1
|
Sheng LX, Li XR, Zhu XM, Zhu H, Yu JQ. Determination of the appropriate extraction method for bound aroma compounds from strawberry and analysis of aroma substances in strawberry fruits of different varieties and developmental stages. Food Chem 2025; 471:142768. [PMID: 39793352 DOI: 10.1016/j.foodchem.2025.142768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Strawberries are rich in unique aroma substances, which include bound and free aroma compounds. Unlike the free aroma, the appropriate extraction and analytical methods for bound aroma compounds in strawberries remain unclear. In the present study, we compared three extraction methods for bound aroma compounds of strawberries and performed the single factor experiment for optimizing the hydrolysis method, process parameters, and response surface analysis. The following optimal process conditions were obtained for extracting bound aroma precursor compounds by the Cleanert PEP column: (1) column flow rate of 1 mL/min; (2) dichloromethane: pentane eluent ratio of 7:1; and (3) ethyl acetate: methanol retention solution ratio of 3:1. The bound aroma precursor compounds were enzymatically hydrolyzed at 38 °C for 48 h and finally detected by GC-MS. The results showed that HY strawberries at red fruit stages had the most abundant aroma content and types, and different varieties had different aroma types.
Collapse
Affiliation(s)
- Li-Xia Sheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; Zhongshan Biological Breeding Laboratory, Jiangsu Province, China
| | - Xiang-Rong Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xing-Ming Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Hao Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jian-Qiang Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Yan Y, Zou M, Tang C, Ao H, He L, Qiu S, Li C. The insights into sour flavor and organic acids in alcoholic beverages. Food Chem 2024; 460:140676. [PMID: 39126943 DOI: 10.1016/j.foodchem.2024.140676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Alcoholic beverages have developed unique flavors over millennia, with sourness playing a vital role in their sensory perception and quality. Organic acids, as crucial flavor compounds, significantly impact flavor. This paper reviews the sensory attribute of sour flavor and key organic acids in alcoholic beverages. Regarding sour flavor, research methods include both static and dynamic sensory approaches and summarize the interaction of sour flavor with aroma, taste, and mouthfeel. In addition, this review focuses on identifying key organic acids, including sample extraction, chromatography, olfactometry/taste, and mass spectrometry. The key organic acids in alcoholic beverages, such as wine, Baijiu, beer, and Huangjiu, and their primary regulatory methods are discussed. Finally, future avenues for the exploration of sour flavor and organic acids by coupling machine learning, database, sensory interactions and electroencephalography are suggested. This systematic review aims to enhance understanding and serve as a reference for further in-depth studies on alcoholic beverages.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mingxin Zou
- Guizhou Tangzhuag Chinese Liquor Limited Company, Zunyi 564500, Guizhou Province, China
| | - Cui Tang
- Liupanshui Agricultural and Rural Bureau, Liupanshui 553002, Guizhou Province, China
| | - Hongyan Ao
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Laping He
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Shuyi Qiu
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Cen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Tarko T, Duda A. Volatilomics of Fruit Wines. Molecules 2024; 29:2457. [PMID: 38893332 PMCID: PMC11173689 DOI: 10.3390/molecules29112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Volatilomics is a scientific field concerned with the evaluation of volatile compounds in the food matrix and methods for their identification. This review discusses the main groups of compounds that shape the aroma of wines, their origin, precursors, and selected metabolic pathways. The paper classifies fruit wines into several categories, including ciders and apple wines, cherry wines, plum wines, berry wines, citrus wines, and exotic wines. The following article discusses the characteristics of volatiles that shape the aroma of each group of wine and the concentrations at which they occur. It also discusses how the strain and species of yeast and lactic acid bacteria can influence the aroma of fruit wines. The article also covers techniques for evaluating the volatile compound profile of fruit wines, including modern analytical techniques.
Collapse
Affiliation(s)
- Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland;
| | | |
Collapse
|
4
|
Wang Y, Quan S, Xia Y, Wu Z, Zhang W. Exploring the regulated effects of solid-state fortified Jiuqu and liquid-state fortified agent on Chinese Baijiu brewing. Food Res Int 2024; 179:114024. [PMID: 38342544 DOI: 10.1016/j.foodres.2024.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/13/2024]
Abstract
Zaopei is the direct source of Chinese liquor (Baijiu). Adding functional strains to Zaopei is a potential strategy to regulate Baijiu brewing, mainly including the two ways of solid-state fortified Jiuqu (SFJ) and liquid-state fortified agent (LFA). Here, to explore their regulated details, the response patterns of Zaopei microecosystem and the changes in the product features were comprehensively investigated. The results showed that SFJ more positively changed the physicochemical properties of Zaopei and improved its ester content, from 978.57 mg/kg to 1078.63 mg/kg over the fermentation of 30 days, while LFA decreased the content of esters, alcohols, and acids. Microbial analysis revealed that SFJ significantly increased Saccharomycopsis and Aspergillus from the start of fermentation and induced a positive interaction cluster driven by the added functional Paenibacillus, while LFA exhibited a community structure near that of the original microecosystem and led to a simpler network with the reduced microbial nodes and correlations. Metabolism analysis found that both SFJ and LFA weakened the flavor-producing metabolism by suppressing some key enzyme pathways, such as EC 3.2.1.51, EC 4.2.1.47, EC 1.1.1.27, EC 1.1.1.22, EC 1.5.1.10, EC 1.14.11.12. As a result, SFJ improved the raw liquor yield by 28.5 % and endowed the final product with a more fragrant aroma, mainly through ethyl (E)-cinnamate, ethyl isovalerate, ethyl phenacetate with the higher odor activity values, while LFA promoted the yield by 13.2 % and resulted in a purer and less intense aroma through the aroma-active β-damascenone, ethyl heptoate, ethyl phenacetate. These results facilitated the regulated mechanism of SFJ and LFA on Baijiu brewing and indicated that the used functional strains in this study could be applicated in SFJ way for the further industrial-scale application.
