1
|
Luo F, Li M, Chen Y, Song S, Yu H, Zhang P, Xiao C, Lv G, Chen X. Immunosuppressive enzyme-responsive nanoparticles for enhanced accumulation in liver allograft to overcome acute rejection. Biomaterials 2024; 306:122476. [PMID: 38266349 DOI: 10.1016/j.biomaterials.2024.122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Acute rejection is a life-threatening complication after liver transplantation. Immunosuppressants such as tacrolimus are used to inhibit acute rejection of liver grafts in clinic. However, inefficient intragraft accumulation may reduce the therapeutic outcomes of tacrolimus. Here, an enzyme-responsive nanoparticle is developed to selectively enhance the accumulation of tacrolimus in liver allograft through enzyme-induced aggregation to refine immunotherapeutic efficacy of tacrolimus. The nanoparticles are composed of amphiphilic tacrolimus prodrugs synthesized by covalently conjugating tacrolimus and matrix metalloproteinase 9 (MMP9)-cleavable peptide-containing methoxy poly (ethylene glycol) to poly (l-glutamic acid). Upon exposure to MMP9, which is overexpressed in rejected liver allografts, the nanoparticles undergo a morphological transition from spherical micellar nanoparticles to microscale aggregate-like scaffolds. Intravenous administration of MMP9-responsive nanoparticles into a rat model of acute liver graft rejection results in enhanced nanoparticle accumulation in allograft as compared to nonresponsive nanoparticles. Consequently, the MMP9-responsive nanoparticles significantly inhibit intragraft inflammatory cell infiltration and proliferation, maintain intragraft immunosuppressive environment, alleviate graft damage, improve liver allograft function, abate weight loss and prolong recipient survival. This work proves that morphology-switchable enzyme-responsive nanoparticles represent an innovative strategy for selectively enhancing intragraft accumulation of immunosuppressive agents to improve treatment of liver allograft rejection.
Collapse
Affiliation(s)
- Feixiang Luo
- General Surgery Center, Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Mingqian Li
- General Surgery Center, Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Yuguo Chen
- General Surgery Center, Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Shifei Song
- General Surgery Center, Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| | - Guoyue Lv
- General Surgery Center, Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| |
Collapse
|
2
|
Wang B, Li T, Xu L, Cai Y. Protective effect of FKBP12 on dextran sulfate sodium-induced ulcerative colitis in mice as a tacrolimus receptor. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-16. [PMID: 38466901 DOI: 10.1080/15257770.2024.2320817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Ulcerative colitis (UC) is a multifactorial intestinal disease with a high incidence. In recent years, there has been an urgent need for pleiotropic drugs with a clear biosafety profile. Tacrolimus (TAC) is an immunosuppressant with stronger in vivo effects and better gastrointestinal absorption and is considered a potential treatment for UC. FKBP12 is a mediator of TAC immunosuppression; however, it is unclear whether it can participate in the development of UC in combination with TAC. The purpose of this study is to preliminarily validate the function of FKBP12 by establishing dextran sulfate sodium (DSS)-induced UC model and TAC treatment. The results revealed that TAC was effective in alleviating DSS-induced UC symptoms such as body weight and disease activity index (DAI). TAC significantly protects colonic tissue and attenuates DSS-induced histomorphological changes. In addition, FKBP12 is down-regulated in the intestinal tissue of DSS-induced UC mice and in serum samples of UC patients. In conclusion, our study revealed that FKBP12 may act as a TAC receptor to have anti-inflammatory and protective effects on DSS-induced UC in mice, which will provide a new option for the treatment of UC.
Collapse
Affiliation(s)
- Birong Wang
- Department of Gastroenterology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tingzan Li
- Department of Gastroenterology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liqin Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yuxi Cai
- Department of Critical Care Medicine, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|