jerome Zoidakis
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Nicholas P Anagnou
- b Laboratory of Biology , University of Athens School of Medicine , Athens , Greece.,c Cell and Gene Therapy Laboratory , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Kalliopi I Pappa
- c Cell and Gene Therapy Laboratory , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece.,d First Department of Obstetrics and Gynecology , University of Athens School of Medicine , Athens , Greece
| | - Antonia Vlahou
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Manousos Makridakis
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| |
Collapse
|
8
|
Guo X, Hao Y, Kamilijiang M, Hasimu A, Yuan J, Wu G, Reyimu H, Kadeer N, Abudula A. Potential predictive plasma biomarkers for cervical cancer by 2D-DIGE proteomics and Ingenuity Pathway Analysis. Tumour Biol 2014; 36:1711-20. [PMID: 25427637 DOI: 10.1007/s13277-014-2772-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/23/2014] [Indexed: 11/27/2022] Open
Abstract
The current methods available for screening and detecting cervical squamous cell carcinoma (CSCC) have insufficient sensitivity and specificity. As a result, many patients suffered from erroneous and missed diagnosis. Because CSCC is usually asymptomatic at potentially curative stages, identification of biomarkers is an urgent need for the early detection of CSCC. Comparative proteomics based on two-dimensional differential in-gel electrophoresis (2D-DIGE) was employed to quantitatively analyze plasma proteins of healthy Uyghur women and with early stage cervical carcinoma. The 2D-DIGE image were analyzed statistically using DeCyder™ 2D software. The statistical analysis of proteomic data revealed that 43 protein spots showed significantly different expression (ratio > 1.5, P < 0.01). A further identification of these protein spots by MALDI-TOF-MS found out 16 different proteins. Bioinformatic analysis within the framework of Ingenuity Pathway Analysis (IPA(@)) showed that 10 plasma proteins as candidate biomarker were screened, mainly including lipid metabolism-related proteins (APOA4, APOA1, APOE), complement (EPPK1, CFHR1), metabolic enzymes (CP, F2, MASP2), glycoprotein (CLU), and immune function-related proteins (IGK@). Networks involved in lipid metabolism, molecular transport, and small molecule biochemistry were dysfunctional in CSCC. Acute phase response signaling and JAK/Stat signaling and IL-4 signaling, etc., were identified as the canonical pathways that are overrepresented in CSCC. Furthermore, the expression of three proteins (APOA1, APOE, CLU) were validated using ELISA in plasma of patients with different stage cervical lesion. With the combined proteomic and bioinformatic approach, this study was successful in identifying biomarker signatures for cervical cancer and might provide new insights into the mechanism of CSCC progression, potentially leading to the design of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xia Guo
- Xinjiang Key Laboratory of Molecular Biology and Endemic Diseases, Central Laboratory of XinJiang Medical University/Collaborative Innovation Center, Xinjiang Medical University, Urumqi, 830011, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Boichenko AP, Govorukhina N, Klip HG, van der Zee AGJ, Güzel C, Luider TM, Bischoff R. A panel of regulated proteins in serum from patients with cervical intraepithelial neoplasia and cervical cancer. J Proteome Res 2014; 13:4995-5007. [PMID: 25232869 DOI: 10.1021/pr500601w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We developed a discovery-validation mass-spectrometry-based pipeline to identify a set of proteins that are regulated in serum of patients with cervical intraepithelial neoplasia (CIN) and squamous cell cervical cancer using iTRAQ, label-free shotgun, and targeted mass-spectrometric quantification. In the discovery stage we used a "pooling" strategy for the comparative analysis of immunodepleted serum and revealed 15 up- and 26 down-regulated proteins in patients with early- (CES) and late-stage (CLS) cervical cancer. The analysis of nondepleted serum samples from patients with CIN, CES, an CLS and healthy controls showed significant changes in abundance of alpha-1-acid glycoprotein 1, alpha-1-antitrypsin, serotransferrin, haptoglobin, alpha-2-HS-glycoprotein, and vitamin D-binding protein. We validated our findings using a fast UHPLC/MRM method in an independent set of serum samples from patients with cervical cancer or CIN and healthy controls as well as serum samples from patients with ovarian cancer (more than 400 samples in total). The panel of six proteins showed 67% sensitivity and 88% specificity for discrimination of patients with CIN from healthy controls, a stage of the disease where current protein-based biomarkers, for example, squamous cell carcinoma antigen (SCCA), fail to show any discrimination. Additionally, combining the six-protein panel with SCCA improves the discrimination of patients with CES and CLS from healthy controls.