Collapse
Affiliation(s)
- Yan Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shikai Quan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; School of Liquor-Brewing Engineering, Sichuan University of Jinjiang College, Meishan 620860, China.
| |
Collapse
|
5
|
Ge YH, Li X, Huang M, Huang Z, Wu M, Sun B, Wang L, Wu JL, Li N. Aroma correlation assisted volatilome coupled network analysis strategy to unveil main aroma-active volatiles of Rosa roxburghii. Food Res Int 2023; 169:112819. [PMID: 37254394 DOI: 10.1016/j.foodres.2023.112819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
To investigate the main aroma-active volatiles out from comprehensive chemical profile, we proposed an aroma correlation assisted volatilome coupled network analysis strategy and applied it to the study of Rosa roxburghii. Based on 475 detected volatiles with GC × GC-TOF/MS analysis, the volatilome was screened with both positive aroma activities and high contents to discover some aliphatic acids, alcohols, aldehydes and esters, terpenoids as well as some alkenes and ketones. Especially, a series of homologous C6- and C8- acids, alcohols, aldehydes, esters as well as some terpenoids like limonene take the predominant contributions to the aromas. Moreover, two aroma-active and aroma-contributing volatile groups including acid-aldehyde-alcohol-ester and terpenoid groups were clustered to integrally be responsible for the major aromas of R. roxburghii with network analysis. Additionally, the accumulation of C6- and C8-family homologous aliphatic volatiles was also elucidated with linoleic and linolenic acid derived pathways. This strategy is practical to investigate the main aroma-active volatiles based on volatilome.
Collapse
Affiliation(s)
- Ya-Hui Ge
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou 510632, China
| | - Mingzheng Huang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Zhengxu Huang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou 510632, China
| | - Manman Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou 510632, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lishuang Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau, China.
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau, China.
| |
Collapse
|
6
|
Investigating the mechanism of the flavor formation in Sichuan sun vinegar based on flavor-orientation and metagenomics. Curr Res Food Sci 2023; 6:100460. [PMID: 36798948 PMCID: PMC9925973 DOI: 10.1016/j.crfs.2023.100460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
Fermentation and aging are the key stages of flavor formation in Sichuan sun vinegar (SSV), but the generation mechanisms of the flavor produced by these processes are unknown. However, complex microbial metabolism is critical to the flavor development of SSV. In this study, we analyzed the key flavor compounds present in SSV. Combined with odor activity value (OAV), the main aroma components of SSV were screened, and the relationship between microorganisms and key flavor formation was predicted using metagenomic sequencing technology. The results revealed 38 key flavor compounds in SSV. Lactobacillus, Weissella, Acetobacter, Lichtheimia, Pediococcus, Oenococcus, Brettanomyces, Kazachstania, Pichia, Xanthomonas, Lenconostoc are widely involved in the production of key flavor compounds such as 2,3-butanediol, 2-Furanmethanol, phenylethanol, 3-(Methylthio)-1-propanol, acetic acid, lactic acid, butyric acid, isovaleric acid and other organic acids. Among them, Lichtheimia and Lactobacillus are important genera for the degradation of starch, arabinoxylan and cellulose. The acetaldehyde,4-ethyl-2-methoxy-phenol and 2-methoxy-4-methyl-phenol production pathway may be related to Lactobacillus, Acetobacter and Brettanomyces. This study provides a new understanding of the key flavor-formation stage and flavor compound generation mechanism of SSV and provides a reference for the screening and isolation of functional strains and the reconstruction of microbial communities.
