1
|
Caglayan MO, Şahin S, Üstündağ Z. An Overview of Aptamer-Based Sensor Platforms for the Detection of Bisphenol-A. Crit Rev Anal Chem 2024; 54:1320-1341. [PMID: 36001397 DOI: 10.1080/10408347.2022.2113359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Endocrine disruptive compounds are natural or anthropogenic environmental micropollutants that alter the function of the endocrine system ultimately damaging the metabolism. Bisphenol A (BPA) is the most common of these pollutants and it is often used in epoxy coatings and polycarbonates as a plasticizer. Therefore, monitoring BPA levels in different environments is very important and challenging. In recent years, an increasing number of BPA detection methods have been proposed. This article presents a critical review of aptamer-based electrochemical, fluorescence-based, colorimetric, and several other BPA detection platforms published in the last decade. Furthermore, a statistical evaluation has been made using principle component analysis showing analytical performance parameters do not create very different clusters. Comparisons to other BPA detection methods are also presented so that the reader has an overall literature overview.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
2
|
Chaghazardi M, Kashanian S, Nazari M, Omidfar K, Shariati-Rad M, Joseph Y, Rahimi P. Mercury (II) sensing using a simple turn-on fluorescent graphene oxide based aptasensor in serum and water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124057. [PMID: 38457872 DOI: 10.1016/j.saa.2024.124057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024]
Abstract
A simple, highly sensitive, and selective fluorometric aptasensing platform based on aptamer and graphene oxide (GO) is proposed for the determination of mercury (II) ion (Hg2+). In the designed assay, two aptamer probes, a carboxy-fluorescein (FAM) labeled aptamer (aptamer A) and its complementary (aptamer B) with partial complement containing several mismatches and GO as the quencher were used. In the absence of Hg2+, both A and B aptamers were adsorbed on the surface of GO by π-π-stacking, leading to fluorescence quenching of FAM due to fluorescence resonance energy transfer (FRET). Upon exposure to Hg2+, the A and B aptamer strands bind Hg2+ and form T-Hg2+-T complexes, leading to the formation of a stable double-stranded aptamer. The double-stranded aptamer is detached from the GO surface, resulting in the recovery of FAM fluorescence. The fluorescence intensity (FI) of the developed sensor was correlated with the Hg2+ concentration under optimized experimental conditions in two wide linear ranges, even in the presence of 10 divalent cations as interferences. The linear ranges were obtained from 200.0 to 900.0 fM and 5.0 to 33.0 pM, a limit of detection (LOD) of 106.0 fM, and a limit of quantification (LOQ) of 321.3 fM. The concentration of Hg2+ was determined in five real samples containing three water and two serum samples, using spiking and standard addition methods and the results were compared with the spiked amounts and atomic absorption (AAS) as standard method respectively, with acceptable recoveries. Furthermore, in the standard addition method, to overcome the effects of matrix influence of real samples in quantitative predictions, the excitation-emission matrix (EEM) data for samples was simultaneously analyzed by multivariate curve resolution with alternating least squares (MCR-ALS) as a second-order standard addition method (SOSAM).
Collapse
Affiliation(s)
- Mosayeb Chaghazardi
- Faculty of Chemistry, Razi University, Kermanshah, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran; Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran.
| | - Maryam Nazari
- Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Shariati-Rad
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.
| | - Yvonne Joseph
- Institute of Nanoscale and Biobased Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany; Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Parvaneh Rahimi
- Institute of Nanoscale and Biobased Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany; Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
3
|
Erkmen C, Tığ GA, Uslu B. Nanomaterial-based sandwich-type electrochemical aptasensor platform for sensitive voltammetric determination of leptin. Mikrochim Acta 2022; 189:396. [PMID: 36173490 DOI: 10.1007/s00604-022-05487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
A sandwich-type electrochemical aptasensor was designed for sensitive detection of leptin in biological samples, including human serum and human plasma. The developed aptasensor was produced by electrodeposition of gold nanoparticles on a screen-printed electrode modified with zinc oxide nanoparticles. The synergy effect of zinc oxide and gold nanoparticles improved the electrocatalytic activity of the aptasensor. The obtained high surface area allowed more aptamer molecules to be loaded on the electrode surface. Signal amplification significantly increases the detection sensitivity of a developed biosensor. Although the use of nanomaterials is the most preferred detection tool for this purpose, as an alternative, enzyme-catalyzed signal amplification is widely used in the construction of a biosensor due to its specificity and high catalytic efficiency. Therefore, both nanomaterial-supported and an alkaline phosphatase-based aptasensor design were developed, which can produce in situ electroactive product by enzymatic hydrolysis of the inactive substrate to achieve a higher signal-to-background ratio. Under optimal conditions, the developed aptasensor exhibited a wide linear concentration range from 0.01 pg mL-1 to 100.0 pg mL-1 with a detection limit of 0.0035 pg mL-1. While the developed aptasensor provided excellent selectivity in the presence of some interfering compounds, it possessed outstanding reproducibility and stability. In addition, the developed aptasensor has been applied with good recoveries in the range 96.31 to 108.79% in human serum and plasma samples. In conclusion, all the obtained results showed the feasibility of the developed aptasensor for practical applications.