Collapse
Affiliation(s)
- Alexander P Boichenko
- Department of Analytical Biochemistry, University of Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Canales NAG, Marina VM, Castro JS, Jiménez AA, Mendoza-Hernández G, McCARRON EL, Roman MB, Castro-Romero JI. A1BG and C3 are overexpressed in patients with cervical intraepithelial neoplasia III. Oncol Lett 2014; 8:939-947. [PMID: 25009667 PMCID: PMC4081425 DOI: 10.3892/ol.2014.2195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 05/20/2014] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to analyze sera proteins in females with cervical intraepithelial neoplasia, grade III (CIN III) and in healthy control females, in order to identify a potential biomarker which detects lesions that have a greater probability of cervical transformation. The present study investigated five sera samples from females who were Human Papilloma Virus (HPV) 16+ and who had been histopathologically diagnosed with CIN III, as well as five sera samples from healthy control females who were HPV-negative. Protein separation was performed using two-dimensional (2D) gel electrophoresis and the proteins were stained with Colloidal Coommassie Blue. Quantitative analysis was performed using ImageMaster 2D Platinum 6.0 software. Peptide sequence identification was performed using a nano-LC ESIMS/MS system. The proteins with the highest Mascot score were validated using western blot analysis in an additional 55 sera samples from the control and CIN III groups. The eight highest score spots that were found to be overexpressed in the CIN III sera group were identified as α-1-B glycoprotein (A1BG), complement component 3 (C3), a pro-apolipoprotein, two apolipoproteins and three haptoglobins. Only A1BG and C3 were validated using western blot analysis, and the bands were compared between the two groups using densitometry analysis. The relative density of the bands of A1BG and C3 was found to be greater in all of the serum samples from the females with CIN III, compared with those of the individuals in the control group. In summary, the present study identified two proteins whose expression was elevated in females with CIN III, suggesting that they could be used as biomarkers for CIN III. However, further investigations are required in order to assess the expression of A1BG and C3 in different pre-malignant lesions.
Collapse
Affiliation(s)
| | - Vicente Madrid Marina
- Research Center on Infection Diseases, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
| | - Jorge Salmerón Castro
- Epidemiology and Health Services Research Unit, National Institute of Social Security, Cuernavaca, Morelos 62450, Mexico
| | - Alfredo Antúnez Jiménez
- Epidemiology and Health Services Research Unit, National Institute of Social Security, Cuernavaca, Morelos 62450, Mexico
| | - Guillermo Mendoza-Hernández
- Laboratory of Peptides and Proteins, Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Elizabeth Langley McCARRON
- Biomedical Cancer Research Unit, Basic Research Subdirection, National Institute of Cancer, Mexico City 14080, Mexico
| | - Margarita Bahena Roman
- Research Center on Infection Diseases, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
| | - Julieta Ivone Castro-Romero
- Research Center on Infection Diseases, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
| |
Collapse
|
11
|
Wang M, Wang Y, Zhang L, Wang J, Hong H, Wang D. Quantitative proteomic analysis reveals the mode-of-action for chronic mercury hepatotoxicity to marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 130-131:123-131. [PMID: 23416409 DOI: 10.1016/j.aquatox.2013.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
Mercury (Hg) is a widespread persistent pollutant in aquatic ecosystems. We investigated the protein profiles of medaka (Oryzias melastigma) liver chronically exposed to different mercuric chloride (HgCl2) concentrations (1 or 10 μg/L) for 60 d using two-dimensional difference gel electrophoresis (2D-DIGE), as well as cell ultrastructure and Hg content analysis of the hepatic tissue. The results showed that Hg exposure significantly increased metal accumulation in the liver, and subsequently damaged liver ultrastructure. Comparison of the 2D-DIGE protein profiles of the exposed and control groups revealed that the abundance of 45 protein spots was remarkably altered in response to Hg treatment. The altered spots were subjected to matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis, with the resultant identification of 33 spots. These proteins were mainly involved in cytoskeleton assembly, oxidative stress, and energy production. Among them, several proteins related to mitochondrial function (e.g. respiratory metabolism) were significantly altered in the treated hepatocytes, implying that this organelle might be the primary target for Hg attack in the cells. This study provided new insights into the molecular mechanisms and/or toxic pathways by which chronic Hg hepatotoxicity affects aquatic organisms, and also provided basic information for screening potential biomarkers for aquatic Hg monitoring.
