1
|
Brown CJ, Campbell MD, Collier CJ, Turschwell MP, Saunders MI, Connolly RM. Speeding up the recovery of coastal habitats through management interventions that address constraints on dispersal and recruitment. Proc Biol Sci 2024; 291:20241065. [PMID: 39043234 PMCID: PMC11391320 DOI: 10.1098/rspb.2024.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Plans for habitat restoration will benefit from predictions of timescales for recovery. Theoretical models have been a powerful tool for informing practical guidelines in planning marine protected areas, suggesting restoration planning could also benefit from a theoretical framework. We developed a model that can predict recovery times following restoration action, under dispersal, recruitment and connectivity constraints. We apply the model to a case study of seagrass restoration and find recovery times following restoration action can vary greatly, from <1 to >20 years. The model also shows how recovery can be accelerated when restoration actions are matched to the constraints on recovery. For example, spreading of propagules can be used when connectivity is the critical restriction. The recovery constraints we articulated mathematically also apply to the restoration of coral reefs, mangroves, saltmarsh, shellfish reefs and macroalgal forests, so our model provides a general framework for choosing restoration actions that accelerate coastal habitat recovery.
Collapse
Affiliation(s)
- Christopher J Brown
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
- Coastal and Marine Research Centre, School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Max D Campbell
- Coastal and Marine Research Centre, School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Catherine J Collier
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, Queensland 4870, Australia
| | - Mischa P Turschwell
- Coastal and Marine Research Centre, School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| | | | - Rod M Connolly
- Coastal and Marine Research Centre, School of Environment and Science, Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
2
|
Easter EE, Adreani MS, Hamilton SL, Steele MA, Pang S, White JW. Influence of protogynous sex change on recovery of fish populations within marine protected areas. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02070. [PMID: 31903628 DOI: 10.1002/eap.2070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Marine protected areas (MPAs) are increasingly implemented as a conservation tool worldwide. In many cases, they are managed adaptively: the abundance of target species is monitored, and observations are compared to some model-based expectation for the trajectory of population recovery to ensure that the MPA is achieving its goals. Most previous analyses of the transient (short-term) response of populations to the cessation of fishing inside MPAs have dealt only with gonochore (fixed-sex) species. However, many important fishery species are protogynous hermaphrodites (female-to-male sex-changing). Because size-selective harvest will predominantly target males in these species, harvesting not only reduces abundance but also skews the sex ratio toward females. Thus the response to MPA implementation will involve changes in both survival and sex ratio, and ultimately reproductive output. We used an age-structured model of a generic sex-changing fish population to compare transient population dynamics after MPA implementation to those of an otherwise similar gonochore population and examine how different features of sex-changing life history affect those dynamics. We examined both demographically open (most larval recruitment comes from outside the MPA) and demographically closed (most larval recruitment is locally produced) dynamics. Under both scenarios, population recovery of protogynous species takes longer when fishing was more intense pre-MPA (as in gonochores), but also depends heavily on the mating function, the degree to which the sex ratio affects reproduction. If few males are needed and reproduction is not affected by a highly female-biased sex ratio, then population recovery is much faster; if males are a limiting resource, then increases in abundance after MPA implementation are much slower than for gonochores. Unfortunately, the mating function is largely unknown for fishes. In general, we expect that most protogynous species with haremic mating systems will be in the first category (few males needed), though there is at least one example of a fish species (though not a sex-changing species) for which males are limiting. Thus a better understanding of the importance of male fish to population dynamics is needed for the adaptive management of MPAs.
