1
|
Fernandes LB, D'Souza JS, Prasad TSK, Ghag SB. Isolation and characterization of extracellular vesicles from Fusarium oxysporum f. sp. cubense, a banana wilt pathogen. Biochim Biophys Acta Gen Subj 2023; 1867:130382. [PMID: 37207907 DOI: 10.1016/j.bbagen.2023.130382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Fusarium wilt of banana is a destructive widespread disease caused by Fusarium oxysporum f. sp. cubense (Foc) that ravaged banana plantations globally, incurring huge economic losses. Current knowledge demonstrates the involvement of several transcription factors, effector proteins, and small RNAs in the Foc-banana interaction. However, the precise mode of communication at the interface remains elusive. Cutting-edge research has emphasized the significance of extracellular vesicles (EVs) in trafficking the virulent factors modulating the host physiology and defence system. EVs are ubiquitous inter- and intra-cellular communicators across kingdoms. This study focuses on the isolation and characterization of Foc EVs from methods that make use of sodium acetate, polyethylene glycol, ethyl acetate, and high-speed centrifugation. Isolated EVs were microscopically visualized using Nile red staining. Further, the EVs were characterized using transmission electron microscopy, which revealed the presence of spherical, double-membrane, vesicular structures ranging in size from 50 to 200 nm (diameter). The size was also determined using the principle based on Dynamic Light Scattering. The Foc EVs contained proteins that were separated using SDS-PAGE and ranged between 10 and 315 kDa. Mass spectrometry analysis revealed the presence of EV-specific marker proteins, toxic peptides, and effectors. The Foc EVs were found to be cytotoxic, whose toxicity increased with EVs isolated from the co-culture preparation. Taken together, a better understanding of Foc EVs and their cargo will aid in deciphering the molecular crosstalk between banana and Foc.
Collapse
Affiliation(s)
- Lizelle B Fernandes
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz (East), Mumbai 400098, India
| | - Jacinta S D'Souza
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz (East), Mumbai 400098, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, India
| | - Siddhesh B Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz (East), Mumbai 400098, India.
| |
Collapse
|
2
|
Suzuki SW, Oishi A, Nikulin N, Jorgensen JR, Baile MG, Emr SD. A PX-BAR protein Mvp1/SNX8 and a dynamin-like GTPase Vps1 drive endosomal recycling. eLife 2021; 10:69883. [PMID: 34524084 PMCID: PMC8504969 DOI: 10.7554/elife.69883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Membrane protein recycling systems are essential for maintenance of the endosome-lysosome system. In yeast, retromer and Snx4 coat complexes are recruited to the endosomal surface, where they recognize cargos. They sort cargo and deform the membrane into recycling tubules that bud from the endosome and target to the Golgi. Here, we reveal that the SNX-BAR protein, Mvp1, mediates an endosomal recycling pathway that is mechanistically distinct from the retromer and Snx4 pathways. Mvp1 deforms the endosomal membrane and sorts cargos containing a specific sorting motif into a membrane tubule. Subsequently, Mvp1 recruits the dynamin-like GTPase Vps1 to catalyze membrane scission and release of the recycling tubule. Similarly, SNX8, the human homolog of Mvp1, which has been also implicated in Alzheimer’s disease, mediates formation of an endosomal recycling tubule. Thus, we present evidence for a novel endosomal retrieval pathway that is conserved from yeast to humans.
Collapse
Affiliation(s)
- Sho W Suzuki
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Akihiko Oishi
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Nadia Nikulin
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Jeff R Jorgensen
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Matthew G Baile
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Scott D Emr
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
3
|
Liu M, Zhang Z. Endocytosis Detection in Magnaporthe oryzae. Bio Protoc 2019; 9:e3322. [PMID: 33654829 DOI: 10.21769/bioprotoc.3322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/19/2019] [Accepted: 07/27/2019] [Indexed: 11/02/2022] Open
Abstract
Endocytosis is an intracellular trafficking pathway that occurs in nutrient uptake, signal transduction and reconstruction of cell polarity and is conserved in eukaryotic cells. In fungi, endocytosis plays crucial roles in the physiology of hyphal growth and pathogenicity. vidence for endocytosis in filamentous fungi is detected by the membrane-selective dyes FM4-64. Cells of a range of filamentous fungal species readily take up these dyes. However, the method for endocytosis detection has not been well established in Magnaporthe oryzae. Here, we provide a protocol for tracking endocytosis in Magnaporthe oryzae.