Collapse
Affiliation(s)
- Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
12
|
Ye N, Li J. Serum Protein Profiling of Cervical Cancer Patients Using Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. ANAL LETT 2013. [DOI: 10.1080/00032719.2012.718826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Heng EC, Karsani SA, Abdul Rahman M, Abdul Hamid NA, Hamid Z, Wan Ngah WZ. Supplementation with tocotrienol-rich fraction alters the plasma levels of Apolipoprotein A-I precursor, Apolipoprotein E precursor, and C-reactive protein precursor from young and old individuals. Eur J Nutr 2013; 52:1811-20. [PMID: 23287846 DOI: 10.1007/s00394-012-0485-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 12/10/2012] [Indexed: 12/31/2022]
Abstract
PURPOSE Tocotrienol possess beneficial effects not exhibited by tocopherol. In vitro studies using animal models have suggested that these effects are caused via modulation of gene and protein expression. However, human supplementation studies using tocotrienol-rich isomers are limited. This study aims to identify plasma proteins that changed in expression following tocotrienol-rich fraction (TRF) supplementation within two different age groups. METHODS Subjects were divided into two age groups-32 ± 2 (young) and 52 ± 2 (old) years old. Four subjects from each group were assigned with TRF (78% tocotrienol and 22% tocopherol, 150 mg/day) or placebo capsules for 6 months. Fasting plasma were obtained at 0, 3, and 6 months. Plasma tocopherol and tocotrienol levels were determined. Plasma proteome was resolved by 2DE, and differentially expressed proteins identified by MS. The expressions of three proteins were validated by Western blotting. RESULTS Six months of TRF supplementation significantly increased plasma levels of tocopherols and tocotrienols. Proteins identified as being differentially expressed were related to cholesterol homeostasis, acute-phase response, protease inhibitor, and immune response. The expressions of Apolipoprotein A-I precursor, Apolipoprotein E precursor, and C-reactive protein precursor were validated. The old groups showed more proteins changing in expression. CONCLUSIONS TRF appears to not only affect plasma levels of tocopherols and tocotrienols, but also the levels of plasma proteins. The identity of these proteins may provide insights into how TRF exerts its beneficial effects. They may also be potentially developed into biomarkers for the study of the effects and effectiveness of TRF supplementation.
Collapse
Affiliation(s)
- Eng Chee Heng
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur City Campus, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
14
|
Guo X, Abliz G, Reyimu H, Zhao F, Kadeer N, Matsidik R, Wu G, Abudula A. The association of a distinct plasma proteomic profile with the cervical high-grade squamous intraepithelial lesion of Uyghur women: a 2D liquid-phase chromatography/mass spectrometry study. Biomarkers 2012; 17:352-61. [PMID: 22458349 DOI: 10.3109/1354750x.2012.673133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To identify plasma protein biomarkers of cervical high-grade squamous intraepithelial lesion (HSIL) of Uyghur women by proteomics approach. METHODS Plasma protein samples of Uyghur women with HSIL and chronic cervicitis were analyzed with 2D HPLC followed by detection of target proteins with Linear Trap Quadrupole Mass Spectrometer (LTQ MS/MS). RESULTS We detected three upregulated and one downregulated protein peaks representing protein constituents distinguishing HSIL from controls by 2D HPLC, identified 31 target proteins by LTQ MS/MS. Further confirmed analysis with online software IPA® 8.7 and ELISA assay showed APOA1 and mTOR as potential biomarkers. CONCLUSIONS A distinct plasma proteomic profile may be associated with HSIL of Uyghur women.