Collapse
|
7
|
Jiang H, Yang S, Tian H, Sun B. Research progress in the use of liquid-liquid extraction for food flavour analysis. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
He Y, Wang X, Li P, Lv Y, Nan H, Wen L, Wang Z. Research Progress of Wine Aroma Components: A Critical Review. Food Chem 2022; 402:134491. [DOI: 10.1016/j.foodchem.2022.134491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022]
|
9
|
Chen H, Liu Y, Chen J, Fu X, Suo R, Chitrakar B, Wang J. Effects of spontaneous fermentation on microbial succession and its correlation with volatile compounds during fermentation of Petit Verdot wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Sequential combination of solid-phase sorbents to enhance the selectivity of organosulfur compounds for flavour analysis. Talanta 2022; 241:123234. [DOI: 10.1016/j.talanta.2022.123234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
|
11
|
Wang S, Zhang Q, Zhao P, Ma Z, Zhang J, Ma W, Wang X. Investigating the effect of three phenolic fractions on the volatility of floral, fruity, and aged aromas by HS-SPME-GC-MS and NMR in model wine. Food Chem X 2022; 13:100281. [PMID: 35498990 PMCID: PMC9040039 DOI: 10.1016/j.fochx.2022.100281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, the volatility of three typical wine aromas in model wine was investigated by HS-SPME-GC-MS, NMR, and sensory evaluation as influenced by different concentrations and structural properties of phenolics. Results showed that three phenolic fractions (phenolic acids, monomeric/oligomeric and polymeric procyanidins) exhibited different matrix effects on floral, fruity, and aged aromas perception. Physico-chemical and sensory analyses together indicated that all fractions reduced the perceived intensity of fruity and aged aroma attributes, and displayed stronger retention effects on fruity aromas at higher mDP and concentrations. Monomeric/oligomeric and polymeric procyanidins promoted highly hydrophobic floral aromas release, whereas inhibiting the volatility of low hydrophobic fruity aromas. NMR confirmed that the reduction in the volatility of rose oxide, ethyl butanoate and whiskey lactone was attributed to interactions with epicatechin. This study aims to provide new thoughts and theoretical support for wine aroma regulation during winemaking by reconstructing the phenolic composition in wine.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, PR China
| | - Qianting Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, PR China
| | - Pengtao Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, PR China.,Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Shaanxi 710119, PR China
| | - Zeqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Junxiang Zhang
- School of Food and Wine, Ningxia University, Yinchuan 750021, PR China
| | - Wen Ma
- School of Food and Wine, Ningxia University, Yinchuan 750021, PR China
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi 710119, PR China.,Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Shaanxi 710119, PR China
| |
Collapse
|
12
|
Zheng J, He Z, Yang K, Liu Z, Zhao D, Qian MC. Volatile Analysis of Wuliangye Baijiu by LiChrolut EN SPE Fractionation Coupled with Comprehensive GC×GC-TOFMS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041318. [PMID: 35209103 PMCID: PMC8878284 DOI: 10.3390/molecules27041318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022]
Abstract
Wuliangye baijiu is one of the most famous Chinese liquors with a protected geographical indication. This study used LiChrolut® EN-based solid-phase extraction (SPE) and fractionation combined with comprehensive two-dimensional chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) to unveil its volatile composition. The volatiles were isolated with LiChrolut® EN-based SPE and traditional liquid-liquid extraction (LLE). The neutral/basic fractions from LLE and the SPE were fractionated on a LiChrolut® EN SPE column and analyzed by comprehensive GC×GC-TOFMS. Compared with LLE, more esters and alcohols were detected in the SPE-based extraction. The SPE fractionation and GC×GC-TOFMS analysis resulted in the identification of about 500 volatile compounds in more than 3000 peaks of the Wuliangye baijiu. The approach simplifies the complex baijiu composition into functional group-based fractions for reliable identification and analysis. This study provided a confidence volatile identification approach for Chinese baijiu based on the SPE fractionation GC×GC-TOFMS.
Collapse
Affiliation(s)
- Jia Zheng
- Flavor Science Innovation Center, Technology Research Center, Wuliangye Yibin Co., Ltd., 150# Minjiang West Road, Cuiping District, Yibin 644000, China; (Z.H.); (K.Y.); (Z.L.); (D.Z.)
- Correspondence: (J.Z.); (M.C.Q.)
| | - Zhanglan He
- Flavor Science Innovation Center, Technology Research Center, Wuliangye Yibin Co., Ltd., 150# Minjiang West Road, Cuiping District, Yibin 644000, China; (Z.H.); (K.Y.); (Z.L.); (D.Z.)
| | - Kangzhuo Yang
- Flavor Science Innovation Center, Technology Research Center, Wuliangye Yibin Co., Ltd., 150# Minjiang West Road, Cuiping District, Yibin 644000, China; (Z.H.); (K.Y.); (Z.L.); (D.Z.)
| | - Zhipeng Liu
- Flavor Science Innovation Center, Technology Research Center, Wuliangye Yibin Co., Ltd., 150# Minjiang West Road, Cuiping District, Yibin 644000, China; (Z.H.); (K.Y.); (Z.L.); (D.Z.)
| | - Dong Zhao
- Flavor Science Innovation Center, Technology Research Center, Wuliangye Yibin Co., Ltd., 150# Minjiang West Road, Cuiping District, Yibin 644000, China; (Z.H.); (K.Y.); (Z.L.); (D.Z.)
| | - Michael C. Qian
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
- Correspondence: (J.Z.); (M.C.Q.)
