1
|
Le DJ, Hafner A, Gaddam S, Wang KC, Boettiger AN. Super-enhancer interactomes from single cells link clustering and transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593251. [PMID: 38766104 PMCID: PMC11100725 DOI: 10.1101/2024.05.08.593251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Regulation of gene expression hinges on the interplay between enhancers and promoters, traditionally explored through pairwise analyses. Recent advancements in mapping genome folding, like GAM, SPRITE, and multi-contact Hi-C, have uncovered multi-way interactions among super-enhancers (SEs), spanning megabases, yet have not measured their frequency in single cells or the relationship between clustering and transcription. To close this gap, here we used multiplexed imaging to map the 3D positions of 376 SEs across thousands of mammalian nuclei. Notably, our single-cell images reveal that while SE-SE contacts are rare, SEs often form looser associations we termed "communities". These communities, averaging 4-5 SEs, assemble cooperatively under the combined effects of genomic tethers, Pol2 clustering, and nuclear compartmentalization. Larger communities are associated with more frequent and larger transcriptional bursts. Our work provides insights about the SE interactome in single cells that challenge existing hypotheses on SE clustering in the context of transcriptional regulation.
Collapse
Affiliation(s)
- Derek J. Le
- Department of Developmental Biology, Stanford University, Stanford, CA, United States
- Cancer Biology Program, Stanford University, Stanford, CA, United States
- Department of Dermatology, Stanford University, Stanford, CA, United States
- These authors contributed equally
| | - Antonina Hafner
- Department of Developmental Biology, Stanford University, Stanford, CA, United States
- These authors contributed equally
| | - Sadhana Gaddam
- Department of Dermatology, Stanford University, Stanford, CA, United States
| | - Kevin C. Wang
- Department of Dermatology, Stanford University, Stanford, CA, United States
| | - Alistair N. Boettiger
- Department of Developmental Biology, Stanford University, Stanford, CA, United States
- Lead contact
| |
Collapse
|
2
|
Garimberti E, Federico C, Ragusa D, Bruno F, Saccone S, Bridger JM, Tosi S. Alterations in Genome Organization in Lymphoma Cell Nuclei due to the Presence of the t(14;18) Translocation. Int J Mol Sci 2024; 25:2377. [PMID: 38397052 PMCID: PMC10889133 DOI: 10.3390/ijms25042377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Chromosomal rearrangements have been shown to alter genome organization, consequently having an impact on gene expression. Studies on certain types of leukemia have shown that gene expression can be exacerbated by the altered nuclear positioning of fusion genes arising from chromosomal translocations. However, studies on lymphoma have been, so far, very limited. The scope of this study was to explore genome organization in lymphoma cells carrying the t(14;18)(q32;q21) rearrangement known to results in over-expression of the BCL2 gene. In order to achieve this aim, we used fluorescence in situ hybridization to carefully map the positioning of whole chromosome territories and individual genes involved in translocation in the lymphoma-derived cell line Pfeiffer. Our data show that, although there is no obvious alteration in the positioning of the whole chromosome territories, the translocated genes may take the nuclear positioning of either of the wild-type genes. Furthermore, the BCL2 gene was looping out in a proportion of nuclei with the t(14;18) translocation but not in control nuclei without the translocation, indicating that chromosome looping may be an essential mechanism for BCL2 expression in lymphoma cells.
Collapse
Affiliation(s)
- Elisa Garimberti
- Clinical Genomics Laboratory, Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK;
| | - Concetta Federico
- Department of Biological, Geological, and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (F.B.); (S.S.)
| | - Denise Ragusa
- Centre for Genome Engineering and Maintenance (CenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK; (D.R.); (J.M.B.)
| | - Francesca Bruno
- Department of Biological, Geological, and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (F.B.); (S.S.)
| | - Salvatore Saccone
- Department of Biological, Geological, and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (F.B.); (S.S.)
| | - Joanna Mary Bridger
- Centre for Genome Engineering and Maintenance (CenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK; (D.R.); (J.M.B.)
| | - Sabrina Tosi
- Centre for Genome Engineering and Maintenance (CenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK; (D.R.); (J.M.B.)