Collapse
Affiliation(s)
- Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
4
|
Smaczynska-de Rooij II, Marklew CJ, Palmer SE, Allwood EG, Ayscough KR. Mutation of key lysine residues in the Insert B region of the yeast dynamin Vps1 disrupts lipid binding and causes defects in endocytosis. PLoS One 2019; 14:e0215102. [PMID: 31009484 PMCID: PMC6476499 DOI: 10.1371/journal.pone.0215102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
The yeast dynamin-like protein Vps1 has roles at multiple stages of membrane trafficking including Golgi to vacuole transport, endosomal recycling, endocytosis and in peroxisomal fission. While the majority of the Vps1 amino acid sequence shows a high level of identity with the classical mammalian dynamins, it does not contain a pleckstrin homology domain (PH domain). The Dyn1 PH domain has been shown to bind to lipids with a preference for PI(4,5)P2 and it is considered central to the function of Dyn1 in endocytosis. The lack of a PH domain in Vps1 has raised questions as to whether the protein can function directly in membrane fusion or fission events. Here we demonstrate that the region Insert B, located in a position equivalent to the dynamin PH domain, is able to bind directly to lipids and that mutation of three lysine residues reduces its capacity to interact with lipids, and in particular with PI(4,5)P2. The Vps1 KKK-AAA mutant shows more diffuse staining but does still show some localization to compartments adjacent to vacuoles and to endocytic sites suggesting that other factors are also involved in its recruitment. This mutant selectively blocks endocytosis, but is functional in other processes tested. While mutant Vps1 can localise to endocytic sites, the mutation results in a significant increase in the lifetime of the endocytic reporter Sla2 and a high proportion of defective scission events. Together our data indicate that the lipid binding capacity of the Insert B region of Vps1 contributes to the ability of the protein to associate with membranes and that its capacity to interact with PI(4,5)P2 is important in facilitating endocytic scission.
Collapse
Affiliation(s)
| | | | - Sarah E. Palmer
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Ellen G. Allwood
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (EGA); (KRA)
| | - Kathryn R. Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (EGA); (KRA)
| |
Collapse
|
5
|
Ruta LL, Banu MA, Neagoe AD, Kissen R, Bones AM, Farcasanu IC. Accumulation of Ag(I) by Saccharomyces cerevisiae Cells Expressing Plant Metallothioneins. Cells 2018; 7:E266. [PMID: 30545005 PMCID: PMC6315939 DOI: 10.3390/cells7120266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 11/16/2022] Open
Abstract
The various applications of Ag(I) generated the necessity to obtain Ag(I)-accumulating organisms for the removal of surplus Ag(I) from contaminated sites or for the concentration of Ag(I) from Ag(I)-poor environments. In this study we obtained Ag(I)-accumulating cells by expressing plant metallothioneins (MTs) in the model Saccharomyces cerevisiae. The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) fused to myrGFP displaying an N-terminal myristoylation sequence for plasma membrane targeting were expressed in S. cerevisiae and checked for Ag(I)-related phenotype. The transgenic yeast cells were grown in copper-deficient media to ensure the expression of the plasma membrane high-affinity Cu(I) transporter Ctr1, and also to elude the copper-related inhibition of Ag(I) transport into the cell. All plant MTs expressed in S. cerevisiae conferred Ag(I) tolerance to the yeast cells. Among them, myrGFP-NcMT3 afforded Ag(I) accumulation under high concentration (10⁻50 μM), while myrGFP-AtMT1a conferred increased accumulation capacity under low (1 μM) or even trace Ag(I) (0.02⁻0.05 μM). The ability to tolerate high concentrations of Ag(I) coupled with accumulative characteristics and robust growth showed by some of the transgenic yeasts highlighted the potential of these strains for biotechnology applications.
