1
|
Allen J, Saßmannshausen J, Singh K, Kilpatrick AFR. Helical dinuclear 3d metal complexes with bis(bidentate) [S,N] ligands: synthesis, structural and computational studies. Dalton Trans 2024; 53:17608-17619. [PMID: 39403000 DOI: 10.1039/d4dt02395a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
A diprotic bis(β-thioketoimine) ligand precursor featuring a flexible 4,4'-methylbis(aniline) linker, H22, was synthesised via treatment of the corresponding bis(β-ketoimine) with Lawesson's reagent. Lithiation of H22 and coordination with one equivalent of d-block metal(II) chlorides MCl2(THF)x (M = Fe, Co and Zn) yielded a corresponding series of homoleptic dinuclear complexes, [M2(μ-2)2]. X-ray diffraction analysis reveals a tetrahedral geometry for the two metals and a double-stranded helicate structure arising from inter-strand face-face π-stacking. These interactions create a helical 'twist' of ca. 70°. Utilising a bulky mononucleating β-thioketoiminate ligand, [3]-, the analogous series of homoleptic monometallic complexes, [M(3)2] (M = Fe, Co and Zn), were prepared and characterised by spectroscopic and analytical techniques. A comprehensive DFT study of all complexes reveals a stronger M-S bonding compared to M-N due to a higher degree of covalency. Solution magnetic studies and natural bonding orbital calculations on the mono- and dinuclear iron and cobalt complexes are consistent with high-spin tetrahedral Fe(II) and Co(II) centres, and cyclic voltammetry reveals both oxidation and reduction processes are accessible.
Collapse
Affiliation(s)
- Jamie Allen
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | | | - Kuldip Singh
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | | |
Collapse
|
2
|
Koehler V. From Double-Stranded Helicates to Abiotic Double Helical Supramolecular Assemblies. Chemistry 2024:e202402222. [PMID: 39429111 DOI: 10.1002/chem.202402222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
The folding of oligomeric strands is the method that nature has selected to generate ordered assemblies presenting spectacular functions. In the purpose to mimic these biomacromolecules and extend their properties and functions, chemists make important efforts to prepare artificial secondary, tertiary, and even quarternary structures based on folded abiotic backbones. A large variety of oligomers and polymers, encoded with chemical informations, were designed, synthesized and characterized, and the establishment of non-covalent interactions lead to complex and functional supramolecular architectures resulting from a spontaneous self-assembly process. The association of complementary molecular strands into double helical structures is a common structural pattern of nucleic acids and proteins, so the synthesis of bio-inspired double helices has emerged as an important subject. In recent years, a number of synthetic oligomers have been reported to form stable double helices and it was shown that the equilibrium between single and double helices can be controlled via different stimuli like the modification of the solvent or the temperature. This kind of structure presents highly interesting functions, such as molecular recognition within the cavity of double helices, and some other potential applications will emerge in the future.
Collapse
Affiliation(s)
- Victor Koehler
- Adionics, The Advanced Ionic Solution, 17 bis avenue des Andes, 91940, Les Ulis, France
| |
Collapse
|
3
|
Kumar A, Krishnaswamy S, Chand DK. Orientational Compatibility Modulation of Ligands in Low-Symmetry Multi-Cavity Discrete Coordination Cages by Neighbouring Cage Participation. Angew Chem Int Ed Engl 2024:e202416332. [PMID: 39425482 DOI: 10.1002/anie.202416332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
Complexation of Pd(II) with a designer unsymmetrical bis-monodentate ligand (2 : 4 ratio) yielded a specific Pd2L4 type "single-cavity discrete coordination cage" (SCDCC), from a pool of 4 isomeric structures. The observed selctivity is attributed to inherent orientational preference of the ligand strands around the metal centers. Crafting a short coordinating arm at either ends of the bis-monodentate ligand (i.e the longer-arm) produced a pair of unsymmetrical isomeric tris-monodentate ligands; whereas crafting the same short-arm at both ends of the ligand gives an unsymmetrical tetrakis-monodentate ligand. Complexation of Pd(II) with either of the isomeric tris-monodenate ligands (3 : 4 ratio) resulted in corresponding low-symmetry "multi-cavity discrete coordination cage" MCDCC having two conjoined cavities, though the inherent relative orientational preference of the longer arms is not achievable in these cages. The enforced orientation is sustained by "Neighbouring Cage Participation" (NCP). However, one-pot combination of Pd(II), with a mixture of isomeric tris-monodentate ligands in 3 : 2 : 2 ratio produced an integratively self-sorted mixed-ligated MCDCC from a pool of 31 structures. Also, mixing Pd(II) with the tetrakis-monodentate ligand produced a MCDCC having three conjoined cavities. The inherent orientational preference of longer-arm of the ligand strands is retained in the mixed-ligated double-cavity and the homo-ligated triple cavity cages.
