1
|
Adewale AT, Sharma S, Mouawad JE, Nguyen XX, Bradshaw AD, Feghali-Bostwick C. IGF-II regulates lysyl oxidase propeptide and mediates its effects in part via basic helix-loop-helix E40. Matrix Biol 2024; 132:24-33. [PMID: 38852924 PMCID: PMC11329355 DOI: 10.1016/j.matbio.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Pulmonary fibrosis (PF) is a clinically severe and commonly fatal complication of Systemic Sclerosis (SSc). Our group has previously reported profibrotic roles for Insulin-like Growth Factor II (IGF-II) and Lysyl Oxidase (LOX) in SSc-PF. We sought to identify downstream regulatory mediators of IGF-II. In the present work, we show that SSc lung tissues have higher baseline levels of the total (N-glycosylated/unglycosylated) LOX-Propeptide (LOX-PP) than control lung tissues. LOX-PP-mediated changes were consistent with the extracellular matrix (ECM) deregulation implicated in SSc-PF progression. Furthermore, Tolloid-like 1 (TLL1) and Bone Morphogenetic Protein 1 (BMP1), enzymes that can cleave ProLOX to release LOX-PP, were increased in SSc lung fibrosis and the bleomycin (BLM)-induced murine lung fibrosis model, respectively. In addition, IGF-II regulated the levels of ProLOX, active LOX, LOX-PP, BMP1, and isoforms of TLL1. The Class E Basic Helix-Loop-Helix protein 40 (BHLHE40) transcription factor localized to the nucleus in response to IGF-II. BHLHE40 silencing downregulated TLL1 isoforms and LOX-PP, and restored features of ECM deregulation triggered by IGF-II. Our findings indicate that IGF-II, BHLHE40, and LOX-PP may serve as targets of therapeutic intervention to halt SSc-PF progression.
Collapse
Affiliation(s)
- Adegboyega Timothy Adewale
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Shailza Sharma
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA.
| | - Joe E Mouawad
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Xinh-Xinh Nguyen
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Amy D Bradshaw
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA.
| |
Collapse
|
2
|
Patil KC, Soekmadji C. Extracellular Vesicle-Mediated Bone Remodeling and Bone Metastasis: Implications in Prostate Cancer. Subcell Biochem 2021; 97:297-361. [PMID: 33779922 DOI: 10.1007/978-3-030-67171-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone metastasis is the tendency of certain primary tumors to spawn and dictate secondary neoplasia in the bone. The process of bone metastasis is regulated by the dynamic crosstalk between metastatic cancer cells, cellular components of the bone marrow microenvironment (osteoblasts, osteoclasts, and osteocytes), and the bone matrix. The feed-forward loop mechanisms governs the co-option of homeostatic bone remodeling by cancer cells in bone. Recent developments have highlighted the discovery of extracellular vesicles (EVs) and their diverse roles in distant outgrowths. Several studies have implicated EV-mediated interactions between cancer cells and the bone microenvironment in synergistically promoting pathological skeletal metabolism in the metastatic site. Nevertheless, the potential role that EVs serve in arbitrating intricate sequences of coordinated events within the bone microenvironment remains an emerging field. In this chapter, we review the role of cellular participants and molecular mechanisms in regulating normal bone physiology and explore the progress of current research into bone-derived EVs in directly triggering and coordinating the processes of physiological bone remodeling. In view of the emerging role of EVs in interorgan crosstalk, this review also highlights the multiple systemic pathophysiological processes orchestrated by the EVs to direct organotropism in bone in prostate cancer. Given the deleterious consequences of bone metastasis and its clinical importance, in-depth knowledge of the multifarious role of EVs in distant organ metastasis is expected to open new possibilities for prognostic evaluation and therapeutic intervention for advanced bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Kalyani C Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Chen S, Wang Q, Eltit F, Guo Y, Cox M, Wang R. An Ammonia-Induced Calcium Phosphate Nanostructure: A Potential Assay for Studying Osteoporosis and Bone Metastasis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17207-17219. [PMID: 33845570 DOI: 10.1021/acsami.1c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Osteoclastic resorption of bones plays a central role in both osteoporosis and bone metastasis. A reliable in vitro assay that simulates osteoclastic resorption in vivo would significantly speed up the process of developing effective therapeutic solutions for those diseases. Here, we reported the development of a novel and robust nanostructured calcium phosphate coating with unique functions on the track-etched porous membrane by using an ammonia-induced mineralization (AiM) technique. The calcium phosphate coating uniformly covers one side of the PET membrane, enabling testing for osteoclastic resorption. The track-etched pores in the PET membrane allow calcium phosphate mineral pins to grow inside, which, on the one hand, enhances coating integration with a membrane substrate and, on the other hand, provides diffusion channels for delivering drugs from the lower chamber of a double-chamber cell culture system. The applications of the processed calcium phosphate coating were first demonstrated as a drug screening device by using alendronate, a widely used drug for osteoporosis. It was confirmed that the delivery of alendronate significantly decreased both the number of monocyte-differentiated osteoclasts and coating resorption. To demonstrate the application in studying bone metastasis, we delivered a PC3 prostate cancer-conditioned medium and confirmed that both the differentiation of monocytes into osteoclasts and the osteoclastic resorption of the calcium phosphate coating were significantly enhanced. This novel assay thus provides a new platform for studying osteoclastic activities and assessing drug efficacy in vitro.
Collapse
Affiliation(s)
- Sijia Chen
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Qiong Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Felipe Eltit
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Yubin Guo
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Michael Cox
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Rizhi Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
4
|
Ma Q, Liang M, Wu Y, Dou C, Xu J, Dong S, Luo F. Small extracellular vesicles deliver osteolytic effectors and mediate cancer-induced osteolysis in bone metastatic niche. J Extracell Vesicles 2021; 10:e12068. [PMID: 33659051 PMCID: PMC7892803 DOI: 10.1002/jev2.12068] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/02/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) play critical roles in regulating bone metastatic microenvironment through mediating intercellular crosstalks. However, little is known about the contribution of EVs derived from cancer cells to the vicious cycle of bone metastasis. Here, we report a direct regulatory mode between tumour cells and osteoclasts in metastatic niche of prostate cancer via vesicular miRNAs transfer. Combined analysis of miRNAs profiles both in tumour‐derived small EVs (sEVs) and osteoclasts identified miR‐152‐3p as a potential osteolytic molecule. sEVs were enriched in miR‐152‐3p, which targets osteoclastogenic regulator MAFB. Blocking miR‐152‐3p in sEVs upregulated the expression of MAFB and impaired osteoclastogenesis in vitro. In vivo experiments of xenograft mouse model found that blocking of miR‐152‐3p in sEVs significantly slowed down the loss of trabecular architecture, while systemic inhibition of miR‐152‐3p using antagomir‐152‐3p reduced the osteolytic lesions of cortical bone while preserving basic trabecular architecture. Our findings suggest that miR‐152‐3p carried by prostate cancer‐derived sEVs deliver osteolytic signals from tumour cells to osteoclasts, facilitating osteolytic progression in bone metastasis.