| |
Collapse
|
13
|
Assessment of Volatile Aromatic Compounds in Smoke Tainted Cabernet Sauvignon Wines Using a Low-Cost E-Nose and Machine Learning Modelling. Molecules 2021; 26:molecules26165108. [PMID: 34443695 PMCID: PMC8398669 DOI: 10.3390/molecules26165108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Wine aroma is an important quality trait in wine, influenced by its volatile compounds. Many factors can affect the composition and levels (concentration) of volatile aromatic compounds, including the water status of grapevines, canopy management, and the effects of climate change, such as increases in ambient temperature and drought. In this study, a low-cost and portable electronic nose (e-nose) was used to assess wines produced from grapevines exposed to different levels of smoke contamination. Readings from the e-nose were then used as inputs to develop two machine learning models based on artificial neural networks. Results showed that regression Model 1 displayed high accuracy in predicting the levels of volatile aromatic compounds in wine (R = 0.99). On the other hand, Model 2 also had high accuracy in predicting smoke aroma intensity from sensory evaluation (R = 0.97). Descriptive sensory analysis showed high levels of smoke taint aromas in the high-density smoke-exposed wine sample (HS), followed by the high-density smoke exposure with in-canopy misting treatment (HSM). Principal component analysis further showed that the HS treatment was associated with smoke aroma intensity, while results from the matrix showed significant negative correlations (p < 0.05) were observed between ammonia gas (sensor MQ137) and the volatile aromatic compounds octanoic acid, ethyl ester (r = -0.93), decanoic acid, ethyl ester (r = -0.94), and octanoic acid, 3-methylbutyl ester (r = -0.89). The two models developed in this study may offer winemakers a rapid, cost-effective, and non-destructive tool for assessing levels of volatile aromatic compounds and the aroma qualities of wine for decision making.
Collapse
|
14
|
Digital Smoke Taint Detection in Pinot Grigio Wines Using an E-Nose and Machine Learning Algorithms Following Treatment with Activated Carbon and a Cleaving Enzyme. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The incidence and intensity of bushfires is increasing due to climate change, resulting in a greater risk of smoke taint development in wine. In this study, smoke-tainted and non-smoke-tainted wines were subjected to treatments using activated carbon with/without the addition of a cleaving enzyme treatment to hydrolyze glycoconjugates. Chemical measurements and volatile aroma compounds were assessed for each treatment, with the two smoke taint amelioration treatments exhibiting lower mean values for volatile aroma compounds exhibiting positive ‘fruit’ aromas. Furthermore, a low-cost electronic nose (e-nose) was used to assess the wines. A machine learning model based on artificial neural networks (ANN) was developed using the e-nose outputs from the unsmoked control wine, unsmoked wine with activated carbon treatment, unsmoked wine with a cleaving enzyme plus activated carbon treatment, and smoke-tainted control wine samples as inputs to classify the wines according to the smoke taint amelioration treatment. The model displayed a high overall accuracy of 98% in classifying the e-nose readings, illustrating it may be a rapid, cost-effective tool for winemakers to assess the effectiveness of smoke taint amelioration treatment by activated carbon with/without the use of a cleaving enzyme. Furthermore, the use of a cleaving enzyme coupled with activated carbon was found to be effective in ameliorating smoke taint in wine and may help delay the resurgence of smoke aromas in wine following the aging and hydrolysis of glycoconjugates.
Collapse
|
15
|
Aromatic characterization of traditional Chinese wine Msalais by partial least-square regression analysis based on sensory quantitative descriptive and odor active values, aroma extract dilution analysis, and aroma recombination and omission tests. Food Chem 2021; 361:129781. [PMID: 34052592 DOI: 10.1016/j.foodchem.2021.129781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 02/01/2023]
Abstract
Msalais is produced from local grape juice in southern Xinjiang (China), by concentration and natural fermentation. In the current study, we combined partial least-square regression analysis based on sensory quantitative descriptive and odor active values (OAVs), aroma extract dilution analysis, and aroma recombination and omission tests to delineate the unique aromatic characteristics of traditional Msalais. Msalais has strong dried fruit, fruit jam, and fruity odors, intermediate-strength caramel and baked odors, and weak floral and herbaceous odors, attributed to 24 key aromatic compounds with OAV ≥1 or flavor dilution ≥4. Furaneol, methionol, and 5-methylfurfural greatly contribute to the dried fruit, fruit jam, and caramel odors, respectively. β-Phenylethyl alcohol mostly contributes to fruit jam odor. β -Damascenone has a complicated effect on dried fruit, fruit jam, and floral odors. Fruity esters contribute to fruity odor. Floral odor is attributed to terpenes. These findings allow precise improvement of the variable quality of traditional Msalais.
Collapse
|
16
|
Yang Y, Zhao P, Wang X, Cui G, Guo Y. Using a red‐fleshed and six varieties of thinned young apple to make juice and their phytochemicals characterization. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Yang
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an China
| | - Pengtao Zhao
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an China
- Engineering Research Center of High Value Utilization of Western China Fruit Resources Ministry of Education National Research & Development Center of Apple Processing Technology Xi’an China
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an China
- Engineering Research Center of High Value Utilization of Western China Fruit Resources Ministry of Education National Research & Development Center of Apple Processing Technology Xi’an China
| | - Guangxin Cui
- College of Horticulture Northwest A&F University Yangling China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an China
- Engineering Research Center of High Value Utilization of Western China Fruit Resources Ministry of Education National Research & Development Center of Apple Processing Technology Xi’an China
| |
Collapse
|
17
|
Cebrián-Tarancón C, Oliva J, Cámara MÁ, Alonso GL, Salinas MR. Analysis of Intact Glycosidic Aroma Precursors in Grapes by High-Performance Liquid Chromatography with a Diode Array Detector. Foods 2021; 10:foods10010191. [PMID: 33477839 PMCID: PMC7832828 DOI: 10.3390/foods10010191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
Nowadays, the techniques for the analysis of glycosidic precursors in grapes involve changes in the glycoside structure or it is necessary the use of very expensive analytical techniques. In this study, we describe for the first time an approach to analyse intact glycosidic aroma precursors in grapes by high-performance liquid chromatography with a diode array detector (HPLC-DAD), a simple and cheap analytical technique that could be used in wineries. Briefly, the skin of Muscat of Alexandria grapes was extracted using a microwave and purified using solid-phase extraction combining Oasis MCX and LiChrolut EN cartridges. In total, 20 compounds were selected by HPLC-DAD at 195 nm and taking as a reference the spectrum of phenyl β-D-glucopyranoside, whose DAD spectrum showed a first shoulder from 190 to 230 nm and a second around 200-360 nm. After that, these glycosidic compounds were identified by High-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-qTOF-MS). Disaccharides hexose pentose were the most abundant group observed with respect to the sugars and monoterpendiols the main aglycones found.
