1
|
Hjermann TKS, Rivrud IM, Meisingset EL, Mysterud A. Multiple drivers of spring migration timing for red deer over the past 16 years in northern Europe. Proc Biol Sci 2025; 292:20240842. [PMID: 39772963 PMCID: PMC11706655 DOI: 10.1098/rspb.2024.0842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/10/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
The timing of migration is fundamental for species exploiting seasonally variable environments. For ungulates, earlier spring migration is expected with earlier vegetation green-up. However, other drivers, such as access to agricultural farmland and variation in local conditions, are also known to affect migration. We investigated the timing of spring migration for 96 male and 201 female red deer (Cervus elaphus) using a long-term dataset (2005-2020). Overall, the timing of migration was mainly characterized by large individual variability between and within years (95% range 6 April to 18 June). The spring migration timing was, as expected, later with colder winter and spring conditions (North Atlantic Oscillation (NAO) winter and April indices) and later peak vegetation green-up (NDVI), with a five-day delay in green-up causing a migration delay of 1.2 days. Timing was also influenced by local conditions in summer and winter home ranges. Red deer with greater access to farmland and a more variable topography (hence variable plant phenology) in winter delayed migration. Similarly, individuals with higher-elevation summer ranges (with delayed onset of plant growth) also delayed migration. Our analyses highlight that the timing of red deer migration is determined by multiple drivers affecting foraging conditions in the landscape, indicative of considerable phenotypic plasticity.
Collapse
Affiliation(s)
- Tilde Katrina Slotte Hjermann
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Inger Maren Rivrud
- Norwegian Institute for Nature Research (NINA), Sognsveien 68, NO-0855, Oslo, Norway
| | - Erling L. Meisingset
- Department of Forestry and Forestry Resources, Norwegian Institute of Bioeconomy Research, Tingvoll gard, NO-6630, Tingvoll, Norway
| | - Atle Mysterud
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
- Norwegian Institute for Nature Research (NINA), P. O. Box 5685 Torgarden, NO-7485, Trondheim, Norway
| |
Collapse
|
2
|
Williams S, Hebblewhite M, Martin H, Meyer C, Whittington J, Killeen J, Berg J, MacAulay K, Smolko P, Merrill EH. Predation risk drives long-term shifts in migratory behaviour and demography in a large herbivore population. J Anim Ecol 2024; 93:21-35. [PMID: 37982331 DOI: 10.1111/1365-2656.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/27/2023] [Indexed: 11/21/2023]
Abstract
Migration is an adaptive life-history strategy across taxa that helps individuals maximise fitness by obtaining forage and avoiding predation risk. The mechanisms driving migratory changes are poorly understood, and links between migratory behaviour, space use, and demographic consequences are rare. Here, we use a nearly 20-year record of individual-based monitoring of a large herbivore, elk (Cervus canadensis) to test hypotheses for changing patterns of migration in and adjacent to a large protected area in Banff National Park (BNP), Canada. We test whether bottom-up (forage quality) or top-down (predation risk) factors explained trends in (i) the proportion of individuals using 5 different migratory tactics, (ii) differences in survival rates of migratory tactics during migration and whilst on summer ranges, (iii) cause-specific mortality by wolves and grizzly bears, and (iv) population abundance. We found dramatic shifts in migration consistent with behavioural plasticity in individual choice of annual migratory routes. Shifts were inconsistent with exposure to the bottom-up benefits of migration. Instead, exposure to landscape gradients in predation risk caused by exploitation outside the protected area drove migratory shifts. Carnivore exploitation outside the protected area led to higher survival rates for female elk remaining resident or migrating outside the protected area. Cause-specific mortality aligned with exposure to predation risk along migratory routes and summer ranges. Wolf predation risk was higher on migratory routes than summer ranges of montane-migrant tactics, but wolf predation risk traded-off with heightened risk from grizzly bears on summer ranges. A novel eastern migrant tactic emerged following a large forest fire that enhanced forage in an area with lower predation risk outside of the protected area. The changes in migratory behaviour translated to population abundance, where abundance of the montane-migratory tactics declined over time. The presence of diverse migratory life histories maintained a higher total population abundance than would have been the case with only one migratory tactic in the population. Our study demonstrates the complex ways in which migratory populations change over time through behavioural plasticity and associated demographic consequences because of individuals balancing predation risk and forage trade-offs.