Collapse
Affiliation(s)
- Ashish Kumar
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Shobhana Krishnaswamy
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Dillip Kumar Chand
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
4
|
Benchimol E, Ebbert KE, Walther A, Holstein JJ, Clever GH. Ligand Conformation Controls Assembly of a Helicate/Mesocate, Heteroleptic [Pd 2L 2L' 2] Cages and a Six-Jagged [Pd 6L 12] Ring. Chemistry 2024; 30:e202401850. [PMID: 38853595 DOI: 10.1002/chem.202401850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Molecular building blocks, capable of adopting several strongly deviating conformations, are of particular interest in the development of stimuli-responsive self-assemblies. The pronounced structural flexibility of a short acridone-based bridging ligand, equipped with two monodentate isoquinoline donors, is herein exploited to assemble a surprisingly diverse series of coordination-driven Pd(II) architectures. First, it can form a highly twisted Pd2L4 helicate, transformable into the corresponding mesocate, controlled by temperature, counter anion and choice of solvent. Second, it also allows the formation of heteroleptic cages, either from a mix of ligands with Pd(II) cations or by cage-to-cage transformation from homoleptic assemblies. Here, the acridone-based ligand tolerates counter ligands that carry their donors either in a diverging or converging arrangement, as it can rotate its own coordination sites by 90° and structurally adapt to both situations via shape complementarity. Third, by a near 180° rotation of only one of its arms, the ligand can adopt an S-shape conformation and form an unprecedented C6h-symmetric Pd6L12 saw-toothed six-membered ring.
Collapse
Affiliation(s)
- Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kristina E Ebbert
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Alexandre Walther
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
5
|
Zhang L, Li B, Li R, Wang Y, Ye S, Zhang P, Wu B. Spontaneous Resolution of Chiral Janus-Type Double-Layered Metallocyclic Strips Incorporating Möbius Ring and Circular Helicate. J Am Chem Soc 2023; 145:18221-18226. [PMID: 37552546 DOI: 10.1021/jacs.3c05746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Homochiral metal-organic macrocyclic complexes are of great significance owing to their chirality and well-defined internal cavities that potentially have the ability to mimic complicated biological processes. Here we report a novel metal/anion-coordination co-driven strategy for the formation of nanoscale supramolecular metallocycles with unique topology, large size, and desired chirality. The enantiomeric Janus-type metallocyclic strips are assembled based on the synergistic coordination of sulfate anions and CoII ions to a bifunctional achiral ligand combining the o-phenylene-(bis)urea anion-chelating and 8-hydroxyquinoline metal-coordinating sites. The inherent chirality arises from two types of helical chiralities (triply twisted Möbius ring and circular helicate), which is observed for the first time for metal-organic complex systems. Notably, spontaneous chiral resolution by conglomerate crystallization into a pair of enantiomers (P- or M-Co9) is realized, which is attributed to the multiple weak intermolecular interactions facilitating the hierarchically helical superstructure.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Boyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Ran Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Sheng Ye
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Peng Zhang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Sharma S, Sarkar M, Chand DK. Conjoined and non-conjoined coordination cages with palladium(II) vertices: structural diversity, solution dynamics, and intermolecular interactions. Chem Commun (Camb) 2023; 59:535-554. [PMID: 36546562 DOI: 10.1039/d2cc04828k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-assembled coordination complexes prepared from a combination of Pd(II) components with one or more types of high-symmetry or low-symmetry bis/tris/tetrakis-monodentate ligands are considered in this review. The structures of these complexes are viewed in terms of the presence of a metallo-macromonocycle or conjoined metallo-macromonocycles/metallocages in the frameworks. Analysis of the typical molecular structures revealed an open truth that one or more units of metallo-macromonocycles can be conjoined to afford planar or non-planar systems. In the same line, the enveloping surface of a 3D cage can be considered as a multiple number of conjoined metallomacrocycles that embrace a 3D space from all