Collapse
Affiliation(s)
- Cristina Cebrián-Tarancón
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain; (C.C.-T.); (G.L.A.)
| | - José Oliva
- Departamento de Química Agrícola, Geología y Edafología, Facultad de Química, Universidad de Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain; (J.O.); (M.Á.C.)
| | - Miguel Ángel Cámara
- Departamento de Química Agrícola, Geología y Edafología, Facultad de Química, Universidad de Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain; (J.O.); (M.Á.C.)
| | - Gonzalo L. Alonso
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain; (C.C.-T.); (G.L.A.)
| | - M. Rosario Salinas
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain; (C.C.-T.); (G.L.A.)
- Correspondence: ; Tel.: +34-967-599210; Fax: +34-967-599238
| |
Collapse
|
18
|
Hranilovic A, Albertin W, Capone DL, Gallo A, Grbin PR, Danner L, Bastian SEP, Masneuf-Pomarede I, Coulon J, Bely M, Jiranek V. Impact of Lachancea thermotolerans on chemical composition and sensory profiles of Merlot wines. Food Chem 2021; 349:129015. [PMID: 33545601 DOI: 10.1016/j.foodchem.2021.129015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023]
Abstract
Wines from warm(ing) climates often contain excessive ethanol but lack acidity. The yeast Lachancea thermotolerans can ameliorate such wines due to partial conversion of sugars to lactic acid during alcoholic fermentation. This study compared the performance of five L. thermotolerans strains in two inoculation modalities (sequential and co-inoculation) to Saccharomyces cerevisiae and un-inoculated treatments in high sugar/low acidity Merlot fermentations. The pH and ethanol levels in mixed-culture dry wines were either comparable, or significantly lower than in controls (decrease of up to 0.5 units and 0.90% v/v, respectively). The analysis of volatile compounds revealed marked differences in major flavour-active yeast metabolites, including up to a thirty-fold increase in ethyl lactate in certain L. thermotolerans modalities. The wines significantly differed in acidity perception, alongside 18 other sensory attributes. Together, these results highlight the potential of some L. thermotolerans strains to produce 'fresher' wines with lower ethanol content and improved flavour/balance.
Collapse
Affiliation(s)
- Ana Hranilovic
- UR Oenologie EA 4577, USC 1366 INRAE, Bordeaux INP, Université de Bordeaux, Bordeaux, France; Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia.
| | - Warren Albertin
- UR Oenologie EA 4577, USC 1366 INRAE, Bordeaux INP, Université de Bordeaux, Bordeaux, France; ENSCBP, Bordeaux INP, 33600 Pessac, France.
| | - Dimitra Liacopoulos Capone
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia; The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia.
| | - Adelaide Gallo
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Paul R Grbin
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia; The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia.
| | - Lukas Danner
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia.
| | - Susan E P Bastian
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia; The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia.
| | - Isabelle Masneuf-Pomarede
- UR Oenologie EA 4577, USC 1366 INRAE, Bordeaux INP, Université de Bordeaux, Bordeaux, France; Bordeaux Sciences Agro, 33170 Gradignan, France.
| | | | - Marina Bely
- UR Oenologie EA 4577, USC 1366 INRAE, Bordeaux INP, Université de Bordeaux, Bordeaux, France.
| | - Vladimir Jiranek
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia; The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia.
| |
Collapse
|
19
|
Welke JE, Hernandes KC, Nicolli KP, Barbará JA, Biasoto ACT, Zini CA. Role of gas chromatography and olfactometry to understand the wine aroma: Achievements denoted by multidimensional analysis. J Sep Sci 2020; 44:135-168. [PMID: 33245848 DOI: 10.1002/jssc.202000813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
The human nose has been used as a detector in gas chromatography analysis to evaluate odoriferous compounds related to aroma and quality of wine. Several olfactometric techniques are available to access the description, intensity, and/or duration of the odor of each compound. Olfactometry can be associated with one-dimensional gas chromatography or multidimensional gas chromatography, including heart-cut gas chromatography and comprehensive two-dimensional gas chromatography. Multidimensional gas chromatography may help to resolve coeluted compounds and detect important trace components for the aroma. The identification of odor-active compounds may help to differentiate wines according to terroir, grapes cultivars used in winemaking or types of aging, understand the role of fungal infection of grapes for wine quality, find the best management practices in vineyard and vinification to obtain the greatest quality. In addition, when the instrumental techniques are combined with sensory analysis, even more accurate information may be obtained regarding the overall wine aroma. This review discloses the state of the art of olfactometric methods and the analytical techniques used to investigate odor-active compounds such as one-dimensional gas chromatography, multidimensional gas chromatography, and comprehensive two-dimensional gas chromatography. The advances in knowledge of wine aroma achieved with the use of these techniques in the target and profiling approaches were also discussed.
