1
|
Chen M, Pan Y, Chen Z, Qi F, Gu J, Qiu Y, He A, Liu J. miRSNP rs188493331: A key player in genetic control of microRNA-induced pathway activation in hypertrophic scars and keloids. Skin Res Technol 2024; 30:e13686. [PMID: 38682767 PMCID: PMC11057055 DOI: 10.1111/srt.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Our study aims to delineate the miRSNP-microRNA-gene-pathway interactions in the context of hypertrophic scars (HS) and keloids. MATERIALS AND METHODS We performed a computational biology study involving differential expression analysis to identify genes and their mRNAs in HS and keloid tissues compared to normal skin, identifying key hub genes and enriching their functional roles, comprehensively analyzing microRNA-target genes and related signaling pathways through bioinformatics, identifying MiRSNPs, and constructing a pathway-based network to illustrate miRSNP-miRNA-gene-signaling pathway interactions. RESULTS Our results revealed a total of 429 hub genes, with a strong enrichment in signaling pathways related to proteoglycans in cancer, focal adhesion, TGF-β, PI3K/Akt, and EGFR tyrosine kinase inhibitor resistance. Particularly noteworthy was the substantial crosstalk between the focal adhesion and PI3K/Akt signaling pathways, making them more susceptible to regulation by microRNAs. We also identified specific miRNAs, including miRNA-1279, miRNA-429, and miRNA-302e, which harbored multiple SNP loci, with miRSNPs rs188493331 and rs78979933 exerting control over a significant number of miRNA target genes. Furthermore, we observed that miRSNP rs188493331 shared a location with microRNA302e, microRNA202a-3p, and microRNA20b-5p, and these three microRNAs collectively targeted the gene LAMA3, which is integral to the focal adhesion signaling pathway. CONCLUSIONS The study successfully unveils the complex interactions between miRSNPs, miRNAs, genes, and signaling pathways, shedding light on the genetic factors contributing to HS and keloid formation.
Collapse
Affiliation(s)
- Meiqing Chen
- Department of DermatologyZhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
- Xiamen Clinical Research Center for Cancer TherapyZhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| | - Yuyan Pan
- Department of Plastic and Reconstructive SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhiwei Chen
- Big Data and Artificial Intelligence CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Fazhi Qi
- Department of Plastic and Reconstructive SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Jianying Gu
- Department of Plastic and Reconstructive SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Artificial Intelligence Center for Plastic Surgery and Cutaneous Soft Tissue CancersZhongshan HospitalFudan UniversityShanghaiChina
| | - Yangyang Qiu
- Department of DermatologyZhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
- Xiamen Clinical Research Center for Cancer TherapyZhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| | - Anqi He
- Xiamen Clinical Research Center for Cancer TherapyZhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
- Department of Plastic and Reconstructive SurgeryZhongshan hospital (Xiamen)Fudan UniversityXiamenChina
| | - Jiaqi Liu
- Department of Plastic and Reconstructive SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Artificial Intelligence Center for Plastic Surgery and Cutaneous Soft Tissue CancersZhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Yu Y, Dong Y, Deng B, Yang T. IncRNA MIAT Accelerates Keloid Formation by miR-411-5p/JAG1 Axis. Crit Rev Eukaryot Gene Expr 2023; 33:81-92. [PMID: 36734859 DOI: 10.1615/critreveukaryotgeneexpr.2022044734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The long non-coding RNA (lncRNA) myocardial infarction-associated transcript (MIAT) regulates the biological functions of many kinds of cells. The aim of this study is to explore the mechanism of MIAT and how it affects keloid progression. The expressions of MIAT, JAG1, and miR-411-5p in keloid tissues and keloid fibroblasts (KEL FIBs) were quantified by conducting Western blot and quantitative reverse transcription polymerase chain reaction analyses. The influences of MIAT, JAG1, and miR-411-5p on the abilities of KEL FIBs to proliferate, migrate, and invade were assessed by means of the CCK-8, wound healing, and Transwell experiments. To determine the binding relationship among MIAT, JAG1, and miR-411-5p, we performed luciferase reporter and RIP experiments. In keloid tissues and KEL FIBs, MIAT and JAG1 were upregulated while miR-411-5p was downregulated. Knocking-down MIAT or JAG1 significantly inhibited proliferation, migration and invasion. On the contrary, suppressing miR-411-5p expression produced an opposite effect. With regard to mechanisms, MIAT sponged miR-411-5p, which targeted JAG1. MIAT accelerates keloid formation by modulating the miR-411-5p/JAG1 axis.