directions. However, two or more units of cages are conjoined in a multi-3D-cavity cage system and such a system is considered as a conjoined cage. Construction of such conjoined cages having a finite but multiple number of 3D-cavities unified in a single molecular architecture is a challenging task when compared to that of single-3D-cavity based compounds. Conjoining of as many as four units of 3D cages is known so far. Single- as well as multi-cavity cages of lower symmetry have become a very recent trend in this regard where low-symmetry ligands or mixed ligand ensembles are crafted in the framework of the cages. Other structural diversities like helicity in cages, and supramolecular isomerism are also included in this assorted literature work. Although isomerism in classical coordination complexes is well known, it is very less studied in self-assembled coordination complexes. Ligand isomerism is one such feature that is reviewed here. The dynamic behavior of the cages results in interesting reactivity aspects. A large variety of dynamic processes are collected under an umbrella, i.e., "ligand exchange reactions" and described with examples. Intermolecular interaction among the already self-assembled molecules is possible in solution, solid, and gel-phases as discussed in the last part of this review. The understanding of intermolecular interaction is likely to influence different areas of research including crystal engineering, and materials chemistry.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Moumita Sarkar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Dillip Kumar Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
7
|
Helicate versus Mesocate in Quadruple-Stranded Lanthanide Cages: A Computational Insight. Int J Mol Sci 2022; 23:ijms231810619. [PMID: 36142519 PMCID: PMC9504305 DOI: 10.3390/ijms231810619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
To drive the synthesis of metallo-supramolecular assemblies (MSAs) and to fully exploit their functional properties, robust computational tools are crucial. The capability to model and to rationalize different parameters that can influence the outcome is mandatory. Here, we report a computational insight on the factors that can determine the relative stability of the supramolecular isomers helicate and mesocate in lanthanide-based quadruple-stranded assemblies. The considered MSAs have the general formula [Ln2L4]2− and possess a cavity suitable to allocate guests. The analysis was focused on three different factors: the ligand rigidity and the steric hindrance, the presence of a guest inside the cavity, and the guest dimension. Three different quantum mechanical calculation set-ups (in vacuum, with the solvent, and with the solvent and the dispersion correction) were considered. Comparison between theoretical and experimental outcomes suggests that all calculations correctly estimated the most stable isomer, while the inclusion of the dispersion correction is mandatory to reproduce the geometrical parameters. General guidelines can be drawn: less rigid and less bulky is the ligand and less stable is the helicate, and the presence of a guest can strongly affect the isomerism leading to an inversion of the stability by increasing the guest size when the ligand is flexible.
Collapse
|
8
|
Hennecker CD, Lachance-Brais C, Sleiman H, Mittermaier A. Using transient equilibria (TREQ) to measure the thermodynamics of slowly assembling supramolecular systems. SCIENCE ADVANCES 2022; 8:eabm8455. [PMID: 35385301 PMCID: PMC8985918 DOI: 10.1126/sciadv.abm8455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Supramolecular chemistry involves the noncovalent assembly of monomers into materials with unique properties and wide-ranging applications. Thermal analysis is a key analytical tool in this field, as it provides quantitative thermodynamic information on both the structural stability and nature of the underlying molecular interactions. However, there exist many supramolecular systems whose kinetics are so slow that the thermodynamic methods currently applied are unreliable or fail completely. We have developed a simple and rapid spectroscopic method for extracting accurate thermodynamic parameters from these systems. It is based on repeatedly raising and lowering the temperature during assembly and identifying the points of transient equilibrium as they are passed on the up- and down-scans. In a proof-of-principle application to the coassembly of polydeoxyadenosine (polyA) containing 15 adenosines and cyanuric acid (CA), we found that roughly 30% of the CA binding sites on the polyA chains were unoccupied, with implications for high-valence systems.