Collapse
Affiliation(s)
- S Williams
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - M Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - H Martin
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - C Meyer
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - J Whittington
- Banff National Park, Parks Canada, Banff, Alberta, Canada
| | - J Killeen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - J Berg
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - K MacAulay
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - P Smolko
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Applied Zoology and Wildlife Management, Technical University in Zvolen, Zvolen, Slovakia
| | - E H Merrill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Dorber M, Panzacchi M, Strand O, van Moorter B. New indicator of habitat functionality reveals high risk of underestimating trade-offs among sustainable development goals: The case of wild reindeer and hydropower. AMBIO 2023; 52:757-768. [PMID: 36759433 PMCID: PMC9989093 DOI: 10.1007/s13280-022-01824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/18/2023]
Abstract
Although biodiversity is crucial for Sustainable Development Goals (SDGs), following the current trajectory, we risk failing SDG 15. Using a new indicator quantifying the loss of functional habitat (habitat that is simultaneously suitable and well-connected), we show that the real impact of renewable energy is far larger than previously assumed. Specifically, we estimate that the construction of hydropower reservoirs in south Norway caused a loss of ca. 222 km2 of functional habitat for wild reindeer (Rangifer tarandus)-which is far larger than assumed based on land inundation indices (110 km2). Fully mitigating these impacts is challenging: scenario analyses reveal that the measures proposed by societal actors would yield only a fraction of the habitat lost (2-12 km2) and could cause trade-off risks with other SDGs. Using indices of functional connectivity is crucial for environmental impact assessments, as entire ecological networks for several species can be affected far beyond the reservoirs.
Collapse
Affiliation(s)
- Martin Dorber
- Industrial Ecology Programme, Department of Energy and Process Engineering, NTNU, Høgskoleringen 5, 7034 Trondheim, Norway
| | - Manuela Panzacchi
- Norwegian Institute for Nature Research, Høgskoleringen 9, 7034 Trondheim, Norway
| | - Olav Strand
- Norwegian Institute for Nature Research, Høgskoleringen 9, 7034 Trondheim, Norway
| | - Bram van Moorter
- Norwegian Institute for Nature Research, Høgskoleringen 9, 7034 Trondheim, Norway
| |
Collapse
|
4
|
DeVoe JD, Proffitt KM, Millspaugh JJ. Fence types influence pronghorn movement responses. Ecosphere 2022. [DOI: 10.1002/ecs2.4285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jesse D. DeVoe
- Wildlife Biology Program University of Montana Missoula Montana USA
| | | | | |
Collapse
|
5
|
MacDonald AM, Jones PF, Hanlon JA, Martin BH, Jakes AF. How did the deer cross the fence: An evaluation of wildlife-friendlier fence modifications to facilitate deer movement. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.991765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Fences are a common feature throughout the landscape of North America’s Great Plains region. Knowledge surrounding the harmful implication that fences have on the movement of wildlife, specifically ungulates, is expanding. Across the region, it is accepted that there is a need to mitigate the impacts of barbed wire fencing and that “wildlife-friendlier” fence designs are emerging as a practical tool to meet these goals. Here we evaluate the response of sympatric deer species to the implementation of two fence modifications, fastening the top two wires together using clips and the installation of polyvinyl chloride (PVC) pipe to encompass the top two wires. We also aim to determine the optimal top wire height to allow for successful crossing by deer, with the goal to provide a more robust understanding of effective wildlife-friendlier fence standards. We used remote trail cameras to capture crossing events and recorded responses for mule deer (Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus). Using generalized linear mixed modelling, we tested the influence modifications had on crossing success and decisions prior to and after the modifications were installed compared to control sites. We found that these modifications had little impact on deer crossing behavior. We determined that wire height had the greatest impact on the permeability of fences, but that deer permeability was strongly influenced by species and sex. We found that the current maximum recommended top wire height of 102 cm (40 inches) is adequate to allow individuals of both deer species to cross over the fence, with the exception of female mule deer. Our results also indicate as the top wire height reaches 110 cm (43 inches) or higher, that the probability of successfully jumping over the fence dramatically drops off, with the exception for male mule deer. We recommend the installation of clips as a cost-effective method to lower top wire height and PVC pipe to improve fence visibility and potentially reduce entanglement events, all while effectively keeping livestock in intended pastures.
Collapse
|
6
|
Jones PF, Jakes AF, Vegter SE, Verhage MS. Is it the road or the fence? Influence of linear anthropogenic features on the movement and distribution of a partially migratory ungulate. MOVEMENT ECOLOGY 2022; 10:37. [PMID: 36038930 PMCID: PMC9422137 DOI: 10.1186/s40462-022-00336-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Anthropogenic linear features change the behavior and selection patterns of species, which must adapt to these ever-increasing features on the landscape. Roads are a well-studied linear feature that alter the survival, movement, and distribution of animals. Less understood are the effects of fences on wildlife, though they tend to be more ubiquitous across the landscape than roads. Even less understood are potential indirect effects when fences are found in tandem with roads along transportation corridors. METHODS We assessed how the spatial configuration of fences and roads effect the movement (crossing effect) and distribution (proximity effect) of a partially migratory pronghorn population (Antilocapra americana) on the grasslands of southern Alberta, Canada. We used data from 55 collared pronghorn within a step-selection function framework to assess the influence of 4 linear features: (1) pasture fences, (2) roads not fenced, (3) roads fenced on one side, and (4) roads fenced on both sides on the selection pattern of migratory and resident animals. We examined whether steps along a movement pathway (i.e., crossing effect) were influenced by the type of linear feature animals attempted to cross and, whether these features affected the distribution of pronghorn (i.e., proximity effect) across the landscape. RESULTS The top model for crossing effect for both movement tactics contained all 4 linear features and land cover. Regression coefficients were negative for all linear features, indicating that individuals were less likely to chose steps that crossed linear features. For the proximity effect, migrant animals avoided all linear features except roads fenced on both sides, where they selected areas closer to this feature. Resident animals, on the other hand, were found closer to pasture fences but further from roads without fences. CONCLUSIONS Our results indicate that both fences and roads are indirectly affecting pronghorn resource use spatially and behaviorally, whether each linear feature is found separately or in tandem. Modifying existing fences and roads to account for responses to these distinct linear features could facilitate more successful crossing opportunities and/or shifts in distribution. Allowing pronghorn to freely move across the landscape will maintain functional connectivity to ensure population persistence of this endemic ungulate.