Collapse
Affiliation(s)
- Yingyan Yu
- Department of Dermatology, University of Electronic Science and Technology of China Hospital, Chengdu 611731, Sichuan, China
| | - Yujie Dong
- Department of Dermatology, Kun Ming Li Du Medical Beauty Hospital, Kunming 650000, Yunnan, China
| | - Benyuan Deng
- Department of General Surgery, West China Health Care Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Ting Yang
- Department of Plastic Surgery and Cosmetic Dermatology, West China School/Hospital of Stomatology Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
3
|
Zhu M, Li Y, Liu L, Zhai X. Circ_0057452 sponges miR-7-5p to promote keloid progression through upregulating GAB1. Cell Cycle 2022; 21:2471-2483. [PMID: 35876480 PMCID: PMC9677988 DOI: 10.1080/15384101.2022.2102796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence has shown that circular RNAs (circRNAs) play critical roles in various diseases, including keloid. The purpose of this study was to investigate the role of circ_0057452 and related action mechanisms during the development of keloid. The expression levels of circ_0057452, microRNA-7-5p (miR-7-5p) and GRB2 associated binding protein 1 (GAB1) mRNA were determined by quantitative real-time PCR (qRT-PCR). Cell proliferation was evaluated using methylthiazolyldiphenyl-tetrazolium bromide (MTT) and 5-Ethynyl-2'-deoxyuridine (Edu) assays. Flow cytometry analysis was utilized to determine cell cycle distribution and cell apoptosis. Western blot assay was used to measure apoptosis-related, collagen synthesis-related, and GAB1 protein levels. Cell migration and invasion were detected by wound healing assay and transwell assay. The interaction between miR-7-5p and circ_0057452 or GAB1 was confirmed by dual-luciferase reporter, RNA pull-down, and RNA Immunoprecipitation (RIP) assays. Circ_0057452 and GAB1 were upregulated in keloid tissues and keloid fibroblasts (KFs), while miR-7-5p was downregulated. Circ_0057452 knockdown or miR-7-5p overexpression inhibited the proliferation, migration, invasion, and collagen synthesis and induced cell cycle arrest and apoptosis of KFs. MiR-7-5p was targeted by circ_0057452, and its inhibition overturned the effects of circ_0057452 knockdown. In addition, GAB1 was a target of miR-7-5p, and GAB1 upregulation abolished the role of miR-7-5p overexpression and circ_0057452 knockdown in KFs. Circ_0057452 regulated the expression of GAB1 by adsorbing miR-7-5p in KFs. Circ_0057452 knockdown suppressed keloid development by regulating miR-7-5p/GAB1 axis, which might provide a promising therapeutic target for keloid.