Collapse
Affiliation(s)
- Qinyu Ma
- Department of Orthopedics Southwest Hospital Third Military Medical University Chongqing 400038 China
| | - Mengmeng Liang
- Department of Biomedical Materials Science Third Military Medical University Chongqing 400038 China
| | - Yutong Wu
- Department of Orthopedics Southwest Hospital Third Military Medical University Chongqing 400038 China
| | - Ce Dou
- Department of Orthopedics Southwest Hospital Third Military Medical University Chongqing 400038 China
| | - Jianzhong Xu
- Department of Orthopedics Southwest Hospital Third Military Medical University Chongqing 400038 China
| | - Shiwu Dong
- Department of Biomedical Materials Science Third Military Medical University Chongqing 400038 China.,State Key Laboratory of Trauma Burns and Combined Injury Third Military Medical University Chongqing 400038 China
| | - Fei Luo
- Department of Orthopedics Southwest Hospital Third Military Medical University Chongqing 400038 China
| |
Collapse
|
5
|
Ajdžanovic V, Filipovic B, Miljic D, Mijatovic S, Maksimovic-Ivanic D, Miler M, Živanovic J, Miloševic V. Prostate cancer metastasis and soy isoflavones: a dogfight over a bone. EXCLI JOURNAL 2019; 18:106-126. [PMID: 30956643 PMCID: PMC6449674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/12/2019] [Indexed: 11/04/2022]
Abstract
Prostate cancer is a complex, progressive, bone-tropic disease, which is usually associated with skeletal issues, poor mobility and a fatal outcome when it reaches the metastatic phase. Soy isoflavones, steroid-like compounds from soy-based food/dietary supplements, have been found to decrease the risk of prostate cancer in frequent consumers. Herein, we present a systematization of the data on soy isoflavone effects at different stages of metastatic prostate cancer progression, with a particular interest in the context of bone-related molecular events. Specifically, soy isoflavones have been determined to downregulate the prostate cancer cell androgen receptors, reverse the epithelial to mesenchymal transition of these cells, decrease the expressions of prostate-specific antigen, matrix metalloproteinase and serine proteinase, and reduce the superficial membrane fluidity in prostate cancer cells. In addition, soy isoflavones suppress the angiogenesis that follows prostate cancer growth, obstruct prostate cancer cells adhesion to the vascular endothelium and their extravasation in the area of future bone lesions, improve the general bone morphofunctional status, have a beneficial effect on prostate cancer metastasis-caused osteolytic/osteoblastic lesions and possibly affect the pre-metastatic niche formation. The observed, multilevel antimetastatic properties of soy isoflavones imply that they should be considered as promising components of combined therapeutic approaches to advanced prostate cancer.
Collapse
Affiliation(s)
- Vladimir Ajdžanovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Branko Filipovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Dragana Miljic
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Mijatovic
- Department of Immunology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Danijela Maksimovic-Ivanic
- Department of Immunology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jasmina Živanovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Verica Miloševic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Varona S, Orriols M, Galán M, Guadall A, Cañes L, Aguiló S, Sirvent M, Martínez-González J, Rodríguez C. Lysyl oxidase (LOX) limits VSMC proliferation and neointimal thickening through its extracellular enzymatic activity. Sci Rep 2018; 8:13258. [PMID: 30185869 PMCID: PMC6125287 DOI: 10.1038/s41598-018-31312-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
Lysyl oxidase (LOX) plays a critical role in extracellular matrix maturation and limits VSMC proliferation and vascular remodeling. We have investigated whether this anti-proliferative effect relies on the extracellular catalytically active LOX or on its biologically active propeptide (LOX-PP). High expression levels of both LOX and LOX-PP were detected in the vascular wall from transgenic mice over-expressing the full-length human LOX cDNA under the control of SM22α promoter (TgLOX), which targets the transgene to VSMC without affecting the expression of mouse LOX isoenzymes. TgLOX VSMC also secrete high amounts of both mature LOX and LOX-PP. Wild-type (WT) mouse VSMC exposed to VSMC supernatants from transgenic animals showed reduced proliferative rates (low [3H]-thymidine uptake and expression of PCNA) than those incubated with conditioned media from WT cells, effect that was abrogated by β-aminopropionitrile (BAPN), an inhibitor of LOX activity. Lentiviral over-expression of LOX, but not LOX-PP, decreased human VSMC proliferation, effect that was also prevented by BAPN. LOX transgenesis neither impacted local nor systemic inflammatory response induced by carotid artery ligation. Interestingly, in this model, BAPN normalized the reduced neointimal thickening observed in TgLOX mice. Therefore, extracellular enzymatically active LOX is required to limit both VSMC proliferation and vascular remodeling.