Collapse
Affiliation(s)
- Lavinia L Ruta
- Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, 050663 Bucharest, Romania.
| | - Melania A Banu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| | - Aurora D Neagoe
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| | - Ralph Kissen
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Ileana C Farcasanu
- Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, 050663 Bucharest, Romania.
| |
Collapse
|
6
|
Varlakhanova NV, Alvarez FJD, Brady TM, Tornabene BA, Hosford CJ, Chappie JS, Zhang P, Ford MGJ. Structures of the fungal dynamin-related protein Vps1 reveal a unique, open helical architecture. J Cell Biol 2018; 217:3608-3624. [PMID: 30087125 PMCID: PMC6168280 DOI: 10.1083/jcb.201712021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/26/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022] Open
Abstract
How specific dynamin-related proteins (DRPs) are tailored to their cellular targets is an open question. Varlakhanova et al. present structures of the fungal DRP Vps1, which functions at the endosomal compartment. The crystal and cryoEM structures reveal a unique DRP architecture that highlights structural flexibilities of DRP self-assembly. Dynamin-related proteins (DRPs) are large multidomain GTPases required for diverse membrane-remodeling events. DRPs self-assemble into helical structures, but how these structures are tailored to their cellular targets remains unclear. We demonstrate that the fungal DRP Vps1 primarily localizes to and functions at the endosomal compartment. We present crystal structures of a Vps1 GTPase–bundle signaling element (BSE) fusion in different nucleotide states to capture GTP hydrolysis intermediates and concomitant conformational changes. Using cryoEM, we determined the structure of full-length GMPPCP-bound Vps1. The Vps1 helix is more open and flexible than that of dynamin. This is due to further opening of the BSEs away from the GTPase domains. A novel interface between adjacent GTPase domains forms in Vps1 instead of the contacts between the BSE and adjacent stalks and GTPase domains as seen in dynamin. Disruption of this interface abolishes Vps1 function in vivo. Hence, Vps1 exhibits a unique helical architecture, highlighting structural flexibilities of DRP self-assembly.
Collapse
Affiliation(s)
| | - Frances J D Alvarez
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tyler M Brady
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Bryan A Tornabene
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA.,Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Marijn G J Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
7
|
Deshpande AA, Shukla A, Bachhawat AK. A Genetic Screen for Investigating the Human Lysosomal CystineTransporter, Cystinosin. Sci Rep 2018; 8:3442. [PMID: 29467429 PMCID: PMC5821828 DOI: 10.1038/s41598-018-21483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/06/2018] [Indexed: 11/09/2022] Open
Abstract
Cystinosin, a lysosomal transporter is involved in the efflux of cystine from the lysosome to the cytosol. Mutations in the human cystinosin gene (CTNS) cause cystinosis, a recessive autosomal disorder. Studies on cystinosin have been limited by the absence of a robust genetic screen. In the present study we have developed a dual strategy for evaluating cystinosin function that is amenable to rapid genetic analysis. We show that human cystinosin expressed in this yeast confers growth on cystine when the protein is mistargeted to the plasma membrane by the deletion of the C-terminal targeting signal, GYQDL. We also screened a vacuolar protein sorting deletion library, and subsequently created multiple vps deletion mutants for kinetic studies. The double deletion, vps1Δvps17Δ, greatly enhanced uptake. This enabled validation by kinetic studies, including first studies on the WT CTNS protein (that contained the GYQDL motif). Using this screen we isolated several gain of function mutants, G131S/D, G309S/D, A137V, G197R, S270T, L274F and S312N showing enhanced growth on low concentrations of cystine. Kinetic analysis yielded insights into the role of the residues (including one of the patient mutations, G197R). The results indicate that the screen could be effectively used for interrogating and understanding the CTNS protein.