Collapse
Affiliation(s)
- Xia Guo
- Xinjiang Key Laboratory of Molecular Biology and Endemic Diseases, Xinjiang Medical University, Urumqi, PR China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhu Y, Han S, Zhao H, Liang J, Zhai J, Wu Z, Qiu G. Comparative analysis of serum proteomes of degenerative scoliosis. J Orthop Res 2011; 29:1896-903. [PMID: 21647955 DOI: 10.1002/jor.21466] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 05/03/2011] [Indexed: 02/04/2023]
Abstract
Degenerative scoliosis (DS) is an important degenerative lumbar disease causing spinal dysfunction and affecting the quality of life of the elderly, and is associated not only with severe back or leg pain but also with complicated surgical outcomes. The pathogenesis of DS is still unknown. Therefore, it is very important to ascertain the etiology of degenerative scoliosis and establish related molecular markers predicting and controlling the scoliosis. For the first time, we used two-dimensional fluorescence DIGE to compare the serum proteome profiles of 12 DS patients and controls. Proteins found to be differentially expressed were identified by MALDI-TOF mass spectrometric analysis, coupled with database interrogation. Eleven spots that were differentially expressed in the sera of DS patients were found, and eight gene products were identified among these spots. Clusterin, CLU cDNA FLJ57622, ALB cDNA FLJ50830, Hypothetical short protein, HLA-A MHC class 1 antigen. (Fragment), ALB 23 kDa protein, Isoform 1 of G protein-regulated inducer of neurite outgrowth 1 (GPRIN I)and Ficolin-3 were down-regulated in the sera of DS patients. The decreased levels of Clusterin and Ficolin-3 were confirmed by Western blot. The information obtained with this proteomic analysis will be very useful in understanding the pathophysiology of DS as well as in finding candidates as drug targets of DS. These results may provide a novel approach for the pathogenesis study of DS.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Orthopaedics, The First Affiliated Hospital Of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Tian L, Wang M, Li X, Lam PKS, Wang M, Wang D, Chou HN, Li Y, Chan LL. Proteomic modification in gills and brains of medaka fish (Oryzias melastigma) after exposure to a sodium channel activator neurotoxin, brevetoxin-1. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 104:211-217. [PMID: 21632025 DOI: 10.1016/j.aquatox.2011.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/21/2011] [Accepted: 04/30/2011] [Indexed: 05/30/2023]
Abstract
Although brevetoxins (PbTxs) produced by the marine dinoflagellate Karenia brevis are known to be absorbed across gill membranes and exert their acute toxic effects through an ion-channel mediated pathway in neural tissue, the exact biochemical mechanism concerning PbTxs neurotoxicity in neural tissue and gas-exchange organs has not been well elucidated. In this study, we calculated the LC(50) value of PbTx-1 using the medaka fish model, and presented the molecular responses of sub-acute exposure to PbTx-1 with proteomic method. By adopting two-dimensional electrophoresis, the abundances of 14 and 24 proteins were found to be remarkably altered in the gills and brains, respectively, in response to toxin exposure. Thirteen gill and twenty brain proteins were identified using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis. These proteins could be categorized into diverse functional classes such as cell structure, macromolecule metabolism, signal transduction and neurotransmitter release. These findings can help to elucidate the possible pathways by which aquatic toxins affect marine organisms within target organs.