Collapse
Affiliation(s)
- Saray Varona
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain.,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Mar Orriols
- CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain.,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - María Galán
- CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain.,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, Barcelona, Spain
| | - Anna Guadall
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain.,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Silvia Aguiló
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, Barcelona, Spain
| | - Marc Sirvent
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain. .,CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain. .,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain.
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain. .,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain. .,Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, Barcelona, Spain.
| |
Collapse
|
7
|
Jiang WY, Xing C, Wang HW, Wang W, Chen SZ, Ning LF, Xu X, Tang QQ, Huang HY. A Lox/CHOP-10 crosstalk governs osteogenic and adipogenic cell fate by MSCs. J Cell Mol Med 2018; 22:5097-5108. [PMID: 30044535 PMCID: PMC6156357 DOI: 10.1111/jcmm.13798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/31/2018] [Accepted: 06/23/2018] [Indexed: 12/20/2022] Open
Abstract
Accelerated marrow adipogenesis has been associated with ageing and osteoporosis and is thought to be because of an imbalance between adipogenic and osteogenic differentiation of mesenchymal stem cell (MSCs). We have previously found that lysyl oxidase (Lox) inhibition disrupts BMP4‐induced adipocytic lineage commitment and differentiation of MSCs. In this study, we found that lox inhibition dramatically up‐regulates BMP4‐induced expression of CCAAT/enhancer binding protein (C/EBP) homologous protein 10 (CHOP‐10), which then promotes BMP4‐induced osteogenesis of MSCs both in vitro and in vivo. Specifically, Lox inhibition or CHOP‐10 up‐regulation activated Wnt/β‐catenin signalling to enhance BMP4‐induced osteogenesis, with pro‐adipogenic p38 MAPK and Smad signalling suppressed. Together, we demonstrate that Lox/CHOP‐10 crosstalk regulates BMP4‐induced osteogenic and adipogenic fate determination of MSCs, presenting a promising therapeutic target for osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Wen-Yan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chun Xing
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hong-Wei Wang
- Biliary and Pancreatic Center, Huadong Hospital, Fudan University, Shanghai, China
| | - Wei Wang
- Biliary and Pancreatic Center, Huadong Hospital, Fudan University, Shanghai, China
| | - Su-Zhen Chen
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liu-Fang Ning
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xu Xu
- Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hai-Yan Huang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Li T, Wu C, Gao L, Qin F, Wei Q, Yuan J. Lysyl oxidase family members in urological tumorigenesis and fibrosis. Oncotarget 2018; 9:20156-20164. [PMID: 29732010 PMCID: PMC5929453 DOI: 10.18632/oncotarget.24948] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/11/2018] [Indexed: 02/05/2023] Open
Abstract
Lysyl oxidase (LOX) is an extracellular copper-dependent monoamine oxidase that catalyzes crosslinking of soluble collagen and elastin into insoluble, mature fibers. Lysyl oxidase-like proteins (LOXL), LOX isozymes with partial structural homology, exhibit similar catalytic activities. This review summarizes recent findings describing the roles of LOX family members in urological cancers and fibrosis. LOX/LOXL play key roles in extracellular matrix stability and integrity, which is essential for normal female pelvic floor function. LOX/LOXL inhibition may reverse kidney fibrosis and ischemic priapism. LOX and LOXL2 reportedly promote kidney carcinoma tumorigenesis, while LOX, LOXL1 and LOXL4 suppress bladder cancer growth. Multiple studies agree that the LOX propeptide may suppress tumor growth, but the role of LOX in prostate cancer remains controversial. Further studies are needed to clarify the exact effects and mechanism of LOX/LOXL on urological malignancies.