Collapse
|
9
|
Helicate-to-tetrahedron transformation of chiral lanthanide supramolecular complexes induced by ionic radii effect and linker length. Commun Chem 2021; 4:116. [PMID: 36697590 PMCID: PMC9814731 DOI: 10.1038/s42004-021-00553-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/20/2021] [Indexed: 01/28/2023] Open
Abstract
Controlled formation of desired lanthanide supramolecular complexes is challenging because of the difficulties in predicting coordination geometry, as well as a labile coordination number. Herein, we explore the effect of ionic radii and linker length on supramolecular species formation. A helicate-to-tetrahedron transformation occurred between [Ln2L13] and [Ln4L16] (Ln = La, Sm, Eu, Gd, Tb and Lu). For six lanthanide ions, the unfavored tetrahedron [La4L16] can only be observed in a concentrated mixture with the helicate [La2L13] where no pure [La4L16] species was isolated via crystallization. For Sm, Eu, Gd, Tb, the [Ln4L16] supramolecular tetrahedron can be isolated via crystallization from diisopropyl ether. A similar result was also observed for Lu, but the tetrahedral structure was found to be relatively stable and transformed back to [Lu2L13] much slower upon dissolution. No tetrahedron formation was observed with L3 giving rise to only [Ln2L33] species, in which L3 contains a longer and more flexible linker compared with that of L1. Results show that the supramolecular transformation in these systems is governed by both the ionic radii as well as the ligand design. Special focus is on both [Eu2L13] and [Eu4L16] which form chiral entities and exhibit interesting circular polarized luminescence.
Collapse
|
10
|
Lisboa LS, Riisom M, Vasdev RAS, Jamieson SMF, Wright LJ, Hartinger CG, Crowley JD. Cavity-Containing [Fe 2L 3] 4+ Helicates: An Examination of Host-Guest Chemistry and Cytotoxicity. Front Chem 2021; 9:697684. [PMID: 34307299 PMCID: PMC8292671 DOI: 10.3389/fchem.2021.697684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 02/04/2023] Open
Abstract
Two new di(2,2′-bipyridine) ligands, 2,6-bis([2,2′-bipyridin]-5-ylethynyl)pyridine (L1) and bis(4-([2,2′-bipyridin]-5-ylethynyl)phenyl)methane (L2) were synthesized and used to generate two metallosupramolecular [Fe2(L)3](BF4)4 cylinders. The ligands and cylinders were characterized using elemental analysis, electrospray ionization mass spectrometry, UV-vis, 1H-, 13C and DOSY nuclear magnetic resonance (NMR) spectroscopies. The molecular structures of the [Fe2(L)3](BF4)4 cylinders were confirmed using X-ray crystallography. Both the [Fe2(L1)3](BF4)4 and [Fe2(L2)3](BF4)4 complexes crystallized as racemic (rac) mixtures of the ΔΔ (P) and ΛΛ (M) helicates. However, 1H NMR spectra showed that in solution the larger [Fe2(L2)3](BF4)4 was a mixture of the rac-ΔΔ/ΛΛ and meso-ΔΛ isomers. The host-guest chemistry of the helicates, which both feature a central cavity, was examined with several small drug molecules. However, none of the potential guests were found to bind within the helicates. In vitro cytotoxicity assays demonstrated that both helicates were active against four cancer cell lines. The smaller [Fe2(L1)3](BF4)4 system displayed low μM activity against the HCT116 (IC50 = 7.1 ± 0.5 μM) and NCI-H460 (IC50 = 4.9 ± 0.4 μM) cancer cells. While the antiproliferative effects against all the cell lines examined were less than the well-known anticancer drug cisplatin, their modes of action would be expected to be very different.