Collapse
Affiliation(s)
- Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.,The Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey
| | - Gözde Aydoğdu Tığ
- Department of Chemistry, Faculty of Science, Ankara University, 06100, Ankara, Turkey.
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
| |
Collapse
|
4
|
Zou Y, Griveau S, Ringuedé A, Bedioui F, Richard C, Slim C. Functionalized Multi-Walled Carbon Nanotube–Based Aptasensors for Diclofenac Detection. Front Chem 2022; 9:812909. [PMID: 35141204 PMCID: PMC8818859 DOI: 10.3389/fchem.2021.812909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Driven by the increasing concern about the risk of diclofenac (DCF) residues as water pollutants in the aqueous environment and the growing need for its trace determination, a simple but sensitive electrochemical aptasensor for the trace detection of DCF was developed. To construct the aptasensor, the amine-terminated DCF aptamer was covalently immobilized on the surface of the carboxylic acid–functionalized multi-walled carbon nanotube (f-MWCNT)–modified glassy carbon electrode (GCE) through EDC/NHS chemistry. The f-MWCNTs provide a reliable matrix for aptamer immobilization with high grafting density, while the aptamer serves as a biorecognition probe for DCF. The obtained aptasensor was incubated with DCF solutions at different concentrations and was then investigated by electrochemical impedance spectroscopy (EIS). It displays two linear ranges of concentration for DCF detection, from 250 fM to 1pM and from 1 pM to 500 nM with an extremely low detection limit of 162 fM. Also, the developed biosensor shows great reproducibility, acceptable stability, and reliable selectivity. Therefore, it offers a simple but effective aptasensor construction strategy for trace detection of DCF and is anticipated to show great potential for environmental applications.
Collapse
Affiliation(s)
- Yi Zou
- Institute of Chemistry for Life and Health Sciences (i-CLeHS), Chimie ParisTech, PSL Research University, CNRS, Paris, France
| | - Sophie Griveau
- Institute of Chemistry for Life and Health Sciences (i-CLeHS), Chimie ParisTech, PSL Research University, CNRS, Paris, France
| | - Armelle Ringuedé
- Institut de Recherche de Chimie de Paris (IRCP), PSL Research University, CNRS, Chimie ParisTech, Paris, France
| | - Fethi Bedioui
- Institute of Chemistry for Life and Health Sciences (i-CLeHS), Chimie ParisTech, PSL Research University, CNRS, Paris, France
| | | | - Cyrine Slim
- Institute of Chemistry for Life and Health Sciences (i-CLeHS), Chimie ParisTech, PSL Research University, CNRS, Paris, France
- *Correspondence: Cyrine Slim,
| |
Collapse
|
5
|
Chen C, Li D, Jin B. Development of a Selective Electrochemical Biosensor for Bisphenol a Based on Target-Induced Chain Release Involving Methylene Blue Release. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2026374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Caifen Chen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, China
| | - Dan Li
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, China
| | - Baokang Jin
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, China
| |
Collapse
|
6
|
Tsekeli TR, Sebokolodi TI, Sipuka DS, Olorundare FO, Akanji SP, Nkosi D, Arotiba OA. A poly (propylene imine) dendrimer – Carbon nanofiber based aptasensor for bisphenol A in water. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Tsekeli TR, Tshwenya L, Sebokolodi TI, Ndlovu T, Arotiba OA. An Electrochemical Aptamer Biosensor for Bisphenol A on a Carbon Nanofibre‐silver Nanoparticle Immobilisation Platform. ELECTROANAL 2021. [DOI: 10.1002/elan.202100167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tebogo R. Tsekeli
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
| | - Luthando Tshwenya
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
| | | | - Thabile Ndlovu
- Department of Chemistry University of Eswatini Kwaluseni M201 Eswatini
| | - Omotayo A. Arotiba
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
- Centre for Nanomaterials Science Research University of Johannesburg Johannesburg 2028 South Africa
| |
Collapse
|
8
|
Bioanalytical methodologies for clinical investigation of endocrine-disrupting chemicals: a comprehensive update. Bioanalysis 2021; 13:29-44. [PMID: 33405974 DOI: 10.4155/bio-2020-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are xenobiotics that disrupt the endocrine system in humans at ecologically significant concentrations. Various substances are exposed to human health via routes including food, water, air and skin that result in disastrous maladies at low doses as well. Therefore EDCs need a meticulous strategy of analysis for dependable and consistent monitoring in humans. The management and risk assessment necessitate advancements in the detection methodologies of EDCs. Hyphenated MS-based chromatograph and other validated laboratory analysis methods are widely available and employed. Besides, in vitro bioassay techniques and biosensors are also used to conduct accurate toxicological tests. This article provides a revision of various bioanalytical detection methods and technologies for the clinical estimation of EDCs.