Collapse
Affiliation(s)
- Juliane Elisa Welke
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| | - Karolina Cardoso Hernandes
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| | - Karine Primieri Nicolli
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| | - Janaína Aith Barbará
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Claudia Alcaraz Zini
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
20
|
Gao P, Xia W, Li X, Liu S. Optimization of the Maillard reaction of xylose with cysteine for modulating aroma compound formation in fermented tilapia fish head hydrolysate using response surface methodology. Food Chem 2020; 331:127353. [DOI: 10.1016/j.foodchem.2020.127353] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022]
|
21
|
Zieniuk B, Fabiszewska A, Wołoszynowska M, Białecka-Florjańczyk E. Synthesis of flavor compound ethyl hydrocinnamate by Yarrowia lipolytica lipases. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1828371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Wołoszynowska
- Analytical Department, Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, Warsaw, Poland
| | - Ewa Białecka-Florjańczyk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
22
|
Aroma-active compounds, sensory profile, and phenolic composition of Fondillón. Food Chem 2020; 316:126353. [DOI: 10.1016/j.foodchem.2020.126353] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 11/18/2022]
|
23
|
Lu Y, Liu Y, Lv J, Ma Y, Guan X. Changes in the physicochemical components, polyphenol profile, and flavor of persimmon wine during spontaneous and inoculated fermentation. Food Sci Nutr 2020; 8:2728-2738. [PMID: 32566190 PMCID: PMC7300058 DOI: 10.1002/fsn3.1560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/21/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Changes in the oenological parameters, total phenols, total flavonoids, and individual phenols of persimmon during spontaneous and inoculated fermentation were investigated. The volatile compounds and sensory character of the persimmon wine were compared and evaluated simultaneously. Results show that at the end of fermentation, spontaneous persimmon wine (SPW) has higher contents of total flavonoids, total phenols yet lower concentrations of alcohol and volatile compounds than inoculated persimmon wine (IPW). Catechin, salicylic acid, quercetin, and vanillic acid were the main phenolic compounds in both types of persimmon wine. There are six volatile components in the IPW with an OAV greater than 1, which are isoamyl acetate, ethyl hexanoate, methyl octanoate, ethyl octanoate, phenethyl acetate, and 2, 4-di-tert-butylphenol, and these compounds contribute to the IPW with brandy and fruity sensory properties, while only three volatile components in SPW have OAV greater than 1, which are isoamyl acetate, ethyl hexanoate, and ethyl octanoate. Spontaneous fermentation increased the proportion of esters and alcohols in the overall volatile compounds. During sensory evaluation, IPW was characterized by "brandy," "bitterness," and low "sweetness," and SPW has a high score of "sweetness," "balance," desirable "color," and "body."
Collapse
Affiliation(s)
- Yao Lu
- College of Food Science and TechnologyHebei Agricultural UniversityBaodingHebeiChina
- Guangxi talent highland of preservation and deep processing research in fruit and vegetablesHezhou UniversityHezhouGuangxiChina
| | - Yaqiong Liu
- College of Food Science and TechnologyHebei Agricultural UniversityBaodingHebeiChina
- Guangxi talent highland of preservation and deep processing research in fruit and vegetablesHezhou UniversityHezhouGuangxiChina
| | - Jiawei Lv
- College of Food Science and TechnologyHebei Agricultural UniversityBaodingHebeiChina
| | - Yanli Ma
- College of Food Science and TechnologyHebei Agricultural UniversityBaodingHebeiChina
- Guangxi talent highland of preservation and deep processing research in fruit and vegetablesHezhou UniversityHezhouGuangxiChina
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation TechnologyNanyang Institute of TechnologyNanyangChina
| | - Xiaolei Guan
- College of Food Science and TechnologyHebei Agricultural UniversityBaodingHebeiChina
| |
Collapse
|
24
|
Zhang Q, Zhang F, Gong C, Tan X, Ren Y, Yao K, Zhang Q, Chi Y. Physicochemical, microbial, and aroma characteristics of Chinese pickled red peppers (Capsicum annuum) with and without biofilm. RSC Adv 2020; 10:6609-6617. [PMID: 35496022 PMCID: PMC9049736 DOI: 10.1039/d0ra00490a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/05/2020] [Indexed: 11/24/2022] Open
Abstract
