1
|
Salvesen L, Capriglia E, Dresler M, Bernardi G. Influencing dreams through sensory stimulation: A systematic review. Sleep Med Rev 2024; 74:101908. [PMID: 38417380 PMCID: PMC11009489 DOI: 10.1016/j.smrv.2024.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Sleep is typically considered a state of disconnection from the environment, yet instances of external sensory stimuli influencing dreams have been reported for centuries. Explaining this phenomenon could provide valuable insight into dreams' generative and functional mechanisms, the factors that promote sleep continuity, and the processes that underlie conscious awareness. Moreover, harnessing sensory stimuli for dream engineering could benefit individuals suffering from dream-related alterations. This PRISMA-compliant systematic review assessed the current evidence concerning the influence of sensory stimulation on sleep mentation. We included 51 publications, of which 21 focused on auditory stimulation, ten on somatosensory stimulation, eight on olfactory stimulation, four on visual stimulation, two on vestibular stimulation, and one on multimodal stimulation. Furthermore, nine references explored conditioned associative stimulation: six focused on targeted memory reactivation protocols and three on targeted lucid reactivation protocols. The reported frequency of stimulus-dependent dream changes across studies ranged from 0 to ∼80%, likely reflecting a considerable heterogeneity of definitions and methodological approaches. Our findings highlight a lack of comprehensive understanding of the mechanisms, functions, and neurophysiological correlates of stimulus-dependent dream changes. We suggest that a paradigm shift is required for meaningful progress in this field.
Collapse
Affiliation(s)
- Leila Salvesen
- Sleep, Plasticity, and Conscious Experience Group, MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Elena Capriglia
- Sleep, Plasticity, and Conscious Experience Group, MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Giulio Bernardi
- Sleep, Plasticity, and Conscious Experience Group, MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
2
|
Oka N, Iwai K, Sakai H. The neural substrates responsible for food odor processing: an activation likelihood estimation meta-analysis. Front Neurosci 2023; 17:1191617. [PMID: 37424999 PMCID: PMC10326844 DOI: 10.3389/fnins.2023.1191617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
In many species including humans, food odors appear to play a distinct role when compared with other odors. Despite their functional distinction, the neural substrates responsible for food odor processing remain unclear in humans. This study aimed to identify brain regions involved in food odor processing using activation likelihood estimation (ALE) meta-analysis. We selected olfactory neuroimaging studies conducted with sufficient methodological validity using pleasant odors. We then divided the studies into food and non-food odor conditions. Finally, we performed an ALE meta-analysis for each category and compared the ALE maps of the two categories to identify the neural substrates responsible for food odor processing after minimizing the confounding factor of odor pleasantness. The resultant ALE maps revealed that early olfactory areas are more extensively activated by food than non-food odors. Subsequent contrast analysis identified a cluster in the left putamen as the most likely neural substrate underlying food odor processing. In conclusion, food odor processing is characterized by the functional network involved in olfactory sensorimotor transformation for approaching behaviors to edible odors, such as active sniffing.
Collapse
|
3
|
Farruggia MC, Pellegrino R, Scheinost D. Functional Connectivity of the Chemosenses: A Review. Front Syst Neurosci 2022; 16:865929. [PMID: 35813269 PMCID: PMC9257046 DOI: 10.3389/fnsys.2022.865929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/05/2022] [Indexed: 01/01/2023] Open
Abstract
Functional connectivity approaches have long been used in cognitive neuroscience to establish pathways of communication between and among brain regions. However, the use of these analyses to better understand how the brain processes chemosensory information remains nascent. In this review, we conduct a literature search of all functional connectivity papers of olfaction, gustation, and chemesthesis, with 103 articles discovered in total. These publications largely use approaches of seed-based functional connectivity and psychophysiological interactions, as well as effective connectivity approaches such as Granger Causality, Dynamic Causal Modeling, and Structural Equation Modeling. Regardless of modality, studies largely focus on elucidating neural correlates of stimulus qualities such as identity, pleasantness, and intensity, with task-based paradigms most frequently implemented. We call for further "model free" or data-driven approaches in predictive modeling to craft brain-behavior relationships that are free from a priori hypotheses and not solely based on potentially irreproducible literature. Moreover, we note a relative dearth of resting-state literature, which could be used to better understand chemosensory networks with less influence from motion artifacts induced via gustatory or olfactory paradigms. Finally, we note a lack of genomics data, which could clarify individual and heritable differences in chemosensory perception.
Collapse
Affiliation(s)
- Michael C. Farruggia
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States,*Correspondence: Michael C. Farruggia,
| | | | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States,Child Study Center, Yale School of Medicine, New Haven, CT, United States,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, United States,Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States,Wu Tsai Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
4
|
Torske A, Koch K, Eickhoff S, Freiherr J. Localizing the human brain response to olfactory stimulation: A meta-analytic approach. Neurosci Biobehav Rev 2021; 134:104512. [PMID: 34968523 DOI: 10.1016/j.neubiorev.2021.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
The human sense of smell and the ability to detect and distinguish odors allows for the extraction of valuable information from the environment, thereby driving human behavior. Not only can the sense of smell help to monitor the safety of inhaled air, but it can also help to evaluate the edibility of food. Therefore, in an effort to further our understanding of the human sense of smell, the aim of this meta-analysis was to provide the scientific community with activation probability maps of the functional anatomy of the olfactory system, in addition to separate activation maps for specific odor categories (pleasant, food, and aversive odors). The activation likelihood estimation (ALE) method was utilized to quantify all relevant and available data to perform a formal statistical analysis on the inter-study concordance of various odor categories. A total of 81 studies (108 contrasts, 1053 foci) fulfilled our inclusion criteria. Significant ALE peaks were observed in all odor categories in brain areas typically associated with the functional neuroanatomy of olfaction including the piriform cortex, amygdala, insula, and orbitofrontal cortex, amongst others. Additional contrast analyses indicate clear differences in neural activation patterns between odor categories.