Collapse
Affiliation(s)
- Anup Arunrao Deshpande
- Indian Institute of Science and Education Research Mohali, Sector 81, Knowledge City, SAS Nagar, Punjab, India
| | - Anuj Shukla
- Indian Institute of Science and Education Research Mohali, Sector 81, Knowledge City, SAS Nagar, Punjab, India
| | - Anand Kumar Bachhawat
- Indian Institute of Science and Education Research Mohali, Sector 81, Knowledge City, SAS Nagar, Punjab, India.
| |
Collapse
|
8
|
Yeast dynamin associates with the GARP tethering complex for endosome-to-Golgi traffic. Eur J Cell Biol 2017; 96:612-621. [DOI: 10.1016/j.ejcb.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
|
9
|
Goud Gadila SK, Williams M, Saimani U, Delgado Cruz M, Makaraci P, Woodman S, Short JC, McDermott H, Kim K. Yeast dynamin Vps1 associates with clathrin to facilitate vesicular trafficking and controls Golgi homeostasis. Eur J Cell Biol 2017; 96:182-197. [DOI: 10.1016/j.ejcb.2017.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/11/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022] Open
|
10
|
Banh BT, McDermott H, Woodman S, Gadila SKG, Saimani U, Short JCW, Kim K. Yeast dynamin interaction with ESCRT proteins at the endosome. Cell Biol Int 2017; 41:484-494. [PMID: 28185357 DOI: 10.1002/cbin.10738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/04/2017] [Indexed: 11/06/2022]
Abstract
The dynamin-like protein, Vps1, is a GTPase involved in cargo sorting and membrane remodeling in multiple cellular trafficking pathways. Recently, Vps1 has been shown to genetically interact with ESCRT subunits. We tested the hypothesis that the functional connection of Vps1 with some of these subunits of ESCRT complexes occurs via a physical interaction. By utilizing the yeast two-hybrid system, we revealed that Vps1 physically interacts with the ESCRT-II subunits, Vps22 and Vps36, and the ESCRT-III subunit Vps24. We found that Vps1 and ESCRT-II components colocalize with Pep12, an endosomal marker. Additionally, loss of Vps1 or depletion of the GTPase activity of Vps1 results in a moderate defect in Cps1 targeting to the vacuole. Here, we discussed the potential implications of Vps1 and ESCRT interaction and their roles in the endosome-to-vacuole traffic. In summary, yeast dynamin interacts with ESCRT II and III complexes, and it functions in Cps1 trafficking toward the vacuole.
Collapse
Affiliation(s)
- Bryan T Banh
- Department of Biology, Missouri State University, 901 S National, Springfield, Missouri, 65807
| | - Hyoeun McDermott
- Department of Biology, Missouri State University, 901 S National, Springfield, Missouri, 65807
| | - Sara Woodman
- Department of Biology, Missouri State University, 901 S National, Springfield, Missouri, 65807
| | - Shiva Kumar Goud Gadila
- Department of Biology, Missouri State University, 901 S National, Springfield, Missouri, 65807
| | - Uma Saimani
- Department of Biology, Missouri State University, 901 S National, Springfield, Missouri, 65807
| | - John C W Short
- Department of Biology, Missouri State University, 901 S National, Springfield, Missouri, 65807
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, Missouri, 65807
| |
Collapse
|
11
|
Molecular dynamics at the endocytic portal and regulations of endocytic and recycling traffics. Eur J Cell Biol 2015; 94:235-48. [DOI: 10.1016/j.ejcb.2015.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 02/01/2023] Open
|
12
|
Algret R, Fernandez-Martinez J, Shi Y, Kim SJ, Pellarin R, Cimermancic P, Cochet E, Sali A, Chait BT, Rout MP, Dokudovskaya S. Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway. Mol Cell Proteomics 2014; 13:2855-70. [PMID: 25073740 DOI: 10.1074/mcp.m114.039388] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The TORC1 signaling pathway plays a major role in the control of cell growth and response to stress. Here we demonstrate that the SEA complex physically interacts with TORC1 and is an important regulator of its activity. During nitrogen starvation, deletions of SEA complex components lead to Tor1 kinase delocalization, defects in autophagy, and vacuolar fragmentation. TORC1 inactivation, via nitrogen deprivation or rapamycin treatment, changes cellular levels of SEA complex members. We used affinity purification and chemical cross-linking to generate the data for an integrative structure modeling approach, which produced a well-defined molecular architecture of the SEA complex and showed that the SEA complex comprises two regions that are structurally and functionally distinct. The SEA complex emerges as a platform that can coordinate both structural and enzymatic activities necessary for the effective functioning of the TORC1 pathway.