Collapse
Affiliation(s)
- Lynn S Lisboa
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Mie Riisom
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Roan A S Vasdev
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - L James Wright
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - James D Crowley
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
August DP, Jaramillo-Garcia J, Leigh DA, Valero A, Vitorica-Yrezabal IJ. A Chiral Cyclometalated Iridium Star of David [2]Catenane. J Am Chem Soc 2021; 143:1154-1161. [DOI: 10.1021/jacs.0c12038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- David P. August
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | | | - David A. Leigh
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alberto Valero
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | | |
Collapse
|
12
|
Yim KH, Yeung CT, Wong HY, Law GL. Structural variation of self-assembled lanthanide supramolecular complexes induced by reaction conditions. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00115a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The structural variation of self-assembled lanthanide supramolecular complexes which can be induced by different factors such as concentration, anion and solvent, cationic radii, stoichiometric ratio and light.
Collapse
Affiliation(s)
- King-Him Yim
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- Hong Kong
| | - Chi-Tung Yeung
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- Hong Kong
| | - Ho-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- Hong Kong
| | - Ga-Lai Law
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- Hong Kong
| |
Collapse
|
13
|
Taura D, Wang X, Ito M, Yashima E. Selective formation of spiroborate-based double-stranded hetero-helicates assisted by donor–acceptor interactions. Org Chem Front 2021. [DOI: 10.1039/d1qo00286d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel spiroborate-based double-stranded hetero-helicate is selectively formed through donor–acceptor interactions between the central electron-rich porphyrin and electron-deficient naphthalene diimide units.
Collapse
Affiliation(s)
- Daisuke Taura
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Xiang Wang
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Masaki Ito
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
14
|
Ito M, Ikai T, Yamamoto S, Taura D, Ousaka N, Yashima E. Chiral Guest-induced Catalytic Deracemization of a Spiroborate-based Double-stranded Helicate Bearing a Bisporphyrin Unit with Acids. CHEM LETT 2020. [DOI: 10.1246/cl.200352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Masaki Ito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Shinya Yamamoto
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Daisuke Taura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Naoki Ousaka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
15
|
Giraldi E, Depallens AB, Ortiz D, Fadaei‐Tirani F, Scopelliti R, Severin K. Boronate Ester‐Capped Helicates. Chemistry 2020; 26:7578-7582. [DOI: 10.1002/chem.202001392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Erica Giraldi
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Adrien B. Depallens
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Daniel Ortiz
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
16
|
Clemett CJ, Faulkner RA, Midgley G, Slater C, Rice CR. Anion dependent self-assembly; formation of an octanuclear assembly by templation with the selenite dianion. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Taura D, Shimomura K, Ousaka N, Yashima E. Complementary double-stranded helical oligomers bearing achiral bifunctional groups that catalyze asymmetric aldol reaction. Chirality 2020; 32:254-264. [PMID: 31919917 DOI: 10.1002/chir.23169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/17/2019] [Indexed: 11/06/2022]
Abstract
Two novel chiral dimer and trimer strands composed of m-terphenyl groups linked through p-diethynylbenzene units with the chiral amidine group and achiral piperazine group introduced at the terminus or center of the strands, respectively, and its complementary achiral carboxylic acid dimer and trimer were synthesized. The complementary chiral/achiral strands form an excess-handed double-helical structure as supported by intense split-type Cotton effects in the absorption regions of the conjugated backbones biased by the chiral amidinium-carboxylate salt bridges. The double-helical trimer was found to catalyze the direct aldol reaction of cyclohexanone with 4-nitrobenzaldehyde and produce the products with a moderate enantioselectivity despite the fact that the catalytically active bifunctional piperazine/carboxylic acid pair introduced in the middle is achiral, indicating the key role of the one-handed double-helical framework for supramolecular bifunctional organocatalysis.