Collapse
Affiliation(s)
- Tao Li
- The Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changjing Wu
- The Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Gao
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Qin
- The Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiuhong Yuan
- The Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Vest KE, Paskavitz AL, Lee JB, Padilla-Benavides T. Dynamic changes in copper homeostasis and post-transcriptional regulation of Atp7a during myogenic differentiation. Metallomics 2018; 10:309-322. [PMID: 29333545 PMCID: PMC5824686 DOI: 10.1039/c7mt00324b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
Abstract
Copper (Cu) is an essential metal required for activity of a number of redox active enzymes that participate in critical cellular pathways such as metabolism and cell signaling. Because it is also a toxic metal, Cu must be tightly controlled by a series of transporters and chaperone proteins that regulate Cu homeostasis. The critical nature of Cu is highlighted by the fact that mutations in Cu homeostasis genes cause pathologic conditions such as Menkes and Wilson diseases. While Cu homeostasis in highly affected tissues like the liver and brain is well understood, no study has probed the role of Cu in development of skeletal muscle, another tissue that often shows pathology in these conditions. Here, we found an increase in whole cell Cu content during differentiation of cultured immortalized or primary myoblasts derived from mouse satellite cells. We demonstrate that Cu is required for both proliferation and differentiation of primary myoblasts. We also show that a key Cu homeostasis gene, Atp7a, undergoes dynamic changes in expression during myogenic differentiation. Alternative polyadenylation and stability of Atp7a mRNA fluctuates with differentiation stage of the myoblasts, indicating post-transcriptional regulation of Atp7a that depends on the differentiation state. This is the first report of a requirement for Cu during myogenic differentiation and provides the basis for understanding the network of Cu transport associated with myogenesis.
Collapse
Affiliation(s)
- Katherine E. Vest
- Department of Biology , Emory University , 1510 Clifton Road , Atlanta , GA 30322 , USA
| | - Amanda L. Paskavitz
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , 394 Plantation St. , Worcester , MA 01605 , USA .
| | - Joseph B. Lee
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , 394 Plantation St. , Worcester , MA 01605 , USA .
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , 394 Plantation St. , Worcester , MA 01605 , USA .
| |
Collapse
|
10
|
Kumari S, Panda TK, Pradhan T. Lysyl Oxidase: Its Diversity in Health and Diseases. Indian J Clin Biochem 2017; 32:134-141. [PMID: 28428687 PMCID: PMC5382067 DOI: 10.1007/s12291-016-0576-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/06/2016] [Indexed: 01/27/2023]
Abstract
The mechanical properties of extracellular matrix (ECM) and connective tissues is largely dependent on the collagen and elastin structure. Lysyl oxidase (LOX) plays a critical role in the formation and repair of the ECM by oxidizing lysine residues in elastin and collagen, thereby initiating the formation of covalent cross linkages which stabilize these fibrous proteins. Due to its multiple functions both extracellularly and intracellularly, lysyl oxidase is involved in several processes in the tumorigenic pathway, in many different cancer types and stages. Alteration in LOX activity is implicated in many diseases and disorders including inflammation and inflammatory diseases, fibrosis of distinct organs and fibrotic disorders, cancer promotion and progression. There are only sparse reports of mutations or epigenetic alterations in the LOX gene. This review provides the recent clinical developments in the molecular mechanisms and pathologic process, pointing out LOX as a potential therapeutic target in translational medicine.
Collapse
Affiliation(s)
- Suchitra Kumari
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | | | | |
Collapse
|
11
|
Lysyl Oxidase and the Tumor Microenvironment. Int J Mol Sci 2016; 18:ijms18010062. [PMID: 28036074 PMCID: PMC5297697 DOI: 10.3390/ijms18010062] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022] Open
Abstract
The lysyl oxidase (LOX) family of oxidases contains a group of extracellular copper-dependent enzymes that catalyze the cross-linking of collagen and elastin by oxidation, thus maintaining the rigidity and structural stability of the extracellular matrix (ECM). Aberrant expression or activation of LOX alters the cellular microenvironment, leading to many diseases, including atherosclerosis, tissue fibrosis, and cancer. Recently, a number of studies have shown that LOX is overexpressed in most cancers and that it is involved in the regulation of tumor progression and metastasis. In contrast, a few reports have also indicated the tumor-suppressing role of LOX. In this short review, we discuss recent research on the correlations between LOX and cancer. Further, the role of LOX in tumor microenvironment remodeling, tumorigenesis, and metastasis and the underlying mechanisms have also been elucidated.