Collapse
Affiliation(s)
- Romain Algret
- From the ‡CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Javier Fernandez-Martinez
- §Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Yi Shi
- ¶Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Seung Joong Kim
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Riccardo Pellarin
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Peter Cimermancic
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Emilie Cochet
- From the ‡CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Andrej Sali
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Brian T Chait
- ¶Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Michael P Rout
- §Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Svetlana Dokudovskaya
- From the ‡CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France;
| |
Collapse
|
13
|
Wu Y, O'Toole ET, Girard M, Ritter B, Messa M, Liu X, McPherson PS, Ferguson SM, De Camilli P. A dynamin 1-, dynamin 3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis. eLife 2014; 3:e01621. [PMID: 24963135 PMCID: PMC4107917 DOI: 10.7554/elife.01621] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The exocytosis of synaptic vesicles (SVs) elicited by potent stimulation is rapidly compensated by bulk endocytosis of SV membranes leading to large endocytic vacuoles (‘bulk’ endosomes). Subsequently, these vacuoles disappear in parallel with the reappearance of new SVs. We have used synapses of dynamin 1 and 3 double knock-out neurons, where clathrin-mediated endocytosis (CME) is dramatically impaired, to gain insight into the poorly understood mechanisms underlying this process. Massive formation of bulk endosomes was not defective, but rather enhanced, in the absence of dynamin 1 and 3. The subsequent conversion of bulk endosomes into SVs was not accompanied by the accumulation of clathrin coated buds on their surface and this process proceeded even after further clathrin knock-down, suggesting its independence of clathrin. These findings support the existence of a pathway for SV reformation that bypasses the requirement for clathrin and dynamin 1/3 and that operates during intense synaptic activity. DOI:http://dx.doi.org/10.7554/eLife.01621.001 Neurons propagate electrical signals from one cell to the next using small molecules called neurotransmitters. These molecules are held inside small compartments called synaptic vesicles. Once a neuron receives an electrical stimulus, the membranes that enclose the synaptic vesicles fuse with the plasma membrane that encloses the neuron. This releases the neurotransmitters, which then trigger an electrical signal in the neighboring cell. Once the neurotransmitters are released, the vesicle membrane is rapidly reinternalized from the plasma membrane in a process called endocytosis and then recycled, ready for the next round of signal transmission. The process of synaptic vesicle membrane endocytosis and recycling has been studied extensively, and several different mechanisms by which it occurs have been identified. The best understood relies on a protein called clathrin, and is thought to be essential for nervous system function. Recently, however, a mechanism of vesicle membrane endocytosis that does not involve clathrin was identified. This mechanism, called bulk endocytosis, involves reinternalizing large regions of the cell plasma membrane to generate large compartments called vacuoles, from which new synaptic vesicles eventually form. This mechanism has been observed when neurons fire at high frequency. The cellular processes underlying bulk endocytosis are not well understood, although several studies suggest proteins called dynamins are important. Wu et al. simulated the conditions a cell experiences during high levels of activity in neurons that lacked the two major dynamins present at the synapses between neurons—dynamin 1 and dynamin 3. In these neurons, robust bulk endocytosis occurred, suggesting that these two major neuronal dynamins do not play a role in this process. Furthermore, formation of vesicles from the vacuoles generated by bulk endocytosis appeared to be clathrin-independent. These findings point to the occurrence of a pathway of synaptic vesicle recycling that bypasses the need for dynamin 1 and 3 as well as for clathrin. To reconcile these results with previously published work, Wu et al. propose that dynamins may only be required for processes that also require clathrin. But how are vesicles recycled during bulk endocytosis if dynamins are not involved? There are currently few leads to base alternative mechanisms on. Further work is required to unravel this mystery, and to provide insights into how clathrin-dependent and independent recycling processes are linked during high neuronal activity. DOI:http://dx.doi.org/10.7554/eLife.01621.002
Collapse
Affiliation(s)
- Yumei Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Eileen T O'Toole
- Department of MCD Biology, University of Colorado, Boulder, United States
| | - Martine Girard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Brigitte Ritter
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mirko Messa
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
14
|
Williams M, Kim K. From membranes to organelles: emerging roles for dynamin-like proteins in diverse cellular processes. Eur J Cell Biol 2014; 93:267-77. [PMID: 24954468 DOI: 10.1016/j.ejcb.2014.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
Dynamin is a GTPase mechanoenzyme most noted for its role in vesicle scission during endocytosis, and belongs to the dynamin family proteins. The dynamin family consists of classical dynamins and dynamin-like proteins (DLPs). Due to structural and functional similarities DLPs are thought to carry out membrane tubulation and scission in a similar manner to dynamin. Here, we discuss the newly emerging roles for DLPs, which include vacuole fission and fusion, peroxisome maintenance, endocytosis and intracellular trafficking. Specific focus is given to the role of DLPs in the budding yeast Saccharomyces cerevisiae because the diverse function of DLPs has been well characterized in this organism. Recent insights into DLPs may provide a better understanding of mammalian dynamin and its associated diseases.