Collapse
Affiliation(s)
- Li Tian
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Uleberg KE, Munk AC, Brede C, Gudlaugsson E, van Diermen B, Skaland I, Malpica A, Janssen EA, Hjelle A, Baak JP. Discrimination of grade 2 and 3 cervical intraepithelial neoplasia by means of analysis of water soluble proteins recovered from cervical biopsies. Proteome Sci 2011; 9:36. [PMID: 21711556 PMCID: PMC3142202 DOI: 10.1186/1477-5956-9-36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/28/2011] [Indexed: 12/24/2022] Open
Abstract
Background Cervical intraepithelial neoplasia (CIN) grades 2 and 3 are usually grouped and treated in the same way as "high grade", in spite of their different risk to cancer progression and spontaneous regression rates. CIN2-3 is usually diagnosed in formaldehyde-fixed paraffin embedded (FFPE) punch biopsies. This procedure virtually eliminates the availability of water-soluble proteins which could have diagnostic and prognostic value. Aim To investigate whether a water-soluble protein-saving biopsy processing method followed by a proteomic analysis of supernatant samples using LC-MS/MS (LTQ Orbitrap) can be used to distinguish between CIN2 and CIN3. Methods Fresh cervical punch biopsies from 20 women were incubated in RPMI1640 medium for 24 hours at 4°C for protein extraction and subsequently subjected to standard FFPE processing. P16 and Ki67-supported histologic consensus review CIN grade (CIN2, n = 10, CIN3, n = 10) was assessed by independent gynecological pathologists. The biopsy supernatants were depleted of 7 high abundance proteins prior to uni-dimensional LC-MS/MS analysis for protein identifications. Results The age of the patients ranged from 25-40 years (median 29.7), and mean protein concentration was 0.81 mg/ml (range 0.55 - 1.14). After application of multistep identification criteria, 114 proteins were identified, including proteins like vimentin, actin, transthyretin, apolipoprotein A-1, Heat Shock protein beta 1, vitamin D binding protein and different cytokeratins. The identified proteins are annotated to metabolic processes (36%), signal transduction (27%), cell cycle processes (15%) and trafficking/transport (9%). Using binary logistic regression, Cytokeratin 2 was found to have the strongest independent discriminatory power resulting in 90% overall correct classification. Conclusions 114 proteins were identified in supernatants from fresh cervical biopsies and many differed between CIN2 and 3. Cytokeratin 2 is the strongest discriminator with 90% overall correct classifications.
Collapse
Affiliation(s)
- Kai-Erik Uleberg
- Pathology Department, Stavanger University Hospital, Armauer Hansen Road 20, Stavanger, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang M, Wang Y, Wang J, Lin L, Hong H, Wang D. Proteome profiles in medaka (Oryzias melastigma) liver and brain experimentally exposed to acute inorganic mercury. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 103:129-139. [PMID: 21458406 DOI: 10.1016/j.aquatox.2011.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/23/2011] [Accepted: 02/26/2011] [Indexed: 05/30/2023]
Abstract
Mercury is a widespread and persistent pollutant occurring in a variety of forms in freshwater and marine ecosystems. Using the proteomic approach, this study examined the protein profiles of the medaka (Oryzias melastigma) liver and brain exposed to an acute mercuric chloride (HgCl(2)) concentration (1000μg/L) for 8h. The results showed that acute exposure of medaka to inorganic mercury enhanced metal accumulation in both the liver and brain, and a higher content of mercury was detected in the latter. Comparison of the two-dimensional electrophoresis protein profiles of HgCl(2)-exposed and non-exposed group revealed that altered protein expression was quantitatively detected in 20 spots in the brain and 27 in the liver. The altered protein spots were subjected to matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis, with the resultant identification of 46 proteins. The proteins identified were involved in oxidative stress, cytoskeletonal assembly, signal transduction, protein modification, metabolism and other related functions (e.g. immune response, ionoregulation and transporting), highlighting the fact that inorganic mercury toxicity in fish seems to be complex and diverse. This study provided basic information to aid our understanding of the possible molecular mechanisms of acute inorganic mercury toxicity in aquatic organisms, as well as potential protein biomarker candidates for aquatic environmental monitoring.
Collapse
Affiliation(s)
- Minghua Wang
- State Key Laboratory of Marine Environmental Science/Environmental Science Research Center, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Proteomic identification of differentially-expressed proteins in esophageal cancer in three ethnic groups in Xinjiang. Mol Biol Rep 2010; 38:3261-9. [PMID: 21125333 DOI: 10.1007/s11033-010-0586-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/20/2010] [Indexed: 01/11/2023]
|