Collapse
Affiliation(s)
- Paul F Jones
- Alberta Conservation Association, #400 817-4th Ave South, Lethbridge, AB, T1J 0P3, Canada.
| | - Andrew F Jakes
- Smithsonian's National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Scott E Vegter
- Alberta Conservation Association, #400 817-4th Ave South, Lethbridge, AB, T1J 0P3, Canada
| | - Mike S Verhage
- Alberta Conservation Association, #400 817-4th Ave South, Lethbridge, AB, T1J 0P3, Canada
| |
Collapse
|
7
|
Joly K, Gunn A, Côté SD, Panzacchi M, Adamczewski J, Suitor MJ, Gurarie E. Caribou and reindeer migrations in the changing Arctic. ANIMAL MIGRATION 2021. [DOI: 10.1515/ami-2020-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Caribou and reindeer, Rangifer tarandus, are the most numerous and socio-ecologically important terrestrial species in the Arctic. Their migrations are directly and indirectly affected by the seasonal nature of the northernmost regions, human development and population size; all of which are impacted by climate change. We review the most critical drivers of Rangifer migration and how a rapidly changing Arctic may affect them. In order to conserve large Rangifer populations, they must be allowed free passage along their migratory routes to reach seasonal ranges. We also provide some pragmatic ideas to help conserve Rangifer migrations into the future.
Collapse
Affiliation(s)
- Kyle Joly
- Gates of the Arctic National Park and Preserve, Arctic Inventory and Monitoring Network, National Park Service , 4175 Geist Road, Fairbanks, Alaska, 99709, USA
| | - Anne Gunn
- Salt Spring Island , British Columbia V8K 1V1 Canada
| | - Steeve D. Côté
- Département de biologie, Caribou Ungava & Centre d’études nordiques , Université Laval , Québec (QC), G1V 0A6 , Canada
| | - Manuela Panzacchi
- Norwegian Institute for Nature Research (NINA) , Høgskoleringen 9, NO-7034 Trondheim , Norway
| | - Jan Adamczewski
- Department of Environment and Natural Resources, Government of the Northwest Territories , Yellowknife, Northwest Territories , Canada
| | - Michael J. Suitor
- Fish and Wildlife Branch, Environment Yukon, Yukon Government , Dawson City , Yukon , Canada
| | - Eliezer Gurarie
- Department of Biology , University of Maryland , College Park, Maryland, 20742, USA , and Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry , Syracuse , NY 13210
| |
Collapse
|
8
|
van Moorter B, Singh NJ, Rolandsen CM, Solberg EJ, Dettki H, Pusenius J, Månsson J, Sand H, Milner JM, Roer O, Tallian A, Neumann W, Ericsson G, Mysterud A. Seasonal release from competition explains partial migration in European moose. OIKOS 2021. [DOI: 10.1111/oik.07875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bram van Moorter
- The Norwegian Inst. for Nature Research Torgarden Trondheim Norway
| | - Navinder J. Singh
- Swedish Univ. of Agricultural Sciences, Dept of Wildlife, Fish and Environmental Studies Umeå Sweden
| | | | | | - Holger Dettki
- Swedish Univ. of Agricultural Sciences, Swedish Species Information Centre Uppsala Sweden
| | | | - Johan Månsson
- Grimsö Wildlife Research Station, Dept of Ecology, Swedish Univ. of Agricultural Sciences Riddarhyttan Sweden
| | - Håkan Sand
- Grimsö Wildlife Research Station, Dept of Ecology, Swedish Univ. of Agricultural Sciences Riddarhyttan Sweden
| | - Jos M. Milner
- School of Biological Sciences, Univ. of Aberdeen Aberdeen UK
| | - Ole Roer
- Faun Naturforvaltning AS Fyresdal Norway
| | - Aimee Tallian
- The Norwegian Inst. for Nature Research Torgarden Trondheim Norway
| | - Wiebke Neumann
- Swedish Univ. of Agricultural Sciences, Dept of Wildlife, Fish and Environmental Studies Umeå Sweden
| | - Göran Ericsson
- Swedish Univ. of Agricultural Sciences, Dept of Wildlife, Fish and Environmental Studies Umeå Sweden
| | - Atle Mysterud
- The Norwegian Inst. for Nature Research Torgarden Trondheim Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Dept of Biosciences, Univ. of Oslo Blindern Oslo Norway
| |
Collapse
|