Collapse
Affiliation(s)
- Michelle Williams
- Department of Biology, Missouri State University, 901 South National, Springfield, MO 65897, United States
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 South National, Springfield, MO 65897, United States.
| |
Collapse
|
15
|
Chi RJ, Liu J, West M, Wang J, Odorizzi G, Burd CG. Fission of SNX-BAR-coated endosomal retrograde transport carriers is promoted by the dynamin-related protein Vps1. ACTA ACUST UNITED AC 2014; 204:793-806. [PMID: 24567361 PMCID: PMC3941054 DOI: 10.1083/jcb.201309084] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endosomal sorting and fission machineries act together to produce retrograde transport carriers. Retromer is an endosomal sorting device that orchestrates capture and packaging of cargo into transport carriers coated with sorting nexin BAR domain proteins (SNX-BARs). We report that fission of retromer SNX-BAR–coated tubules from yeast endosomes is promoted by Vps1, a dynamin-related protein that localizes to endosomes decorated by retromer SNX-BARs and Mvp1, a SNX-BAR that is homologous to human SNX8. Mvp1 exhibits potent membrane remodeling activity in vitro, and it promotes association of Vps1 with the endosome in vivo. Retrograde transport carriers bud from the endosome coated by retromer and Mvp1, and cargo export is deficient in mvp1- and vps1-null cells, but with distinct endpoints; cargo export is delayed in mvp1-null cells, but cargo export completely fails in vps1-null cells. The results indicate that Mvp1 promotes Vps1-mediated fission of retromer- and Mvp1-coated tubules that bud from the endosome, revealing a functional link between the endosomal sorting and fission machineries to produce retrograde transport carriers.
Collapse
Affiliation(s)
- Richard J Chi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | | | | | | | | | |
Collapse
|
16
|
Lukehart J, Highfill C, Kim K. Vps1, a recycling factor for the traffic from early endosome to the late Golgi. Biochem Cell Biol 2013; 91:455-65. [DOI: 10.1139/bcb-2013-0044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recycling of cellular membranes and their constituents plays a role for cell survival and growth. In the budding yeast, there are recycling traffics from early and late endosomal compartments to the late Golgi. Here, we examined a possible role for Vps1, a large GTPase, in the recycling traffic of GFP-Snc1 from early endosomes to the late Golgi. In the absence of Vps1 we observed an aberrant accumulation of GFP-Snc1 puncta in the cytoplasm that we identified as early endosomes. The N-terminal GTPase and the C-terminal GED domains of Vps1 are essential for Vps1’s function in Snc1 recycling. Our finding of genetic interactions of VPS1 with genes involved in early endosome-to-Golgi traffic further suggests Vps1 functions as a recycling factor in the membrane traffic. Finally, we provide evidence that the severe accumulation of GFP-Snc1 cytoplasmic puncta in vps1Δ cells is attributed to a mild defect in the retention of the GARP component Vps51 at the late Golgi, as well as a severe disruption of actin cables.
Collapse
Affiliation(s)
- Joshua Lukehart
- Department of Biology, Missouri State University, Springfield, MO 65897, USA
| | - Chad Highfill
- Department of molecular bioscience, University of Kansas, Lawrence, KS 66045, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, Springfield, MO 65897, USA
| |
Collapse
|