Collapse
Affiliation(s)
- E E Easter
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, 28403, USA
| | - M S Adreani
- Department of Biology, California State University, Northridge, California, 91330, USA
| | - S L Hamilton
- Moss Landing Marine Laboratories, Moss Landing, California, 95309, USA
| | - M A Steele
- Department of Biology, California State University, Northridge, California, 91330, USA
| | - S Pang
- Moss Landing Marine Laboratories, Moss Landing, California, 95309, USA
| | - J W White
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, 28403, USA
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, 97365, USA
| |
Collapse
|
3
|
|
4
|
Hopf JK, Jones GP, Williamson DH, Connolly SR. Synergistic Effects of Marine Reserves and Harvest Controls on the Abundance and Catch Dynamics of a Coral Reef Fishery. Curr Biol 2016; 26:1543-1548. [PMID: 27185553 DOI: 10.1016/j.cub.2016.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
Marine no-take reserves, where fishing and other extractive activities are prohibited, have well-established conservation benefits [1], yet their impacts on fisheries remains contentious [2-4]. For fishery species, reserves are often implemented alongside more conventional harvest strategies, including catch and size limits [2, 5]. However, catch and fish abundances observed post-intervention are often attributed to reserves, without explicitly estimating the potential contribution of concurrent management interventions [2, 3, 6-9]. Here we test a metapopulation model against observed fishery [10] and population [11] data for an important coral reef fishery (coral trout; Plectropomus spp.) in Australia's Great Barrier Reef Marine Park (GBRMP) to evaluate how the combined increase in reserve area [12] and reduction in fishing effort [13, 14] in 2004 influenced changes in fish stocks and the commercial fishery. We found that declines in catch, increases in catch rates, and increases in biomass since 2004 were substantially attributable to the integration of direct effort controls with the rezoning, rather than the rezoning alone. The combined management approach was estimated to have been more productive for fish and fisheries than if the rezoning had occurred alone and comparable to what would have been obtained with effort controls alone. Sensitivity analyses indicate that the direct effort controls prevented initial decreases in catch per unit effort that would have otherwise occurred with the rezoning. Our findings demonstrate that by concurrently restructuring the fishery, the conservation benefits of reserves were enhanced and the fishery cost of rezoning the reserve network was socialized, mitigating negative impacts on individual fishers.
Collapse
Affiliation(s)
- Jess K Hopf
- Marine Biology and Aquaculture Sciences, James Cook University, Townsville, QLD 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| | - Geoffrey P Jones
- Marine Biology and Aquaculture Sciences, James Cook University, Townsville, QLD 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David H Williamson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Sean R Connolly
- Marine Biology and Aquaculture Sciences, James Cook University, Townsville, QLD 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
5
|
Aiken CM, Navarrete SA. Coexistence of competitors in marine metacommunities: environmental variability, edge effects, and the dispersal niche. Ecology 2014; 95:2289-302. [DOI: 10.1890/13-0472.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Marine protected areas and the value of spatially optimized fishery management. Proc Natl Acad Sci U S A 2012; 109:11884-9. [PMID: 22753469 DOI: 10.1073/pnas.1116193109] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is a growing focus around the world on marine spatial planning, including spatial fisheries management. Some spatial management approaches are quite blunt, as when marine protected areas (MPAs) are established to restrict fishing in specific locations. Other management tools, such as zoning or spatial user rights, will affect the distribution of fishing effort in a more nuanced manner. Considerable research has focused on the ability of MPAs to increase fishery returns, but the potential for the broader class of spatial management approaches to outperform MPAs has received far less attention. We use bioeconomic models of seven nearshore fisheries in Southern California to explore the value of optimized spatial management in which the distribution of fishing is chosen to maximize profits. We show that fully optimized spatial management can substantially increase fishery profits relative to optimal nonspatial management but that the magnitude of this increase depends on characteristics of the fishing fleet and target species. Strategically placed MPAs can also increase profits substantially compared with nonspatial management, particularly if fishing costs are low, although profit increases available through optimal MPA-based management are roughly half those from fully optimized spatial management. However, if the same total area is protected by randomly placing MPAs, starkly contrasting results emerge: most random MPA designs reduce expected profits. The high value of spatial management estimated here supports continued interest in spatially explicit fisheries regulations but emphasizes that predicted increases in profits can only be achieved if the fishery is well understood and the regulations are strategically designed.