- Leukaemia and Chromosome Research Laboratory, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| |
Collapse
|
3
|
Kim J, Jimenez DS, Ragipani B, Zhang B, Street LA, Kramer M, Albritton SE, Winterkorn LH, Morao AK, Ercan S. Condensin DC loads and spreads from recruitment sites to create loop-anchored TADs in C. elegans. eLife 2022; 11:e68745. [PMID: 36331876 PMCID: PMC9635877 DOI: 10.7554/elife.68745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Condensins are molecular motors that compact DNA via linear translocation. In Caenorhabditis elegans, the X-chromosome harbors a specialized condensin that participates in dosage compensation (DC). Condensin DC is recruited to and spreads from a small number of recruitment elements on the X-chromosome (rex) and is required for the formation of topologically associating domains (TADs). We take advantage of autosomes that are largely devoid of condensin DC and TADs to address how rex sites and condensin DC give rise to the formation of TADs. When an autosome and X-chromosome are physically fused, despite the spreading of condensin DC into the autosome, no TAD was created. Insertion of a strong rex on the X-chromosome results in the TAD boundary formation regardless of sequence orientation. When the same rex is inserted on an autosome, despite condensin DC recruitment, there was no spreading or features of a TAD. On the other hand, when a 'super rex' composed of six rex sites or three separate rex sites are inserted on an autosome, recruitment and spreading of condensin DC led to the formation of TADs. Therefore, recruitment to and spreading from rex sites are necessary and sufficient for recapitulating loop-anchored TADs observed on the X-chromosome. Together our data suggest a model in which rex sites are both loading sites and bidirectional barriers for condensin DC, a one-sided loop-extruder with movable inactive anchor.
Collapse
Affiliation(s)
- Jun Kim
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - David S Jimenez
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Bhavana Ragipani
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Bo Zhang
- UCSF HSWSan FranciscoUnited States
| | - Lena A Street
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Maxwell Kramer
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Sarah E Albritton
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Lara H Winterkorn
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Ana K Morao
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Sevinc Ercan
- Department of Biology and Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
4
|
Xiao JY, Hafner A, Boettiger AN. How subtle changes in 3D structure can create large changes in transcription. eLife 2021; 10:e64320. [PMID: 34240703 PMCID: PMC8352591 DOI: 10.7554/elife.64320] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
Animal genomes are organized into topologically associated domains (TADs). TADs are thought to contribute to gene regulation by facilitating enhancer-promoter (E-P) contacts within a TAD and preventing these contacts across TAD borders. However, the absolute difference in contact frequency across TAD boundaries is usually less than 2-fold, even though disruptions of TAD borders can change gene expression by 10-fold. Existing models fail to explain this hypersensitive response. Here, we propose a futile cycle model of enhancer-mediated regulation that can exhibit hypersensitivity through bistability and hysteresis. Consistent with recent experiments, this regulation does not exhibit strong correlation between E-P contact and promoter activity, even though regulation occurs through contact. Through mathematical analysis and stochastic simulation, we show that this system can create an illusion of E-P biochemical specificity and explain the importance of weak TAD boundaries. It also offers a mechanism to reconcile apparently contradictory results from recent global TAD disruption with local TAD boundary deletion experiments. Together, these analyses advance our understanding of cis-regulatory contacts in controlling gene expression and suggest new experimental directions.
Collapse
Affiliation(s)
| | - Antonina Hafner
- Department of Developmental Biology, Stanford UniversityStanfordUnited States
| | - Alistair N Boettiger
- Program in Biophysics, Stanford UniversityStanfordUnited States
- Department of Developmental Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
5
|
Amiad-Pavlov D, Lorber D, Bajpai G, Reuveny A, Roncato F, Alon R, Safran S, Volk T. Live imaging of chromatin distribution reveals novel principles of nuclear architecture and chromatin compartmentalization. SCIENCE ADVANCES 2021; 7:7/23/eabf6251. [PMID: 34078602 PMCID: PMC8172175 DOI: 10.1126/sciadv.abf6251] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/15/2021] [Indexed: 05/12/2023]
Abstract
Live imaging of chromatin in an intact organism reveals a novel mode of mesoscale chromatin organization at nuclear periphery.