Collapse
Affiliation(s)
- A Torske
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Germany; Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians Universität München, Martinsried, Germany
| | - K Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Germany; Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilians Universität München, Martinsried, Germany
| | - S Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - J Freiherr
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute for Process Engineering and Packaging IVV, Sensory Analytics and Technologies, Fraunhofer Freising, Germany.
| |
Collapse
|
5
|
Martinec Nováková L, Kliková M, Miletínová E, Bušková J. Olfaction-Related Factors Affecting Chemosensory Dream Content in a Sleep Laboratory. Brain Sci 2021; 11:1225. [PMID: 34573245 PMCID: PMC8465492 DOI: 10.3390/brainsci11091225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022] Open
Abstract
Mental activity in sleep often involves visual and auditory content. Chemosensory (olfactory and gustatory) experiences are less common and underexplored. The aim of the study was to identify olfaction-related factors that may affect the occurrence of chemosensory dream content. Specifically, we investigated the effects of all-night exposure to an ambient odour, participants' appraisal of their current olfactory environment, their general propensity to notice odours and act on them (i.e., odour awareness), and their olfactory acuity. Sixty pre-screened healthy young adults underwent olfactory assessment, completed a measure of odour awareness, and spent three nights in weekly intervals in a sleep laboratory. The purpose of the first visit was to adapt to the experimental setting. On the second visit, half of them were exposed to the smell of vanillin or thioglycolic acid and the other half to an odourless control condition. On the third visit, they received control or stimulation in a balanced order. On each visit, data were collected twice: once from the first rapid eye movement (REM) stage that occurred after 3 a.m., and then shortly before getting up, usually from a non-REM stage. Participants were asked to report the presence of sensory dream content and to assess their current olfactory environment. Neither exposure, nor participants' assessments of the ambient odour, or olfactory acuity affected reports of chemosensory dream content but they were more frequent in individuals with greater odour awareness. This finding may have implications for treatment when such experiences become unwanted or bothersome.
Collapse
Affiliation(s)
- Lenka Martinec Nováková
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (M.K.); (E.M.); (J.B.)
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Pátkova 2137/5, 182 00 Prague 8-Libeň, Czech Republic
| | - Monika Kliková
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (M.K.); (E.M.); (J.B.)
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10-Vinohrady, Czech Republic
| | - Eva Miletínová
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (M.K.); (E.M.); (J.B.)
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10-Vinohrady, Czech Republic
| | - Jitka Bušková
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (M.K.); (E.M.); (J.B.)
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10-Vinohrady, Czech Republic
| |
Collapse
|
6
|
Effects of all-night exposure to ambient odour on dreams and affective state upon waking. Physiol Behav 2020; 230:113265. [PMID: 33245999 DOI: 10.1016/j.physbeh.2020.113265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 10/19/2020] [Accepted: 11/21/2020] [Indexed: 11/21/2022]
Abstract
Previous laboratory research has shown that exposure to odours of contrasting pleasantness during sleep differentially affects the emotional tone of dreams. In the present study, we sought to investigate how a generally pleasant (vanillin) and unpleasant (thioglycolic acid [TGA]) smell influenced various dream characteristics, dream emotions, and post-sleep core affect during all-night exposure, controlling for appraisal of the olfactory environment during the assessments and sleep stage from which the participants woke up. We expected that exposure to vanillin would result in more pleasant dreams, more positive and less negative dream emotions, and a more positive post-sleep core affect compared to the control condition, whereas exposure to TGA would have the opposite effect. Sixty healthy volunteers (36 males, mean age 24 ± 4 years) were invited to visit the sleep laboratory three times in weekly intervals. The first visit served to adapt the participants to the laboratory environment. On the second visit, half the participants were exposed to an odour (vanillin or TGA, 1:1) and the other half to the odourless control condition. On the third visit, they received control or exposure in a balanced order. On each visit, the participants woke up twice, first from the rapid eye movement (REM) sleep stage and then in the morning, usually from a non-REM sleep stage. Repeated measures were taken upon each awakening. Dream pleasantness, emotional charge of the dream, positive and negative emotions experienced in the dream, and four dimensions of post-sleep core affect (valence, activation, pleasant activation - unpleasant deactivation, and unpleasant activation - pleasant deactivation) were assessed. We found a small effect of condition (exposure vs. control) in interaction with appraisal of the ambient olfactory environment on dream pleasantness. Specifically, false alarms (i.e., perceiving odour in the absence of the target stimulus) were associated with lower dream pleasantness than correct rejections. Although exposure had a statistically significant positive influence on post-sleep core affect (namely, valence, activation, and pleasant activation - unpleasant deactivation), the size of the effect was small and lacked practical significance. The hypothesised differential effects of vanillin and TGA were only modelled for dream ratings because they decreased the fit of the other models. Neither dream pleasantness nor emotionality differed according to the odour used for stimulation. The results of the present study suggest that all-night exposure to odours is unlikely to produce practically significant positive effects on dreams and post-sleep core affect.
Collapse
|