Biofilm formation in the production of fermented vegetable might impact its quality and safety. In this study, physicochemical and microbial properties, volatile and aroma-active compounds between PRPs without biofilm (NPRP) and with biofilm (FPRP) were investigated by gas chromatography-mass spectrometry, gas chromatography-olfactometry, aroma extract dilution analysis, and spiking tests. The pH and titratable acidity were 3.66 ± 0.00 and 0.47 ± 0.08 g/100 g lactic acid in NPRP and 3.48 ± 0.01 and 0.87 ± 0.10 g/100 g lactic acid in FPRP, respectively. The nitrite level of the two PRPs was 1.87–1.92 mg kg−1, which was below the limited value (20 mg kg−1) of fermented vegetables regulated by the GB2760-2017. FPRP had relatively higher microbial and yeast numbers than NPRP, three common pathogens, namely, Salmonella spp., Staphylococcus aureus, and Shigella spp. were not detected. A total of 70 and 151 aroma compounds were detected in NPRP and FPRP, respectively, including 13 classes of compounds. The dominant aroma attributes of FPRP were sour, floral, mushroom-like, green, and smoky, while NPRP exhibits a mushroom-like flavor. Acetic acid, ethanol, α-terpineol, (E)-2-nonenal, 2-heptanol, phenylethyl alcohol, and linalool were potent key aroma-active compounds in NPRP and FPRP. Results of spiking tests showed that the addition of each substance not only increased its own odour, but also had significant effects on other smells. FPRP displayed richer varieties and contents of aroma profile than NPRP. However, some compounds, such as 4-ethylguaiacol and 4-vinylguaiacol, which were only detected in FPRP, had negative roles on the aroma attributes. The aroma profile of PRPs was evaluated by GC-MS, GC-O, AEDA, OVA and spiking test. Biofilm can improve the variety and contents of aroma.![]()
Collapse
Affiliation(s)
- Qixian Zhang
- College of Biomass Science and Engineering
- Healthy Food Evaluation Research Center
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Feng Zhang
- College of Biomass Science and Engineering
- Healthy Food Evaluation Research Center
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Chuanjie Gong
- College of Biomass Science and Engineering
- Healthy Food Evaluation Research Center
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xinyi Tan
- College of Biomass Science and Engineering
- Healthy Food Evaluation Research Center
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Yao Ren
- College of Biomass Science and Engineering
- Healthy Food Evaluation Research Center
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Kai Yao
- College of Biomass Science and Engineering
- Healthy Food Evaluation Research Center
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Qisheng Zhang
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute
- Meishan 620020
- P. R. China
| | - Yuanlong Chi
- College of Biomass Science and Engineering
- Healthy Food Evaluation Research Center
- Sichuan University
- Chengdu 610065
- P. R. China
| |
Collapse
|
25
|
Gao P, Xia W, Li X, Liu S. Use of Wine and Dairy Yeasts as Single Starter Cultures for Flavor Compound Modification in Fish Sauce Fermentation. Front Microbiol 2019; 10:2300. [PMID: 31649641 PMCID: PMC6794352 DOI: 10.3389/fmicb.2019.02300] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022] Open
Abstract
Effects of wine and dairy yeast fermentation on chemical constituents of tilapia fish head hydrolysate supplemented with glucose in an unsalted and acidic environment were investigated. Three wine yeasts (Torulaspora delbrueckii Biodiva, Saccharomyces cerevisiae Lalvin EC-1118 and Pichia kluyveri Frootzen) and one dairy yeast (Kluyveromyces marxianus NCYC1425) were employed as single starter cultures, respectively, and were compared with one soy sauce yeast (Candida versatilis NCYC1433). Each yeast showed different growth kinetics and fermentation performance. Compared with C. versatilis NCYC1433, other yeasts presented a significant higher rate of glucose consumption (P < 0.05). Besides, K. marxianus NCYC1425 and P. kluyveri Frootzen produced more citric acid and succinic acid, respectively, while S. cerevisiae Lalvin EC-1118 exhibited higher pyruvic acid production. Significant lower levels of total free amino acids were observed in samples inoculated with wine yeasts relative to other yeasts (P < 0.05). Non-soy sauce yeasts produced increased various levels of esters and alcohols without traditional fish sauce unpleasant odorants, especially K. marxianus NCYC1425 and P. kluyveri Frootzen. The results confirmed that non-soy sauce yeasts are suitable for fish sauce flavor compound modification and to develop a fast fermentation process for saltless fish sauce from fish head, which could increase the acceptability of fish sauce and improve the utilization of fish by-products.