Collapse
Affiliation(s)
- Mengying Zhu
- Department of Plastic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yonglin Li
- Department of Plastic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linbo Liu
- Department of Plastic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaomei Zhai
- Department of Plastic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,CONTACT Xiaomei Zhai Department of Plastic Surgery, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou450000, China
| |
Collapse
|
4
|
Epigenetic Dysregulation in Autoimmune and Inflammatory Skin Diseases. Clin Rev Allergy Immunol 2022; 63:447-471. [DOI: 10.1007/s12016-022-08956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
|
5
|
Liu S, Yang H, Song J, Zhang Y, Abualhssain ATH, Yang B. Keloid: Genetic susceptibility and contributions of genetics and epigenetics to its pathogenesis. Exp Dermatol 2022; 31:1665-1675. [PMID: 36052657 DOI: 10.1111/exd.14671] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Keloid, characterized by fibroproliferative disorders of the skin, can be developed in people of different genders, ages, and ethnicities. Keloid can appear in any part of the body but are especially common on the earlobe, upper torso, and triangular muscle. The genetic heterogeneity and susceptibility of KD (keloid) vary among different races and ethnicities. Studies have found that multiple loci on multiple chromosomes are associated with the pathogenesis of KD, and specific gene variants may also be involved. Despite multiple investigations attempting to uncover the etiology of keloid formation, the genetic mechanism of keloid formation remains unknown. To establish a foundation for a better understanding of the genetics and epigenetics of keloids, we have evaluated and summarized current studies which are mostly related to heredity, genetic polymorphisms, predisposing gene, DNA methylation, and non-coding RNA. We also discussed the problems and potential of genetic and epigenetic investigations of keloids, with the goal of developing new therapeutic approaches to enhance the prognosis of keloid patients.
Collapse
Affiliation(s)
- Shuangfei Liu
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Huan Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Jinru Song
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | | | - Bin Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Xia Y, Wang Y, Shan M, Hao Y, Liu H, Chen Q, Liang Z. Advances in the pathogenesis and clinical application prospects of tumor biomolecules in keloid. BURNS & TRAUMA 2022; 10:tkac025. [PMID: 35769828 PMCID: PMC9233200 DOI: 10.1093/burnst/tkac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/13/2022] [Indexed: 12/29/2022]
Abstract
Keloid scarring is a kind of pathological healing manifestation after skin injury and possesses various tumor properties, such as the Warburg effect, epithelial-mesenchymal transition (EMT), expression imbalances of apoptosis-related genes and the presence of stem cells. Abnormal expression of tumor signatures is critical to the initiation and operation of these effects. Although previous experimental studies have recognized the potential value of a single or several tumor biomolecules in keloids, a comprehensive evaluation system for multiple tumor signatures in keloid scarring is still lacking. This paper aims to summarize tumor biomolecules in keloids from the perspectives of liquid biopsy, genetics, proteomics and epigenetics and to investigate their mechanisms of action and feasibility from bench to bedside. Liquid biopsy is suitable for the early screening of people with keloids due to its noninvasive and accurate performance. Epigenetic biomarkers do not require changes in the gene sequence and their reversibility and tissue specificity make them ideal therapeutic targets. Nonetheless, given the ethnic specificity and genetic predisposition of keloids, more large-sample multicenter studies are indispensable for determining the prevalence of these signatures and for establishing diagnostic criteria and therapeutic efficacy estimations based on these molecules.
Collapse
Affiliation(s)
- Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiao Chen
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Zhengyun Liang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
7
|
Gao H, Hu Z, Zhang X. Circular RNA hsa_circ_0057452 facilitates keloid progression by targeting the microRNA-1225-3p/AF4/FMR2 family member 4 axis. Bioengineered 2022; 13:13815-13828. [PMID: 35706403 PMCID: PMC9275943 DOI: 10.1080/21655979.2022.2084460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The circular RNA, hsa_circ_0057452, is highly expressed in keloids, but its specific mechanism of action remains unknown. The levels of hsa_circ_0057452, microRNA (miR)-1225-3p, and AF4/FMR2 family member 4 (AFF4) in keloid tissues and keloid fibroblasts (KFs) were determined using quantitative reverse transcription-polymerase chain reaction. Changes in KFs viability, proliferation, apoptosis, and migration were investigated using the cell counting kit-8, bromodeoxyuridine, flow cytometry, and Transwell assays. Luciferase, RNA immunoprecipitation, and RNA pull-down assays were performed to identify the binding relationship among hsa_circ_0057452, miR-1225-3p, and AFF4. We found that hsa_circ_0057452 and AFF4 expression levels were upregulated, whereas miR-1225-3p expression levels were downregulated in keloids. Knockdown of hsa_circ_0057452 or AFF4 suppressed the viability, proliferation, and migration of KFs and induced apoptosis, whereas hsa_circ_0057452 overexpression and miR-1225-3p knockdown showed the opposite trend. Furthermore, hsa_circ_0057452 affected the biological behavior of KFs by releasing AFF4 via sponging of miR-1225-3p. Therefore, our results show that hsa_circ_0057452 promotes keloid progression by targeting miR-1225-3p and regulating AFF4 levels.