Collapse
Affiliation(s)
- Daria Amiad-Pavlov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dana Lorber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gaurav Bajpai
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Adriana Reuveny
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Roncato
- Department of Immunology Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Alon
- Department of Immunology Weizmann Institute of Science, Rehovot, Israel
| | - Samuel Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Pradhan S, Solomon R, Gangotra A, Yakubov GE, Willmott GR, Whitby CP, Hale TK, Williams MAK. Depletion of HP1α alters the mechanical properties of MCF7 nuclei. Biophys J 2021; 120:2631-2643. [PMID: 34087208 DOI: 10.1016/j.bpj.2021.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/27/2022] Open
Abstract
Within the nucleus of the eukaryotic cell, DNA is partitioned into domains of highly condensed, transcriptionally silent heterochromatin and less condensed, transcriptionally active euchromatin. Heterochromatin protein 1α (HP1α) is an architectural protein that establishes and maintains heterochromatin, ensuring genome fidelity and nuclear integrity. Although the mechanical effects of changes in the relative amount of euchromatin and heterochromatin brought about by inhibiting chromatin-modifying enzymes have been studied previously, here we measure how the material properties of the nuclei are modified after the knockdown of HP1α. These studies were inspired by the observation that poorly invasive MCF7 breast cancer cells become more invasive after knockdown of HP1α expression and that, indeed, in many solid tumors the loss of HP1α correlates with the onset of tumor cell invasion. Atomic force microscopy (AFM), optical tweezers (OT), and techniques based on micropipette aspiration (MA) were each used to characterize the mechanical properties of nuclei extracted from HP1α knockdown or matched control MCF7 cells. Using AFM or OT to locally indent nuclei, those extracted from MCF7 HP1α knockdown cells were found to have apparent Young's moduli that were significantly lower than nuclei from MCF7 control cells, consistent with previous studies that assert heterochromatin plays a major role in governing the mechanical response in such experiments. In contrast, results from pipette-based techniques in the spirit of MA, in which the whole nuclei were deformed and aspirated into a conical pipette, showed considerably less variation between HP1α knockdown and control, consistent with previous studies reporting that it is predominantly the lamins in the nuclear envelope that determine the mechanical response to large whole-cell deformations. The differences in chromatin organization observed by various microscopy techniques between the MCF7 control and HP1α knockdown nuclei correlate well with the results of our measured mechanical responses and our hypotheses regarding their origin.
Collapse
Affiliation(s)
- Susav Pradhan
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Raoul Solomon
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Ankita Gangotra
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; Department of Physics, The University of Auckland, Auckland, New Zealand
| | - Gleb E Yakubov
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia; School of Biosciences, Faculty of Science, University of Nottingham, Nottingham, United Kingdom
| | - Geoff R Willmott
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand; Department of Physics, The University of Auckland, Auckland, New Zealand; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Catherine P Whitby
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Tracy K Hale
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - Martin A K Williams
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| |
Collapse
|
7
|
Bernardi G. The "Genomic Code": DNA Pervasively Moulds Chromatin Structures Leaving no Room for "Junk". Life (Basel) 2021; 11:342. [PMID: 33924668 PMCID: PMC8070607 DOI: 10.3390/life11040342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The chromatin of the human genome was analyzed at three DNA size levels. At the first, compartment level, two "gene spaces" were found many years ago: A GC-rich, gene-rich "genome core" and a GC-poor, gene-poor "genome desert", the former corresponding to open chromatin centrally located in the interphase nucleus, the latter to closed chromatin located peripherally. This bimodality was later confirmed and extended by the discoveries (1) of LADs, the Lamina-Associated Domains, and InterLADs; (2) of two "spatial compartments", A and B, identified on the basis of chromatin interactions; and (3) of "forests and prairies" characterized by high and low CpG islands densities. Chromatin compartments were shown to be associated with the compositionally different, flat and single- or multi-peak DNA structures of the two, GC-poor and GC-rich, "super-families" of isochores. At the second, sub-compartment, level, chromatin corresponds to flat isochores and to isochore loops (due to compositional DNA gradients) that are susceptible to extrusion. Finally, at the short-sequence level, two sets of sequences, GC-poor and GC-rich, define two different nucleosome spacings, a short one and a long one. In conclusion, chromatin structures are moulded according to a "genomic code" by DNA sequences that pervade the genome and leave no room for "junk".
Collapse
Affiliation(s)
- Giorgio Bernardi
- Science Department, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy; ; Tel.: +39-33-540-5892
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
8
|
Beacon TH, Delcuve GP, Davie JR. Epigenetic regulation of ACE2, the receptor of the SARS-CoV-2 virus 1. Genome 2020; 64:386-399. [PMID: 33086021 DOI: 10.1139/gen-2020-0124] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The angiotensin-converting enzyme 2 (ACE2) is the receptor for the three coronaviruses HCoV-NL63, SARS-CoV, and SARS-CoV-2. ACE2 is involved in the regulation of the renin-angiotensin system and blood pressure. ACE2 is also involved in the regulation of several signaling pathways, including integrin signaling. ACE2 expression is regulated transcriptionally and post-transcriptionally. The expression of the gene is regulated by two promoters, with usage varying among tissues. ACE2 expression is greatest in the small intestine, kidney, and heart and detectable in a variety of tissues and cell types. Herein we review the chemical and mechanical signal transduction pathways regulating the expression of the ACE2 gene and the epigenetic/chromatin features of the expressed gene.
Collapse
Affiliation(s)
- Tasnim H Beacon
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Geneviève P Delcuve
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|