Collapse
Affiliation(s)
- Pei Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xinzhi Li
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Shaoquan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore.,Laboratory of Advanced Food Technology & 3D Printing, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
26
|
Yu H, Xie T, Qian X, Ai L, Chen C, Tian H. Characterization of the volatile profile of Chinese rice wine by comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5444-5456. [PMID: 31081146 DOI: 10.1002/jsfa.9806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chinese rice wine (CRW) is a kind of traditional fermentation wine in China. Aged CRW is more popular among consumers owing to its harmonious and pleasant flavor. The volatile profile of CRW has been extensively studied using gas chromatography/mass spectrometry (GC/MS). However, flavor components in CRW are far richer than those detected by GC/MS. To obtain more information about the volatile profile of fresh (5-year) and aged (10-year) CRW, a method based on comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry (GC×GC/qMS) was developed. The major volatile compounds contributing to the characteristic aroma of fresh and aged CRW were identified by surrogate odor activity value (OAV). RESULTS Ninety-eight volatile compounds were detected in the 5-year CRW samples and 107 in the 10-year samples by GC×GC/qMS. The numbers of compounds detected by GC×GC/qMS for the 5-year and 10-year samples were 71.4 and 65.4% higher than those detected by GC/MS. The aged wine had a more complex volatile profile than the fresh wine, with an increase in esters and aldehydes and a decrease in alcohols and organic acids. There were 22 volatile compounds with surrogate OAV > 1. Nine were the potent key aroma compounds in CRW: ethyl isovalerate (OAV 500-33 500), ethyl butyrate (OAV 84-334), ethyl isobutyrate (OAV 49-170), 2-nonenal (OAV 20-100), ethyl heptanoate (OAV 1-74), ethyl hexanoate (OAV 60-77), phenylethyl alcohol (OAV 2-18), benzaldehyde (OAV 28-30) and hexanal (OAV 4-11). CONCLUSION GC×GC/qMS showed better separation than GC/MS. The presented GC×GC/qMS method was suitable for characterization of the volatile profile of CRW. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Tong Xie
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Xinhua Qian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
27
|
Lyu J, Ma Y, Xu Y, Nie Y, Tang K. Characterization of the Key Aroma Compounds in Marselan Wine by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Tests. Molecules 2019; 24:molecules24162978. [PMID: 31426361 PMCID: PMC6721177 DOI: 10.3390/molecules24162978] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 11/27/2022] Open
Abstract
Key odorants of red wine made from the hybrid grapes of Marselan (Vitis vinifera L.) were isolated by solid-phase extraction (SPE) and explored by gas chromatography-olfactometry (GC-O) analysis. Application of aroma extract dilution analysis (AEDA) revealed 43 odor-active compounds, and 31 odorants among them were detected with flavor dilution (FD) factors ranging from 9 to 2187. Comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry (GC × GC-TOF-MS) were exploited to quantitate the aroma-active compounds with FD ≥9. The identification indicated β-damascenone as having the highest FD factors, followed by eugenol, 2,3-butanedione, citronellol, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, phenethyl acetate, guaiacol, and 2-methoxy-4-vinylphenol. A total of 21 compounds were found to have odor activity values (OAVs) >1.0. Aroma reconstitution validation experiments showed a good similarity of blackberry, green pepper, honey, raspberry, caramel, smoky, and cinnamon aroma attributes between the original Marselan wine and the reconstructed wine. In addition, omission tests were carried out to further determine the contribution of odorants to the overall aroma.
Collapse
Affiliation(s)
- Jiaheng Lyu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yue Ma
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Yao Nie
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China.
| | - Ke Tang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
28
|
Effects on varietal aromas during wine making: a review of the impact of varietal aromas on the flavor of wine. Appl Microbiol Biotechnol 2019; 103:7425-7450. [PMID: 31377872 DOI: 10.1007/s00253-019-10008-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/28/2023]
Abstract
Although there are many chemical compounds present in wines, only a few of these compounds contribute to the sensory perception of wine flavor. This review focuses on the knowledge regarding varietal aroma compounds, which are among the compounds that are the greatest contributors to the overall aroma. These aroma compounds are found in grapes in the form of nonodorant precursors that, due to the metabolic activity of yeasts during fermentation, are transformed to aromas that are of great relevance in the sensory perception of wines. Due to the multiple interactions of varietal aromas with other types of aromas and other nonodorant components of the complex wine matrix, knowledge regarding the varietal aroma composition alone cannot adequately explain the contribution of these compounds to the overall wine flavor. These interactions and the associated effects on aroma volatility are currently being investigated. This review also provides an overview of recent developments in analytical techniques for varietal aroma identification, including methods used to identify the precursor compounds of varietal aromas, which are the greatest contributors to the overall aroma after the aforementioned yeast-mediated odor release.
Collapse
|
29
|
Characterization of Cultivar Differences of Blueberry Wines Using GC-QTOF-MS and Metabolic Profiling Methods. Molecules 2018; 23:molecules23092376. [PMID: 30227669 PMCID: PMC6225290 DOI: 10.3390/molecules23092376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 11/17/2022] Open
Abstract
A non-targeted volatile metabolomic approach based on the gas chromatography-quadrupole time of fight-mass spectrometry (GC-QTOF-MS) coupled with two different sample extraction techniques (solid phase extraction and solid phase microextraction) was developed. Combined mass spectra of blueberry wine samples, which originated from two different cultivars, were subjected to orthogonal partial least squares-discriminant analysis (OPLS-DA). Principal component analysis (PCA) reveals an excellent separation and OPLS-DA highlight metabolic features responsible for the separation. Metabolic features responsible for the observed separation were tentatively assigned to phenylethyl alcohol, cinnamyl alcohol, benzenepropanol, 3-hydroxy-benzenethanol, methyl eugenol, methyl isoeugenol, (E)-asarone, (Z)-asarone, and terpenes. Several of the selected markers enabled a distinction in secondary metabolism to be drawn between two blueberry cultivars. It highlights the metabolomic approaches to find out the influence of blueberry cultivar on a volatile composition in a complex blueberry wine matrix. The distinction in secondary metabolism indicated a possible O-methyltransferases activity difference among the two cultivars.
Collapse
|