Collapse
Affiliation(s)
- Daisuke Taura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Kouhei Shimomura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Naoki Ousaka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
18
|
Yang H, Gao G, Chen W, Wang L, Liu W. Self-assembly of tetranuclear 3d–4f helicates as highly efficient catalysts for CO2 cycloaddition reactions under mild conditions. Dalton Trans 2020; 49:10270-10277. [PMID: 32672283 DOI: 10.1039/d0dt01743d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of 4-nuclear lanthanide clusters supported by organic ligands Zn3LnL4 (Ln = Dy(1), Gd(2), Er(3)) were synthesized. These helicates could be used to convert CO2 into cyclic carbonates with TOF up to 38 000 h−1, without being influenced by moisture or air.
Collapse
Affiliation(s)
- Huan Yang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Guoshu Gao
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Wanmin Chen
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Li Wang
- College of Chemistry and Chemical Engineering
- Xi'an Shiyou University
- Xi'an 710065
- P.R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
19
|
Navarro M, Sánchez-Barba LF, Garcés A, Fernández-Baeza J, Fernández I, Lara-Sánchez A, Rodríguez AM. Bimetallic scorpionate-based helical organoaluminum complexes for efficient carbon dioxide fixation into a variety of cyclic carbonates. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00593b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The binuclear aluminum complexes [AlR2(κ2-NN′;κ2-NN′)AlR2] with TBAB/PPNCl behave as excellent systems for cyclic carbonate formation from CO2 with challenging epoxides.
Collapse
Affiliation(s)
- Marta Navarro
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Luis F. Sánchez-Barba
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Andrés Garcés
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Juan Fernández-Baeza
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- Madrid
- Spain
| | - Agustín Lara-Sánchez
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| | - Ana M. Rodríguez
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| |
Collapse
|
20
|
Anhäuser J, Puttreddy R, Glanz L, Schneider A, Engeser M, Rissanen K, Lützen A. Subcomponent Self-Assembly of a Cyclic Tetranuclear Fe II Helicate in a Highly Diastereoselective Self-Sorting Manner. Chemistry 2019; 25:12294-12297. [PMID: 31314931 PMCID: PMC6790559 DOI: 10.1002/chem.201903164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 11/23/2022]
Abstract
An enantiomerically pure diamine based on the 4,15-difunctionalized [2.2]paracyclophane scaffold and 2-formylpyridine self-assemble into an optically pure cyclic metallosupramolecular Fe4 L6 helicate upon mixing with iron(II) ions in a diastereoselective subcomponent self-assembly process. The cyclic assembly results from steric strain that prevents the formation of a smaller linear dinuclear triple-stranded helicate, and hence, leads to the larger strain-free assembly that fulfils the maximum occupancy rule. Interestingly, use of the racemic diamine also leads to a racemic mixture of the homochiral cyclic helicates as the major product in a highly diastereoselective narcissistic chiral self-sorting manner given the fact that the assembly contains ten stereogenic elements, which can in principle give rise to 149 different diastereomers. The metallosupramolecular aggregates could be characterized by NMR, UV/Vis and CD spectroscopy, mass spectrometry, and X-ray crystallography.
Collapse
Affiliation(s)
- Jana Anhäuser
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität BonnGerhard-Domagk-Strasse153121BonnGermany
| | - Rakesh Puttreddy
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| | - Lukas Glanz
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität BonnGerhard-Domagk-Strasse153121BonnGermany
| | - Andreas Schneider
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität BonnGerhard-Domagk-Strasse153121BonnGermany
| | - Marianne Engeser
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität BonnGerhard-Domagk-Strasse153121BonnGermany
| | - Kari Rissanen
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| | - Arne Lützen
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität BonnGerhard-Domagk-Strasse153121BonnGermany
| |
Collapse
|
21
|
Syntheses, crystal structures, and solid-state spectroscopic properties of helical and non-helical dinuclear zinc(II) complexes derived from N2O2 ligands with different torsion-generating sources. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Chen X, Mevissen C, Huda S, Göb C, Oppel IM, Albrecht M. Cation‐Controlled Formation and Interconversion of the
fac
/
fac
and
mer
/
mer
Stereoisomers of a Triple‐Stranded Helicate. Angew Chem Int Ed Engl 2019; 58:12879-12882. [DOI: 10.1002/anie.201904181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/07/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaofei Chen