Collapse
|
12
|
Gartland A, Erler JT, Cox TR. The role of lysyl oxidase, the extracellular matrix and the pre-metastatic niche in bone metastasis. J Bone Oncol 2016; 5:100-103. [PMID: 27761366 PMCID: PMC5063254 DOI: 10.1016/j.jbo.2016.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/09/2016] [Accepted: 04/13/2016] [Indexed: 02/07/2023] Open
Abstract
Most deaths from solid cancers occur as a result of secondary metastasis to distant sites. Bone is the most frequent metastatic site for many cancer types and can account for up to 80% of cancer-related deaths in certain tumours. The progression from a discrete solid primary tumour to devastating and painful bone metastases is a complex process involving multiple cell types and steps. There is increasing evidence that modulation of the extracellular matrix plays an important role in the lethal transition from a primary to disseminated metastatic bone tumour. This review provides an overview of the current understanding on the role of role of lysyl oxidase, the extracellular matrix and the pre-metastatic niche in bone metastasis.
Collapse
Affiliation(s)
- Alison Gartland
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2RX, UK
| | - Janine T. Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Ole Maaløes Vej 5, Copenhagen 2200, Denmark
| | - Thomas R. Cox
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Ole Maaløes Vej 5, Copenhagen 2200, Denmark
| |
Collapse
|
13
|
Trackman PC. Lysyl Oxidase Isoforms and Potential Therapeutic Opportunities for Fibrosis and Cancer. Expert Opin Ther Targets 2016; 20:935-45. [PMID: 26848785 DOI: 10.1517/14728222.2016.1151003] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The lysyl oxidase family of enzymes is classically known as being required for connective tissue maturation by oxidizing lysine residues in elastin and lysine and hydroxylysine residues in collagen precursors. The resulting aldehydes then participate in cross-link formation, which is required for normal connective tissue integrity. These enzymes have biological functions that extend beyond this fundamental biosynthetic role, with contributions to angiogenesis, cell proliferation, and cell differentiation. Dysregulation of lysyl oxidases occurs in multiple pathologies including fibrosis, primary and metastatic cancers, and complications of diabetes in a variety of tissues. AREAS COVERED This review summarizes the major findings of novel roles for lysyl oxidases in pathologies, and highlights some of the potential therapeutic approaches that are in development and which stem from these new findings. EXPERT OPINION Fundamental questions remain regarding the mechanisms of novel biological functions of this family of proteins, and regarding functions that are independent of their catalytic enzyme activity. However, progress is underway in the development of isoform-specific pharmacologic inhibitors, potential therapeutic antibodies and gaining an increased understanding of both tumor suppressor and metastasis promotion activities. Ultimately, this is likely to lead to novel therapeutic agents.
Collapse
Affiliation(s)
- Philip C Trackman
- a Department of Molecular and Cell Biology , Boston University, Henry M. Goldman School of Dental Medicine , Boston , MA , USA
| |
Collapse
|
14
|
Trackman PC. Enzymatic and non-enzymatic functions of the lysyl oxidase family in bone. Matrix Biol 2016; 52-54:7-18. [PMID: 26772152 DOI: 10.1016/j.matbio.2016.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
Advances in the understanding of the biological roles of the lysyl oxidase family of enzyme proteins in bone structure and function are reviewed. This family of proteins is well-known as catalyzing the final reaction required for cross-linking of collagens and elastin. Novel emerging roles for these proteins in the phenotypic development of progenitor cells and in angiogenesis are highlighted and which point to enzymatic and non-enzymatic roles for this family in bone development and homeostasis and in disease. The explosion of interest in the lysyl oxidase family in the cancer field highlights the need to have a better understanding of the functions of this protein family in normal and abnormal connective tissue homeostasis at fundamental molecular and cellular levels including in mineralized tissues.
Collapse
Affiliation(s)
- Philip C Trackman
- Boston University, Henry M. Goldman School of Dental Medicine, 700 Albany Street, W-201, Boston, MA 02118, United States.
| |
Collapse
|