Collapse
|
7
|
Chan NCS, Connolly SR, Mapstone BD. Effects of sex change on the implications of marine reserves for fisheries. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:778-791. [PMID: 22645810 DOI: 10.1890/11-0036.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Marine reserves have become widely used in biodiversity conservation and are increasingly proposed as fisheries management tools. Previous modeling studies have found that reserves may increase or decrease yields, depending on local environmental conditions and on the specific life-history traits of the fishery species. Sex-changing (female-to-male) fish are targets of some of the most important commercial and recreational fisheries in the world. The potential for disproportionate removal of the larger, older sex of such species requires new theory to facilitate our understanding of how reserves will affect the yields of surrounding fisheries, relative to fishes with separate sexes. We investigated this question by modeling the effects of marine reserves on a non-sex-changing and a sex-changing population. We used demographic parameter estimates for the common coral trout as a baseline, and we conducted extensive sensitivity analyses to determine how sustainable yields of sex-changing species are likely to be affected by reserves across a broad range of life-history parameters. Our findings indicate that fisheries for sex-changing species are unlikely to receive the same yield-enhancing benefit that non-sex-changing fisheries enjoy from marine reserves, and that often reserves tend to reduce sustainable yields for a given overall population size. Specifically, the increased egg production and high fertilization success within reserves is more than offset by the reduced egg production and fertilization success in the fished areas, relative to a system in which fishing mortality is distributed more evenly over the entire system. A key reason for this appears to be that fertilization success is reduced, on average, when males are unevenly distributed among subpopulations, as is the case when reserves are present. These findings suggests that, for sex-changing populations, reserves are more suited to rebuilding overfished populations and sustaining fishery viability, rather than enhancing fishery yields. These results are robust over a range of sex-change regimes, stock-recruitment relationships, adult mortality rates, individual growth strategies, and fertilization-success functions. Our findings highlight the importance of considering the different contributions of males and females to population growth and fishery yields when evaluating the efficacy of marine reserves for enhancement of fished species.
Collapse
Affiliation(s)
- Neil C S Chan
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia.
| | | | | |
Collapse
|
8
|
Abstract
Several recent advances in coexistence theory emphasize the importance of space and dispersal, but focus on average dispersal rates and require spatial heterogeneity, spatio-temporal variability or dispersal-competition tradeoffs to allow coexistence. We analyse a model with stochastic juvenile dispersal (driven by turbulent flow in the coastal ocean) and show that a low-productivity species can coexist with a high-productivity species by having dispersal patterns sufficiently uncorrelated from those of its competitor, even though, on average, dispersal statistics are identical and subsequent demography and competition is spatially homogeneous. This produces a spatial storage effect, with an ephemeral partitioning of a ‘spatial niche’, and is the first demonstration of a physical mechanism for a pure spatiotemporal environmental response. ‘Turbulent coexistence’ is widely applicable to marine species with pelagic larval dispersal and relatively sessile adult life stages (and perhaps some wind-dispersed species) and complements other spatial and temporal storage effects previously documented for such species.
Collapse
Affiliation(s)
- Heather A Berkley
- Donald Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA 93106-5131, USA
| | | | | | | |
Collapse
|
9
|
Designing marine reserve networks for both conservation and fisheries management. Proc Natl Acad Sci U S A 2010; 107:18286-93. [PMID: 20200311 DOI: 10.1073/pnas.0906473107] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Marine protected areas (MPAs) that exclude fishing have been shown repeatedly to enhance the abundance, size, and diversity of species. These benefits, however, mean little to most marine species, because individual protected areas typically are small. To meet the larger-scale conservation challenges facing ocean ecosystems, several nations are expanding the benefits of individual protected areas by building networks of protected areas. Doing so successfully requires a detailed understanding of the ecological and physical characteristics of ocean ecosystems and the responses of humans to spatial closures. There has been enormous scientific interest in these topics, and frameworks for the design of MPA networks for meeting conservation and fishery management goals are emerging. Persistent in the literature is the perception of an inherent tradeoff between achieving conservation and fishery goals. Through a synthetic analysis across these conservation and bioeconomic studies, we construct guidelines for MPA network design that reduce or eliminate this tradeoff. We present size, spacing, location, and configuration guidelines for designing networks that simultaneously can enhance biological conservation and reduce fishery costs or even increase fishery yields and profits. Indeed, in some settings, a well-designed MPA network is critical to the optimal harvest strategy. When reserves benefit fisheries, the optimal area in reserves is moderately large (mode ≈30%). Assessing network design principals is limited currently by the absence of empirical data from large-scale networks. Emerging networks will soon rectify this constraint.
Collapse
|