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Christian Mevissen
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Saskia Huda
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Christian Göb
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Iris M. Oppel
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Markus Albrecht
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
23
|
Chen X, Mevissen C, Huda S, Göb C, Oppel IM, Albrecht M. Kationen‐gesteuerte Bildung und Umwandlung der
fac
/
fac
‐ und
mer
/
mer
‐Stereoisomere eines dreisträngigen Helicats. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiaofei Chen
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Christian Mevissen
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Saskia Huda
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Christian Göb
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Iris M. Oppel
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Markus Albrecht
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
24
|
Schneider HJ. Strain effects determine the performance of artificial allosteric systems: calixarenes as models. Chem Commun (Camb) 2019; 55:3433-3444. [PMID: 30843901 DOI: 10.1039/c9cc00573k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It is shown that the performance of allosteric systems regarding the efficiency and the speed of response depends critically on the strain energy of the equilibrating conformers and of the corresponding interconversion transition state. The affinity of a substrate A can be large enough to overcome in the absence of an effector E by induced fit the strain involved in the formation of an optimal conformation for binding A. The efficiency as given by the ratio KAE/KA of binding constants in the presence or absence of an effector is, for many published synthetic allosteric systems, relatively low; in practice this means that these only function within rather limited concentration ranges. A small KAE/KA ratio means that the binding strength of A or the corresponding signal will increase only little by adding an effector, and may need higher concentration of E. Implementation of steric distortion in the minor conformer can lead to reduced binding of A in the absence of the effector E. Destabilization of conformers can also result from the inclusion of high energy water molecules within a cavity. Furthermore, until now it has been overlooked that strain in the transition state can lead to reaction times of up to days, and thus to the neglect of experimental observation. The role of conformational changes within an allosteric molecule is characterized with a variety of calixarenes and other compound classes, offering a clue for the design of more efficient synthetic systems with high cooperativity.
Collapse
Affiliation(s)
- Hans-Jörg Schneider
- FR Organische Chemie, Universität des Saarlandes, D 66041 Saarbrücken, Germany.
| |
Collapse
|
25
|
Gaona MA, de la Cruz-Martínez F, Fernández-Baeza J, Sánchez-Barba LF, Alonso-Moreno C, Rodríguez AM, Rodríguez-Diéguez A, Castro-Osma JA, Otero A, Lara-Sánchez A. Synthesis of helical aluminium catalysts for cyclic carbonate formation. Dalton Trans 2019; 48:4218-4227. [DOI: 10.1039/c9dt00323a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helical aluminium complexes have been prepared and used as catalysts for cyclic carbonate synthesis.
Collapse
Affiliation(s)
- Miguel A. Gaona
- Universidad de Castilla-La Mancha
- Dpto. de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Ciencias y Tecnologías Químicas
- 13071-Ciudad Real
| | - Felipe de la Cruz-Martínez
- Universidad de Castilla-La Mancha
- Dpto. de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Ciencias y Tecnologías Químicas
- 13071-Ciudad Real
| | - Juan Fernández-Baeza
- Universidad de Castilla-La Mancha
- Dpto. de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Ciencias y Tecnologías Químicas
- 13071-Ciudad Real
| | - Luis F. Sánchez-Barba
- Universidad Rey Juan Carlos
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Móstoles
- Spain
| | - Carlos Alonso-Moreno
- Universidad de Castilla-La Mancha
- Dpto. de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Farmacia
- 02071-Albacete
| | - Ana M. Rodríguez
- Universidad de Castilla-La Mancha
- Dpto. de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Ciencias y Tecnologías Químicas
- 13071-Ciudad Real
| | | | - José A. Castro-Osma
- Universidad de Castilla-La Mancha
- Dpto. de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Farmacia
- 02071-Albacete
| | - Antonio Otero
- Universidad de Castilla-La Mancha
- Dpto. de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Ciencias y Tecnologías Químicas
- 13071-Ciudad Real
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha
- Dpto. de Química Inorgánica
- Orgánica y Bioquímica
- Facultad de Ciencias y Tecnologías Químicas
- 13071-Ciudad Real
| |
Collapse
|