Collapse
|
9
|
Abstract
Carbon nanomaterials offer unique opportunities for the assembling of electrochemical aptasensors due to their high electroconductivity, redox activity, compatibility with biochemical receptors and broad possibilities of functionalization and combination with other auxiliary reagents. In this review, the progress in the development of electrochemical aptasensors based on carbon nanomaterials in 2016–2020 is considered with particular emphasis on the role of carbon materials in aptamer immobilization and signal generation. The synthesis and properties of carbon nanotubes, graphene materials, carbon nitride, carbon black particles and fullerene are described and their implementation in the electrochemical biosensors are summarized. Examples of electrochemical aptasensors are classified in accordance with the content of the surface layer and signal measurement mode. In conclusion, the drawbacks and future prospects of carbon nanomaterials’ application in electrochemical aptasensors are briefly discussed.
Collapse
|
10
|
Hassani S, Rezaei Akmal M, Salek Maghsoudi A, Rahmani S, Vakhshiteh F, Norouzi P, Ganjali MR, Abdollahi M. High-Performance Voltammetric Aptasensing Platform for Ultrasensitive Detection of Bisphenol A as an Environmental Pollutant. Front Bioeng Biotechnol 2020; 8:574846. [PMID: 33015024 PMCID: PMC7498542 DOI: 10.3389/fbioe.2020.574846] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Bisphenol A (BPA) as a pervasive endocrine-disrupting compound (EDC) has been shown to cause multiple detrimental effects including cardiovascular disorders, pregnancy complications, obesity, glucose metabolism disorders, and reproductive toxicity even at a concentration as low as tolerable daily intake (TDI) (4 μg/kg/day). In the present study, a novel ultra-sensitive, electrochemical aptasensor was designed using a screen-printed carbon electrode (SPCE) modified by gold nanoparticles (Au NPs) conjugated to thiolated aptamers for accurate determination of BPA in biological, industrial and environmental samples. To characterize the electrochemical properties of the aptasensor, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were implemented. Detection of BPA was also performed through differential pulse voltammetry (DPV) in [Fe(CN)6]3–/4– electrolyte solution. Under optimum condition, the present electrochemical aptasensor demonstrated an outstanding linear response in the concentration range of 1 pM to 10 nM with a remarkably low limit of detection of 0.113 pM. Due to the superb affinity between anti-BPA aptamers and BPA molecules, the designed aptasensor did not show any significant interaction with other analytes in real samples. Also, fabricated biosensor remained perfectly stable in long-term storage. The analytical results of the fabricated aptasensor are well compatible with those obtained by the ELISA method, indicating the trustworthiness and reasonable accuracy of the application of aptasensor in real samples. Overall, the proposed aptasensor would be a credible and economical method of precise, reproducible, and highly selective detection of minimum levels of BPA in food containers and clinical samples. This would be a promising strategy to enhance the safety of food products and reduce the risk of BPA daily exposure.
Collapse
Affiliation(s)
- Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Rezaei Akmal
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Armin Salek Maghsoudi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Rahmani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Vakhshiteh
- Nanotechnology Research Centre, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran.,Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran.,Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Luo H, Lin X, Peng Z, Song M, Jin L. Rapid and Sensitive Detection of Bisphenol A Based on Self-Assembly. MICROMACHINES 2019; 11:E41. [PMID: 31905833 PMCID: PMC7019973 DOI: 10.3390/mi11010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 01/14/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor that may lead to reproductive disorder, heart disease, and diabetes. Infants and young children are likely to be vulnerable to the effects of BPA. At present, the detection methods of BPA are complicated to operate and require expensive instruments. Therefore, it is quite vital to develop a simple, rapid, and highly sensitive method to detect BPA in different samples. In this study, we have designed a rapid and highly sensitive biosensor based on an effective self-assembled monolayer (SAM) and alternating current (AC) electrokinetics capacitive sensing method, which successfully detected BPA at nanomolar levels with only one minute. The developed biosensor demonstrates a detection of BPA ranging from 0.028 μg/mL to 280 μg/mL with a limit of detection (LOD) down to 0.028 μg/mL in the samples. The developed biosensor exhibited great potential as a portable BPA biosensor, and further development of this biosensor may also be useful in the detection of other small biochemical molecules.
Collapse
Affiliation(s)
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (H.L.); (Z.P.); (M.S.); (L.J.)
| | | | | | | |
Collapse
|