Collapse
Affiliation(s)
- Hu Gao
- Wound Repair & Rehabilitation Centre, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, China
| | - Zhen Hu
- Department of Dermatology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, China
| | - Xiangming Zhang
- Wound Repair & Rehabilitation Centre, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, China
| |
Collapse
|
8
|
Stevenson AW, Deng Z, Allahham A, Prêle CM, Wood FM, Fear MW. The epigenetics of keloids. Exp Dermatol 2021; 30:1099-1114. [PMID: 34152651 DOI: 10.1111/exd.14414] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Keloid scarring is a fibroproliferative disorder of the skin with unknown pathophysiology, characterised by fibrotic tissue that extends beyond the boundaries of the original wound. Therapeutic options are few and commonly ineffective, with keloids very commonly recurring even after surgery and adjunct treatments. Epigenetics, defined as alterations to the DNA not involving the base-pair sequence, is a key regulator of cell functions, and aberrant epigenetic modifications have been found to contribute to many pathologies. Multiple studies have examined many different epigenetic modifications in keloids, including DNA methylation, histone modification, microRNAs and long non-coding RNAs. These studies have established that epigenetic dysregulation exists in keloid scars, and successful future treatment of keloids may involve reverting these aberrant modifications back to those found in normal skin. Here we summarise the clinical and experimental studies available on the epigenetics of keloids, discuss the major open questions and future perspectives on the treatment of this disease.
Collapse
Affiliation(s)
- Andrew W Stevenson
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Cecilia M Prêle
- Ear Science Centre, Medical School, The University of Western Australia, Perth, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Burns Service of Western Australia, Princess Margaret Hospital for Children and Fiona Stanley Hospital, Perth, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Institute for Respiratory Health, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
Lv W, Ren Y, Hou K, Hu W, Yi Y, Xiong M, Wu M, Wu Y, Zhang Q. Epigenetic modification mechanisms involved in keloid: current status and prospect. Clin Epigenetics 2020; 12:183. [PMID: 33243301 PMCID: PMC7690154 DOI: 10.1186/s13148-020-00981-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Keloid, a common dermal fibroproliferative disorder, is benign skin tumors characterized by the aggressive fibroblasts proliferation and excessive accumulation of extracellular matrix. However, common therapeutic approaches of keloid have limited effectiveness, emphasizing the momentousness of developing innovative mechanisms and therapeutic strategies. Epigenetics, representing the potential link of complex interactions between genetics and external risk factors, is currently under intense scrutiny. Accumulating evidence has demonstrated that multiple diverse and reversible epigenetic modifications, represented by DNA methylation, histone modification, and non-coding RNAs (ncRNAs), play a critical role in gene regulation and downstream fibroblastic function in keloid. Importantly, abnormal epigenetic modification manipulates multiple behaviors of keloid-derived fibroblasts, which served as the main cellular components in keloid skin tissue, including proliferation, migration, apoptosis, and differentiation. Here, we have reviewed and summarized the present available clinical and experimental studies to deeply investigate the expression profiles and clarify the mechanisms of epigenetic modification in the progression of keloid, mainly including DNA methylation, histone modification, and ncRNAs (miRNA, lncRNA, and circRNA). Besides, we also provide the challenges and future perspectives associated with epigenetics modification in keloid. Deciphering the complicated epigenetic modification in keloid is hopeful to bring novel insights into the pathogenesis etiology and diagnostic/therapeutic targets in keloid, laying a foundation for optimal keloid ending.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yuping Ren
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Kai Hou
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Weijie Hu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yi Yi
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Mingchen Xiong
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Min Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Yiping Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Qi Zhang
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| |
Collapse
|